1. Given: The compressibility factor for a gas at 20°C is described by this equation for pressures up to 10 atm:

 $Z = 1 - 2.024 \times 10^{-2} \, \rho$ with ρ in atm The following properties of this gas are also known:

 $C_V = 2.97 + 10.5 \times 10^{-3} \text{ T cal K}^{-1} \text{ mol}^{-1}$ $C_p = 5.65 + 11.44 \times 10^{-3} \text{ T cal K}^{-1} \text{ mol}^{-1}$ $(\partial \mathbf{U}/\partial V)_T = 2 \times 10^{-3} \text{ cal L}^{-1}$

2.0 moles of this gas undergoes a reversible isothermal expansion at 20°C from 8.0 atm to 1.0 atm.

Calculate V_i , V_f , W, ΔU , q, ΔH .

EXAMPLE:

2. Given: One mole of a monatomic ideal gas is compressed adiabatically in a single stage with a constant opposing pressure equal to 10.0 atm. Initially the gas is at 27°C and 1.0 atm pressure. The final pressure is 10.0 atm. *Calculate the final temperature of the gas.*

EXAMPLE:

3. Given: One mole of an ideal gas of $C_{\rm v} = 5$ cal mol⁻¹ K^{-1} , initially at 0°C and 1.0 atm pressure, is put through the following reversible cycle: A: State 1 to state 2, heated at constant volume to twice the initial absolute temperature.

B: State 2 to state 3, expanded adiabatically until it is back to the initial temperature.

C: State 3 to state 1, compressed isothermally back to state 1.

Calculate q, W, ΔU , ΔH for steps A, B, and C.

1. Given: The compressibility factor for a gas at 20°C is described by this equation for pressures up to 10 atm:

 $Z = 1 - 2.024 \times 10^{-2} p$ with p in atm The following properties of this gas are also known:

$$C_V = 2.97 + 10.5 \times 10^{-3} \,\mathrm{T} \, \mathrm{cal} \, \mathrm{K}^{-1} \,\mathrm{mol}^{-1}$$

 $C_p = 5.65 + 11.44 \times 10^{-3} \,\mathrm{T} \, \mathrm{cal} \, \mathrm{K}^{-1} \,\mathrm{mol}^{-1}$
 $(\partial U/\partial V)_T = 2 \times 10^{-3} \, \mathrm{cal} \, \mathrm{L}^{-1}$

2.0 moles of this gas undergoes a reversible isothermal expansion at 20°C from 8.0 atm to 1.0 atm.

Calculate V_i , V_f , W, ΔU , q, ΔH .

Draw a Picture:

Initial

$$n = 2.0 \text{ moles}$$
 $V = ?$
 $p = 8.0 \text{ atm}$
 20°C

reversible isothermal

Final

$$n = 2.0 \text{ moles}$$
 $V = ?$
 $p = 1 \text{ atm}$
 20°C

Properties of the gas:

$$Z = pV/nRT = 1 - 2.024 \times 10^{-2} p$$
 (p in atm)
for 20°C, up to 10 atm
 $C_V = 2.97 + 10.5 \times 10^{-3} T$ cal K⁻¹ mol⁻¹
 $C_p = 5.65 + 11.44 \times 10^{-3} T$ cal K⁻¹ mol⁻¹
 $(\partial U/\partial V)_T = 2 \times 10^{-3}$ cal L⁻¹

Question: Calculate V_i , V_f , W, ΔU , q, ΔH .

Principles and Definitions involved:

isothermal
$$dT = 0$$

reversible $p_{op} = p_{gas}$
 $\partial W = -p_{op} dV$
The first law: $dU = \partial q + \partial W$
 $dU = (\partial U/\partial T)_V dT + (\partial U/\partial V)_T dV$
 $dH = (\partial H/\partial T)_p dT + (\partial H/\partial p)_T dp$
 $C_V = (\partial U/\partial T)_V$ $C_p = (\partial H/\partial T)_p$

Solution:

Given the equation of state, rearrange $pV/nRT = 1 - 2.024 \times 10^{-2} p$ to $V = nRT \{(1/p) - 2.024 \times 10^{-2}\}$ can solve for V, given T and p $V_i = ... L$, $V_f = ... L$ using $R = 8.20578 \times 10^{-2} L$ atm K^{-1} mol⁻¹

```
\partial W = -p_{op} dV
reversible, \therefore p_{op} = p_{gas}
W = -\int p_{gas} dV
= -\int \{ nRT/(nRT2.024 \times 10^{-2} + V) \} dV
W = -2R293 \int dV/(2R \times 293 \times 2.024 \times 10^{-2} + V)
= -2R293 \times ln[\{2R \times 293 \times 2.024 \times 10^{-2} + V_2\} 
-\{2R \times 293 \times 2.024 \times 10^{-2} + V_1\}]
R = 0.082057 \text{ L atm mol}^{-1} \text{ K}^{-1}
W = ..... \text{ L atm}
```

$$\Delta U$$
: $dU = C_V dT + (\partial U/\partial V)_T dV$
isothermal, $\therefore dT = 0$ $\Delta U = \int (\partial U/\partial V)_T dV$
Given, $(\partial U/\partial V)_T = 2 \times 10^{-3}$ cal L⁻¹,
 $\Delta U = \int 2 \times 10^{-3} dV$
 $\Delta U = 2 \times 10^{-3} (V_2 - V_1)$ cal

