9. Chemical Equilibrium
9.1 Chemical Equilibrium in a Mixture of
Ideal Gases
Consider a chemical reaction
aA +bB —> ¢C + ¢E
The Gibbs free energy of the system is
given by
dG =-SdT + Vdp + ﬂAdnA + denB
+ucdne +ppdng
At constant T and p
dG =u,dn, + ppdng + ucdne + pugdng
The changes in the number of moles of
each compound as the reaction
advances by an amount &.
aA +bB —> c¢C + ¢E
-a  -bg +c& +eg
For an infinitesimally small
advancement d¢, dn, = adg, etc.
dG = - u, adg - pz bd€ + pec dE + ppe dE
dG = {(cuc * eug) - (apa + bug)} dS



At constant p and T, the reaction Gibbs
energy is defined as the slope
(0G/oE), r of the graph of the Gibbs
energy plotted against extent of reaction
G .

(OG/OE),, T =(cuc * epg) - (apy + bpg)
The difference between the chemical
potentials of the products and reactants
at the composition of the reaction
mixture is given by
Arxn(; = (C“C + eME) - (auA + b“’B)

When equilibrium is reached,
(0G/og), T =0

{(cuc + epg) - (apa + bug)tequi =0

Gibbs energy, G

0 Extent of reaction, §



Now, if the reactants and products are
entirely ideal gases, we can write for
each one the chemical potential of an
ideal gas in a mixture,

ma(M=wr +RTInp, forA

1
where p, is the partial pressure of the
gas A in the mixture. Substitute
expressions like this into the equation
AnnG =(cpc + epg) - (apy + bug)
to get

AnG = (CHC@T + eME®T - aMA@T 'b“BQT)
+cRTIN(p/1) +eRTIn(pg/1) -aRTIn(p /1) -
bRTIn(pz/1)

Aran = Aran@T + RT{ In(pC'/1 )C
+In(pg/1)" - In(p,1)" - In(ps/1)° }



= Arxn G@T
+ RTIn {(p/1) (/1)1 (p.1) (p5/1)"

AonG = AnG™r + RT In Q,

where Q, = {(p/1) (ps/1)° /(pA/1) (Ps/1)"}
At equilibrlum

{(CMC + d“D) (a“A + bMB)}equﬂ O leads to

e
Aran T +

RT In {(pc/1)* (P! 1) 1(P4I1)"(P5/1)"} equn = O
The quotient of equilibrium partial
pressures Is called K, ,

Ko ={(pc/1) (P 1) 1(p4 1) (P5/1)"} equi

AnG r=-RTIn K,



9.2 Chemical Equilibrium in a Mixture of
Real Gases

For real gases

Kr = {(fc 1) (el 1)° 1 1) (1511) "} equi
based on, in a mixture of real gases,

w (N=n"7 +RTInf forA
1

Chemical Equilibrium in Ideal solutions

In an ideal solution obeying Raoult’s
law,

w(T =pn,++RTIn x, (ideal solution)

where 1%, = u*+(T,p) is the chemical
potential of the pure liquid A

Ky = {(x0)"(Xe)" 1(X4)"(X5)"} equil



A more general definition of equilibrium
constant K is in terms of activities,

w(T) =p,°7+RTIn a, (non-ideal soln)

where % = g,(T,p) is the chemical
potential of a hypothetical ideal solution
of unit molality that obeys Henry’s law
Thus, in the expression

Aran@T =-RTIn K for the reaction
aA +bB —»> c¢C + ¢eE

AxnG 7= {(epc”r +dup r)-(apa " +bug 1)}
and
K = {(ac/1) (ax/1) a 1) (@s/1)’} equi
K=K, xKp,
each expressed in the same form.
vg = (ag/mg) . As mz —0, we find
Ay — My vs —>1 K—1and K,—K.



9.3 The Temperature Dependence of an
Equilibrium Constant

A GZ7=-RTIn K
Recall that we had derived, using only
the definition G= H - TS, the general
relation called the Gibbs-Helmholtz eq.:

(B(AG /T) I8T), =-(AH/T)

We now apply it to AranE")p/ I=-RIn K
(O(AxG/T) 10T, = = (ApeH /T )

(O(- RIn K) 16T), = — (ApeH /T )

d InK/dT = A H°/RT?

If A,,H" is positive (exothermic reaction)
In K and therefore K itself decreases as
the temperature rises.




