Angular momentum relaxation
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Introduction

The forces between molecules in sufficiently dense
gases produce a number of experimentally
detectable effects:

« deviations from ideal gas (pV/RT) behavior
 Vviscosity, thermal conductivity, ....

e sound absorption

* broadening and shifts of spectral lines

e nuclear spin relaxation

 density dependence of any molecular electronic
property such as chemical shifts

 collision-induced spectra
When detailed connection between intermolecular

forces and experiments can be made, the
experimental results may be used to determine,
refine or test intermolecular potentials



Each of these experiments has a connection
with the molecular collision process
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The energy of interaction of two spherical
molecules depends on the distance between
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When one of the colliding pair of
molecules is not an atom

* the geometry of the problem is more
complicated

* Internal degrees of freedom (such as
rotation and vibration) may become
Involved

 a molecule may have permanent electrical
moments (dipole, quadrupole, octapole,
hexadecapole, ...)

Thus, no longer isotropic U(R)



The energy of interaction of a spherical molecule
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COZ-Xe Buck Potential Surface for Xe - CO;
iIntermolecular potential
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The form of the anisotropy of intermolecular

potentials is suggested by the form of the potential
energy of interaction of two molecules in the
long-range ULR, &) pno-ravse =
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For processes which occur In the
gas phase which involve binary
collisions, the cross section Is a
useful concept as a physical
measure of the efficiency of the
process.



these cross sections depend on the isotropic
potential and to some extent its anisotropy:
from measurements of the viscosity,
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some typ|c:al values
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Comparison of experimental effective cross sections for N,-N,

Dominant
dynamic Cross Room T
Experiment variable section® value (A?)
Sound J? change o (0001) 7.6+ 0.8
absorption Or @, 10.4
Viscosity W a(20) 35.0 4 0.4
Viscomagnetic  J J' tensor a(02r) 237409
effect polarization

Depolarized J J' tensor a(02)® or 34.4 4 0.6,35.5
Rayleigh polarization o(DPR)

NMR relaxation JJ' tensor o' (02) or 29 1

(quadrupolar)  polarization® Og

NMR relaxation J vector o’ (01) or 14.9 + 0.4
(spin rotation) polarization® o, (SR)

Magnetic WwWJlJry o(llg) 43
effect on heat  polarization
conductivity
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Infra-red double resonance

provides state-to-state
rotational relaxation
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nuclear spin relaxation

* rf field is used to disturb nuclear spins from thermal
equilibrium in an external static magnetic field

* recovery of magnetization in the direction of the
external static field is characterized by a time
constant T, (spin lattice relaxation time)

Classical picture:

 INTRAmMolecular magnetic field is generated by
rotation of the molecule. Molecular rotation
frguencies are in the microwave region. The only
effective frequencies which affect nuclear spins are
In the rf region. Therefore, only a MODULATION of
the intramolecular magnetic fields by
INTERMOLECULAR COLLISIONS can contribute
to spin relaxation.




connection between T, and

anisotropy (angle dependence)

of intermolecular potential

e The strongest magnetic interactions which couple
NUCLEAR SPINS to the other degrees of freedom
(rotation) are a function of molecular orientation and
rotational angular momentum

* In dilute molecular gases these intramolecular interactions:
— Intramolecular dipole-dipole interaction
— Spin rotation interaction

— quadrupolar interaction for nuclei with spin > v

are made time-dependent by collisions which either reorient a
molecule or change its rotational angular momentum — only

anisotropic intermolecular interactions can give rise to the
requisite TORQUES



the spin relaxation experiment

Start with nuclear spins in thermal equilibrium. ﬁ
Magnitude of the equilibrium magnetization M, J.
along the direction of external magnetic field can be
observed in an nmr experiment as

If we subject the spins to an rf pulse which tips the
magnetization 180°, then immediately observe |
(i.e., no delay) !

We can wait a time t after the 180° deg pulse |
before observing the magnetization:

The observed intensity of the peak depends on the
extent to which the nuclear spin system has
recovered from —M, towards the thermal ﬁ
equilibrium +M,,. o




By doing several experiments, starting out always
at thermal equilibrium: invert with a 180° pulse,
walt t seconds, observe, we can find the time
constant T, characteristic of the nuclear spin system.
This sequence of events known as an inversion
recovery experiment, can automatically be carried
out in a simple program.

