Xe NMR line shapes in channels decorated with paramagnetic centers

Devin N. Sears Lela Vukovic Cynthia J. Jameson

ENC 2006

Xe as a probe of porous materials with paramagnetic centers?

[Rh(en)₃]Cl₃ crystal [Co(en)₃]Cl₃ crystal diamagnetic Xe inside these channels

same crystal structure

Ueda et al. J.Phys. Chem. B 107, 180 (2003)

Sears, Wasylishen, Pacifichem 2005

[Cr(en)₃]Cl₃ crystal paramagnetic

Xe can tell the difference!

METHODOLOGY:

- Assume a model of the real physical system Model for shielding response calculation Model for the material system
- 2. Quantum mechanics: Calculate Xe shielding response as a function of configuration
- 3. Adopt potential energy of intermolecular interactions between Xe and the environment atoms
- 4. Choose appropriate averaging process, assuming additivity: Grand Canonical Monte Carlo
- 5. Simulations produce:

Xe one-body distributions: where does Xe spend time? Average isotropic Xe chemical shift Xe line shapes characterizing Xe chemical shift tensor Xe distribution among cages or phases

THE MODEL

- carbon nanotube as the channel: constant surface density of channel atoms and constant structure (corrugation) of channel wall
- O₂ molecule paramagnetic centers: choose orientation either parallel or perpendicular to axis of channel
- vary concentration of paramagnetic centers
- vary distribution of paramagnetic centers
- vary diameter of channel (vary average Xe distance to paramagnetic center)

Xe shielding tensor in a channel in an external magnetic field (B_0) along direction (θ,ϕ) :

$$\begin{split} \sigma_{\text{B0}}(\theta,\,\phi) &= \sigma_{\text{xx}} \, \text{sin}^2\theta \text{cos}^2\phi \, + \\ \sigma_{\text{yy}} \, \text{sin}^2\theta \text{sin}^2\phi + \, \sigma_{\text{zz}} \, \text{cos}^2\theta \\ &+ 1\!\!/_2 (\sigma_{\text{xy}} + \sigma_{\text{yx}}) \text{sin}^2\theta \text{sin}2\phi \\ &+ 1\!\!/_2 (\sigma_{\text{xz}} + \sigma_{\text{zx}}) \text{sin}2\theta \text{cos}\phi \\ &+ 1\!\!/_2 (\sigma_{\text{yz}} + \sigma_{\text{zy}}) \text{sin}2\theta \text{sin}\phi \\ \text{one Xe tensor from interaction} \\ &\text{with ALL channel atoms} \end{split}$$

Lineshapes by grand canonical Monte Carlo

Random orientation of crystallites: Probability that B_0 lies in any infinitesimal solid angle is $d\zeta \ d\phi \ / \ 4\pi$, where $\zeta = (-\cos\theta)$ Equal areas in $\zeta \phi$ plane correspond to equal probabilities

Xe in channels decorated with paramagnetic centers

Xe in carbon nanotubes decorated with paramagnetic centers

Study Xe in the presence Xe can tell of a paramagnetic center how far away Xe@O₂ is the Our model system: paramagnetic center and 0.10 how it is Isotropic Fermi contact coupling [a.u.] 0.08 oriented 0.06 relative to the 0.04 Xe position 0.02 in the magnetic 0.00 field! -0.02 -0.04 distance -0.06 5.5 5.0 angle 120 140 160 180 r [Å] 100 80 60 40 3.0 20 θ [°] Lela Vukovic Isotropic part of the hyperfine tensor

Why the angle dependence?

Simple picture: Unpaired electron spins reside, one apiece, in the $1\pi_g^*$ molecular orbital of O_2 :

Xe (θ=0°)

At 0° and 90° the Xe encounters nodes of this O₂ molecular orbital where the spin density is nil BEST at 45°!!

 $Xe (\theta = 90^{\circ})$

The dipolar part of the hyperfine tensor:

Two of the principal components of the traceless tensor. The dipolar part is relevant to line shape of Xe in channels with paramagnetic centers.

the models

 δ_{\parallel} > δ_{\perp} Xe in Ne nano tube

Note the change in sign of anisotropy of Xe chemical shift tensor!