Aside:
Applications of

Gibbs-Helmholtz egn



AG /T as a function of T :

(8(G /T) 18T), =- (H/T") Gibbs- Helmholtz

(6(AG /T) 16T), = - (AH/T )

d(AG/T), =-(AH/T?)dT =AHd(1/T)
e.g., dAwsG/T), =AusH d(1/T)
or d(AvepG /T)p = AyapH d(1/T)

Jd(AG/T), = [AH(1/T)

(AG /T2 —(AG /T)71,
= AH {(1/T,) - (1/T1)}

equilibrium constant as a function of T :
(AG@/T)p = AH® d(1/7)

AsnGT=— RTInK

d(AnG~/T), =—R d InK = A H® d(1/T)

JdInK=—(1/R) IArand (/1)

Integrate between T';and T

- IN[Kr2/ Kr1] = (AcH/RY(1T2) - (11T)}




non-volatile solute,
boiling point elevation:
H*A,quuid (T,P) + RTIn X4 = M*A,vapor (T,P)
Inx,s = [H*A,vapor (T,P) - H*A,quuid ]/RT
= AvapG/RT = (1/R)( AvapG/T)
(O(Inxa /10T)p = (1/R)O(AvapG /T) 10T),
But, (8(AG /T) /0T), =- (AH/T")
. (B(Inxa 16T, = - (1IR)(AvapH /T*)
d(Inxa)= (1/R)AapH d(1/T)
Now integrate between
pure solvent (x4 =1, T=T7)
and solution (x4, T):
A dinxa = (1/R) F+' AvapHd(1/T)
If further, A,4pH is nearly independent of
temperature,

1]

In x4 = AvapH/R | 1 -
| T 7]




non-volatile solute,
freezing point depression:

A solid ( T,p) = Waliquid (T,0) + RT In X4
InNxs = [MA,solid (T,p) - Waliqua VRT
= - ApsG/RT = - (1/R)( ApisG/T)
(d(Inxa /0T), = - (1/R)(O(A 1usG /T) [0T)p
But, (6(AG/T)/0T), = - (AH/T)
(O(Inxa 10T)p, = +(1/R)(AnsH /T? )
d(Inxa) = (1/R)AqsH d(-1/T)
Integrate between
pure solvent (xa =1, T=T7)
and solution (x4 ,T)
[ dinxs = (1/R) [+ AwsH d(-1/T)
If further, AqsH is nearly independent of
temperature,

Inxs=Aps H/R| -1+1 ]
| T T ]




9.4 LeChatelier’s Principle

LeChatelier’s principle predicts that a
system at equilibrium will tend to shift
towards the direction that absorbs heat
If the temperature is raised.

For an exothermic reaction, an increase
In temperature would favor the
reactants. Thus, Le Chatelier’s principle
predicts that In K decreases with
increasing temperature for an
exothermic reaction. This is exactly what
we had derived using only the definition

G=H- TS and (3G/dT), =-S .



9.5 Activities in Solutions of Electrolytes

Assume a solution of an electrolyte
which is completely dissociated into ions
in solvent A.

G = Napp + Neps + N

If each formula unit M X, of the
electrolyte dissociates into s=p+q ions,
then in a solution of molality m in the
electrolyte,

m,=pmand m.=qgm.

and u = pu, + qu.

We can define a mean ionic chemical
potential p,

Su: = pps + g

We define the activities accordingly,

wW(T)=p"r +RTIna

w(N=w°; +RTIna, ditto for -



1 (T = w7 +RTIn a.
and 11 = pr + qur = s

We write the various activity coefficients
in terms of y and m,

a. =y:mMy  a+=vy+M+ a. =7y
We find the mean ionic molality m, and
the mean ionic activity coefficient v, :
(v+)° (M )® = (yema)°(y-m.)’

(v+)” = (y+)"(v.)" and

(M )= (m.)°(m.)*=(p"q")m*

Example:

in a 1:1 electrolyte e.g., CaSO4 or NaCl
p=q=1,8=2, m.=m, (v )* = v47-

in a 1:2 electrolyte such as Na;SOyq,

p=2,9=1,8=3, (1:)° = (1+)°(y.)" and
(m: )} =2*1"Ym°, leads to m.=1.587m.



In terms of the mean ionic activity,

w(T) =" +RTIn (a.)

W =p° +RTIn(p°q®) + sRTInm

+ sRTIn(y,)
v. can be determined from freezing point
depression measurements, or other
colligative properties.