The magnetization for a time delay t is given by
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temperature dependence of T,/p

(T4/p) = (T1/P)3gok (T/300)™™

where m Is not an integer, often close to 1
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for molecule X in a buffer gas A

Relaxation by the spin-rotation mechanism
IS caused by X-X collisions and by X-A
collisions. In this study it is empirically
established that these effects are additive
In the density range 5-50 amagat, 1.e.,

T1= px(T1/P)xx + PA(T/P)xn
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Cross sections for rotational
angular momentum transfer

classical

o,(T) = {IH{JI}T}J;- {(AJ)?*)2mb db,

where AJ is the change in the rotational angular momentum
vector of the  molecule by a collision

1 e
2rb db ([J(1) = J(0) ]*),
Z{J’}.[- wb db ([J( (0]
where J(0) and J(1) are the rotational angular momentum

vectors before and after a collision
the average { ) denotes the

average over the initial distribution of internal states before a
collision and the initial distribution of relative velocities.

'ch=



semiclassical

g, = [d(o)"""Pd]"".

The weighting factors are determined by the populations of
the rotational states in P and the initial rotational quantum

numbers J; (before collision) in d whose elements d, are
given by

d;=[Ji(J; + /(I + 1))]"2

(J(J + 1)) is the equilibrium thermal average square of the
rotational angular momentum.

o is the scattering matrix for
the J vector, with elements

gﬁ=..;._|; 2b db (v(8y; — P 4 cos @)

Nielsen & Gordon  jpyolving 2 4» the probability that a collision changes the
energy from the quantum level i to £, @ the angle between J,
and J;. These collision-induced transitions arise only from
the angle-dependent terms in the intermolecular potential
energy.

spidates + Gordaon
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relation between spin-rotation T,
and cross section o;

Cross sections for rotational angular momentum trans-
fer o, were found by using Gordon's theory®:

L) __5
(p 2-‘..?{J+I}E5#’{n _
et g
19
— Eyn-ﬂ';{n. (4)
2k

Fionl® sAYERICEL T FPT
Eﬂﬁthemmiunﬂmmm:mdﬂ'l is the spin rotation con-



relation between quadrupolar
T, and cross section oy,

2 o

43 g -
(TlQ) 1 _ 2(2I+ 3) (ﬁ qQ) < .gj > 1
401°2I—-1) \ & 41 —3 /) p(v)op

approaches the limiting value 1/5 for spherical tops
except at extremely low T

For spherical top probe molecules:
o 200*(2I—1) ( f

3 (2I+3) \¢*gQ

2
) pP(0)0p2
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relation between quadrupolar
T, and cross section oy,

2
_] approaches the limiting value 1/4
45 -3

for linear molecules, except at extremely low T

For linear probe molecules:

(_Ti_g) 16072(21 — 1) ( )1
P /lin 3(2!-1— 3) qu
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probe molecules and nuclel

Spin =%

« Fin CF,, SF,, SeFg, TeF,

« 13Cin CO, CO,, CH,

15N in N,, 15N15NO
Spin > %

e 14N in N2, 14N24NO

* 2D in CD,

Buffer gases: CH,, N,, CO, Ar, HCI, CO,, Kr, CH,, Xe,
SF¢, SeFg, TeF,
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how are the cross sections to be evaluated
from intermolecular potentials?

* Must be able to determine trajectories of
molecular collisions.

 From the collision trajectories the rotational
angular momentum before (J(0)) and after (J(1))
collision may be compared, [J(1)- J(0)]

* The other initial conditions: relative velocity,
orientation, and impact parameter b are chosen
according to some convenient sampling scheme
which distributes these parameters uniformly
over the appropriate distributions.

* The calculation Is repeated a sufficient number
of times to average over the initial conditions.




classical trajectory calculations

Classical trajectories on simple model potentials for
N,-Kr. Comparison with relaxation and other data,
M.A. ter Horst and C.J. Jameson, J. Chem. Phys.
102, 4431-4446 (1995).

The N,-Kr interaction: a multiproperty analysis,
F.R.W. McCourt, M.A. ter Horst, and C.J. Jameson,
J. Chem. Phys. 102, 5752-5760 (1995).

A comparative study of CO,-Ar potential surfaces,
M.A. ter Horst and C.J. Jameson, J. Chem. Phys.
105, 6787-6806 (1996)

A classical dynamics study of the anisotropic
Interactions in NNO-Ar and NNO-Kr systems.
Comparison with transport and relaxation data,
M.A. ter Horst and C.J. Jameson, J. Chem. Phys.
109, 10238-10243 (1998)



Different cross sections are sensitive to
different parts of the potential function.
Simultaneous availability of experimental
cross sections for several different
observables Is necessary to fit a multi-
parameter potential function with collision
dynamics calculations.
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viscosities for N,-Kr mixtures from classical

traj
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viscosities for N,-Kr mixtures from classical
trajectories compared with experiment
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cross sections for N,’Kr from classical
trajectories compared with experiments

6(0200) 50 LJ(12,6.8) )
- LI(126)
or o Expt. Ref. 16 = ]
6,2 - Expt. Ref. 15
from 14N a0k
. =
relaxation aE : B
© 30f -
o (0100) ;
or O 20|
from 1°N _
relaxation e Y, ==

200 300 400



general trends?