 $\delta_{\parallel} < \delta_{\perp}$

Xe
in Ne
nano
tube
doped
with
O₂

Model B

Note the change with T!

Model D

Xe in Ne nano tube

NOTE the change in sign of anisotropy of Xe chemical shift tensor

Xe in Ne nano tube

doped with O₂

Model E

E has
twice the
concentration
of
paramagnets
as B in the
nanotube

larger diameter

smaller diameter

Xe one-body distribution functions in channels at 300 K

$$\delta_{\parallel}$$
 > δ_{\perp}

Line shape as a function of Xe occupancy

Typical diamagnetic channel

 $\delta_{\parallel} < \delta_{\perp}$

Channel with paramagnetic centers

- # singularities at ⟨N⟩= high or near-zero →
 aspect ratio of cross section (2 singularities:
 nearly circular; 3 singularities: elliptical)
- 1 constant tensor component with changing ⟨N⟩
 → channel diameter does not permit two Xe to pass each other.
- Significant change of δ_{||} with ⟨N⟩ → cross section large enough to permit XeXe₂ groupings to achieve angles smaller than 150-180° at high ⟨N⟩.

- Linear behavior of each component with ⟨N⟩ → orderly arrangement of Xe atoms in channel; Xe sits in register with sites along walls. Xe unable to do this when sites too close together
- Non-linear behavior of tensor components with ⟨N⟩ → non-uniform channel cross section.
- crossing of tensor components with ⟨N⟩ →
 Xe-Xe interactions occur, i.e., open
 channels, not cells.

For polycrystalline material containing one-dimensional channels are there signature Xe line shapes for channels with paramagnetic centers?

axiality of the Xe chemical shift tensor at near zero occupancy:

• diamagnetic systems: $\delta \perp < \delta \parallel$

• presence of paramagnetic centers: $\delta \bot > \delta \parallel$

with increasing Xe occupancy, (N):

- diamagnetic channels: crossing over of δ|| with δ⊥; span decreasing with increasing ⟨N⟩, then increasing again, exhibiting isotropic-like shape at some intermediate ⟨N⟩.
- presence of paramagnetic centers:
 divergence of the individual components from each other as \langle N \rangle increases; span increases monotonically with increasing \langle N \rangle.

as T decreases, at low Xe occupancy

- diamagnetic channels: δ∥ moves to more positive chemical shifts
- **presence** of paramagnetic centers: $\delta \parallel$ moves to more negative chemical shifts

orientation of the paramagnets

- axis of the paramagnet parallel to channel axis: hyperfine contribution to Xe tensor is nearly all $\delta \|$ and negative.
- axis of the paramagnet perpendicular to channel axis: hyperfine contribution to Xe tensor is nearly all δ⊥ and positive (relative to the free Xe atom), same sign as for diamagnetic channel.

orientation of the paramagnets

as temperature decreases at low $\langle N \rangle$:

- axis of paramagnet *parallel* to axis of channel: $\delta \parallel$ and $\delta \perp$ move to *more negative* chemical shifts.
- axis of paramagnet *perpendicular* to axis of channel: $\delta \bot$ moves to *larger positive* chemical shifts (and $\delta \parallel$ somewhat does too).

concentration of paramagnets

hyperfine contribution to span $(\delta \perp - \delta \parallel)$ is proportional to the concentration of paramagnets within channel,

i.e., overall *span increases with increasing concentration* of paramagnetic centers

decreasing average distance from channel center

- δ|| larger negative for shorter radial distances
- span increases for shorter radial distances

axis of paramagnet *parallel* to axis of channel

CONCLUSIONS

NMR line shapes of Xe in nanochannels can inform on various characteristics of paramagnetic centers in porous solids:

- the *concentration* of paramagnetic centers in the solid,
- the orientation of the axis of the paramagnetic center relative to the axis of the channel,
- the *average distance* of the paramagnetic centers from the channel axis, and
- the distribution of paramagnetic centers in the channel and throughout the solid.

Acknowledgments

Devin N. Sears thanks
The Alberta Ingenuity Fund
and the I. W. Killam Fund
for postdoctoral fellowships

Lela Vukovic is grateful for Herbert Paaren Scholarship Lubrizol Scholarship