Equilibria in ionic solutions

HA ->H" + A~
K= ay, a,_lagy
The activity of the solvent (H,O, for
example, is very nearly that of the pure
solvent, a;,o =1). By definition,
Ay = YoM, A A = Y-My_, Aga = YHATHA
K = (s Ya- Fyaa ) Mige Ma_IMygy)
= (V2 2/YHA )( My Ma_Myy)



If the degree of dissociation is a,
Myg=om, m =oam, Mmy=(1-o)m
K= (y:"hua ) x [o/(1-a)] m
K=K, xKpn
A plot of In K,,, versus m extrapolated to
infinite dilution should provide K and K, .
If the solution is dilute we may set v, =1
and if Kis small, 1-a ~ 1
K= v, ‘a’m  orax (K/m)“2 A
Consider now the equilibrium of a
slightly soluble salt:
AgCl(s) >Ag +CI”
where the solubility of AgClis C; moles
per kg water, so that myz. = mg_= Cs
The solubility product constant is
K= apg+ acilapgc
The activity of pure AgCl solid is 1
K= (Y+Mag+ V-Me1-) = V< ’ Cs :
In general, K= pPq¥.°C,?



Debye-Hiickel theory

Recall
b (T,0,X) - U (idean( T,p,X) = RTINY3
Imagine a solution with all the ions in
their same locations but with the
charges turned off. The difference
between the molar Gibbs energy of the
ideal solution (no charges) and the real
solution (with charges) is equal to the
electrical work Wge Of charging the
system in this arrangement.
For a salt M,X,, s = p+q,

R Tln('}’i )S = Welec
First find the final distribution of the ions
and then find the work of charging them
in that distribution.
For a bare charge Q, the electric
potential is just (Q/e)r ' in cgs units or
(Q/4ne)r " in Sl units. The presence of
all the other ions makes the potential
drop off with distance.



The potential due to the atmosphere of
all other ions is
{exp[-r/ro]r ' - r "Y(Qle). The potential at
the ith ion itself due to the ionic
atmosphere is the same as that of a
single charge of equal magnitude but at
a distance rp away. The potential at its
location, due to the ionic atmosphere is
- (Qle)rp .

Energy = chargexelectric potential
The work of adding dQ of charge to a
region having this electric potential is,

- (Qle)rp ' dQ
Therefore the molar work of fully
charging the ions is
NAvog joze -(Q/S)r[) ! dQ
= - Niavog (zi€)° 121D
RTIN(y )S = Wetec = PWetec+@Weiee- =
Iny,= (P Welec+q Welec-)/ SRT
=z, z.e°N 1o RT 2erp= 24 z.e°l 2e¢kgT 1p




The Debye length rp is obtained from
the statistical distribution of charged

particles, where p is the density of the
solvent and molarity = m; pand I is the
lonic strength:

rp = {1000ekp T/87 1 pc°N v} -

Substituting rp into In(y.)
In 'YlL -2+ Z-QZ/ 281(]3 T‘
{87 pe?N s 00/ 10000k T} 12

N y. = zzd " (€#/10ekp T)*? {2oN Avos) 2
This is the limiting Debye-Hlckel eqgn.

Atkins has an extra (4n)** and b = 1
molal (reference state of solution)
In v, = zsz.l "(c*/4meky 7')3'/2{bZ’J’C,ONAVOg}”2

A more realistic form is obtained if multi-
plied by a factor {1+ B "%}




Debye Huckel limiting law provides
Ny, = (2nNavog)* (€°/10ekgT)? 2,z 1"
This gives us a limiting behavior for y, in
dilute solutions, for ions bearing charges
+z, e and -z.e. The ionic strength is
['=(1/2) 2Zi=aitions C; Z;

where C, is the molarity of the ith ion in
the solution.
The dependence on ionic strength /
provides a means by which the limiting
behavior of various equilibrium
constants can be obtained.
A plot of InK,,, versus 1"# should
approach a linear behavior as the
solution becomes more dilute, obeying
the Debye limiting law. Extrapolating the
straight line to infinite dilution should
provide InK as the intercept.
For example, in AgCl, we had found

K= (YaMpgs Y-Mer-) = Yz ’ Cs :

1/2



logio K=21log4g Cs + 210949 7

Use the Debye-Huckel limiting eq.:
IN 75 = (21Navog) ' (€%7108kgT)¥? z,z 12
orlogigy. = A"

logi o K =2logy Cs +2A &S
-log1o Cs = AT - (1/2)loge K

% slope-x + intercept
intercept is - (1/2)logg K, slope = A
90— Solubility
of AgCl in
KNO3(aq)
at 25°C
as a
function

4.88 '
\ of
\ square

\ | root of
ionic

\\ strength

4.86
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