Can we say something about angular
momentum relaxation without doing
scattering calculations?

e size of the molecules

« anisotropy of the electronic distribution of
the probe molecule

* kinematic factors
 the average well depth
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take size Iinto account: compare
ratios of cross section with nd;;

using hard sphere diameters d;; to get
geometric cross sections

collision efficiency = G/ nd;;*



trends

* Absolute magnitude of efficiency is
determined primarily by the anisotropy of the
electronic distribution of the probe molecule.

 The change of efficiency with increasing
mass of buffer (or its number of electrons) Is
greatest for the SF, probe, least for the light
molecule probes, esp. CH,

* The cross section Is very intimately
connected with detalls of the potential
surface. Nevertheless there is surprisingly
high predictive value in the kinematic factors
alone



discover factors in cross sections

from our 1 _ o,

experiments in v

the gas phase
Compare with
Chandler’s .
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factors underlying the magnitudes
of the cross sections

2 N o
ol; . 1(, . L dx }
/T
o, ~ (anisotropy factor) x exp™*™" X {“Tuu & " '2(1 T d’u)

|

kinematic factors
for collisions between
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trends In the temperature
dependence

* For a given probe molecule the power law
exponent min
(T./p) = (T1/p)300k (T/300)™ averaged
over all buffers appears to be related to
the average well depth

 In the high translational energy limit, m Is
expected to be 1



average m over all buffers

ke W fta fi e o

average e/k over all buffers with the probe molecule



CONCLUSIONS

Relaxation of the rotational angular momentum vector of a
molecule can be studied indirectly but quantitatively by NMR

Collisions between unlike molecules can be studied as
perfectly as those between like molecules

The structural anisotropy of the probe molecule is the major
determinant of the magnitude of the cross section G

By studying probe molecules in collision with the same set
of 10 other molecules, general factors underlying the
magnitudes of the cross sections have been revealed

The temperature dependences are not all the same i.e.,
T,5R does not always go as T-%2, and there is a general
Increase with the well depth of the collision pair.

Our classical trajectory calculations in CO,-Ar and N,-Kr
give good agreement with a set of thermophysical and
relaxation properties of the mixture



Quadrupolar relaxation In
the gas phase

N in N,in 10 gases
N in “N1*NO in 10 gases
°’Din CD, in 10 gases



a typical T,
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cross sections for molecular reorientation, Gy 2
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Intermolecular dipole-dipole
(nuclear spin dipole-electron
spin dipole) relaxation

of 129Xe, °F in CF,, SF;, SeFg,
TeFg, *Hin CH, in O, gas



relaxation studies of **°Xe in O,
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129Xe relaxation is dominated
by Xe-O, collisions

= 129X%e in oxygen at 55MHz —
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collision efficiencies for 12°Xe

spin relaxation in O,

very sensitive

to the form of the
Intermolecular
potential
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relaxation studies of *°F for SF4in O,
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measure T, In 3 magnetic fields
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separation of spin rotation
contributions to find T,DD
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temperature dependence of T,’Pp,

all samples
at one
magnetic field
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factors in T,PP

For a hard sphere potential in the limit of zero magnetic
field:

1 16 #i ( T )m
S = — S (85 41 N
(T?D)th:nr Iim. 3 ( + ) Iﬁ d : SkT - .S

= F(V/kT) {1 — AT)Jo,} (TLD)th.mm

l

Measurements in more than one magnetic field
permits determination of f(T) and then F(V/KT).
All information about the intermolecular potential
IS In the collision efficiency F(V/KT).



(1/T,PP)actual
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Y(T,w) =

. . 1
The theoretical expression for ﬁ fora
.1

hard sphere potential, at the high translational
energy limit, zero field limit (w=0), is known. Our
measured dipolar relaxation rates divided by the
theoretical limit are shown in Fig. 6 for one sample.
These values contain the effects of the intermolecular
potential, V, and the magnetic field; theoretical
arguments predict that in the dilute gas the first will be
a function of V/KT and that in the low frequency limit
the second is of the form (1 —f(T) Yo ). Thus, Fig. 6

shows F(WKT)(1 -f(T)v® ) if our theory is correct.
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divide out w-dependence to find
dependence on the intermolecular
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collision efficiencies for CF,-O, and
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CONCLUSIONS

 We have characterized nuclear spin relaxation rate

due to the dipole-electron spin dipole
mechanism

e This relaxation rate iIs factorable into:
— the density of O,

— the theoretical limit field-dependent & temperature-
dependent term

— the temperature dependent interesting factor which
depends on the intermolecular potential

 Comparison of last factor with the results for a
sguare-well potential shows the great sensitivity of
T,PP to the form of the intermolecular potential
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