q: First law,
$$\Delta U = q + W$$

Change W to cal by multiplying by $\{1.98718 \text{ cal}/0.082057 \text{ L atm}\},\ q = \text{ cal}$

```
\Lambda H
                                d\mathbf{H} = C_p dT + (\partial \mathbf{H}/\partial p)_T dp
isothermal, : dT = 0 \Delta H = \int (\partial H/\partial p)_T dp
(\partial H/\partial p)_T = [p + (\partial U/\partial V)_T](\partial V/\partial p)_T + V
Given: V = nRT\{ (1/p) - 2.024 \times 10^{-2} \},
 which differentiates to
                                (\partial V/\partial p)_T = -nRTp^{-2}
Given, (\partial U/\partial V)_T = 2 \times 10^{-3} cal L<sup>-1</sup> convert to atm by
                                \times \{0.082057 \text{ L atm} / 1.98718 \text{ cal } \}
\therefore (\partial H/\partial p)_T =
[p + 2 \times 10^{-3} (.082057/1.98718)] \times -nRTp^{-2} + V
= -nRT\{p^{-1} + 2 \times 10^{-3}(.082057/1.98718)p^{-2}\} +
                                      nRT \{p^{-1} - 2.024 \times 10^{-2}\}
= -nRT{ 2\times10^{-3}(.082057/1.98718)p^{-2} +2.024\times10^{-2} }
 \Delta H = \int (\partial H/\partial p)_T dp
      = -nRT \int \{8.2586 \times 10^{-5} p^{-2} + 2.024 \times 10^{-2}\} dp
      = nRT{8.2586×10<sup>-5</sup>[p^{-1}]<sup>1</sup><sub>8</sub>+2.024×10<sup>-2</sup> [1-8]}
      = nRT{8.2586×10<sup>-5</sup>×7/8 +2.024×10<sup>-2</sup>×7}
      = nRT \times 2.024 \times 10^{-2} \times 7
      = 2 \times 293 \times 1.987 \times 2.024 \times 10^{-2} \times 7 \text{ cal}
      = 2 \times 293 \times 8.3144 \times 2.024 \times 10^{-2} \times 7 joule
```

2. Given: One mole of a monatomic ideal gas is compressed adiabatically in a single stage with a constant opposing pressure equal to 10.0 atm. Initially the gas is at 27°C and 1.0 atm pressure. The final pressure is 10.0 atm. *Calculate the final temperature of the gas.*

Draw a Picture:

Initial

$$n = 1$$
 mole
 $V = ?$
 $p = 1$ atm
 27 °C

monatomic ideal gas

adiabatic $p_{op} = 10$ \longrightarrow compression

$$n = 1 \text{ mole}$$
 $V = ?$
 $p = 10 \text{ atm}$
 $T = ?$

Question:

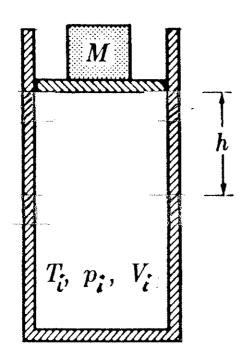
$$T_f = ?$$

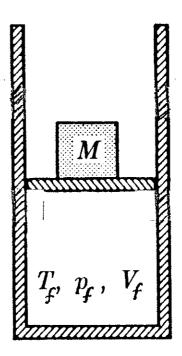
Draw a Picture:

Initial

Final

$$p_{op} = 10$$
 atm





adiabatic compression monatomic ideal gas

$$n = 1 \text{ mole}$$
 $n = 1$
 $p_i = 1 \text{ atm}$ $p_f = 7$
 $T_i = 27+273.15$ $T_f = 1$
 $V_i = 7$

n = 1 mole

$$p_f$$
 = 10 atm
 T_f =
 V_f = ?

Question:

$$T_f = ?$$

Principles and Definitions involved:

adiabatic :
$$q = 0$$

$$\delta W = -p_{op} dV$$
The first law: $dU = \delta q + \delta W$

$$dU = (\partial U/\partial T)_V dT + (\partial U/\partial V)_T dV$$

$$C_V = (\partial U/\partial T)_V$$
Ideal gas: $pV = nRT$ $(\partial U/\partial V)_T = 0$
monatomic: $C_V = (3/2)R$

Solution:

pV=nRTusing $R = 8.20578 \times 10^{-2}$ L atm K⁻¹ mol⁻¹ $V_i = 1.0 \text{ mol} \times R \times 300 \text{ K} / 1.0 \text{ atm}$ = 300R L $V_f = 1.0 \text{ mol} \times R \times T_f \text{ K} / 10. \text{ atm}$ $= RT_f / 10$ L { Can not get T_f from equation of state alone. Need to use the fact that the

process is adiabatic. }

q:

$$q = 0$$

adiabatic

W:
$$\partial W = -p_{op} dV$$
 $p_{op} = 10 \text{ atm}$

$$W = -\int_{V_c}^{V_f} 10 dV = -10[V_f - V_i]$$

$$= -10 [RT_f/10 - 300 R]$$

$$\Delta U: \quad dU = C_V dT + (\partial U/\partial V)_T dV$$
for an ideal gas only, $(\partial U/\partial V)_T = 0$

$$\therefore \Delta U = \int C_V dT + 0 \quad C_V = (3/2)R \text{ (monatomic)}$$

$$\Delta U = \int_{300}^{\sqrt{f}} (3/2)R \, dT = (3/2)R \, [T_f - 300]$$

First law: $\Delta U = q + W$ (3/2) $R[T_f - 300] = 0 + -10R[T_f/10 - 300]$

Solve for T_f

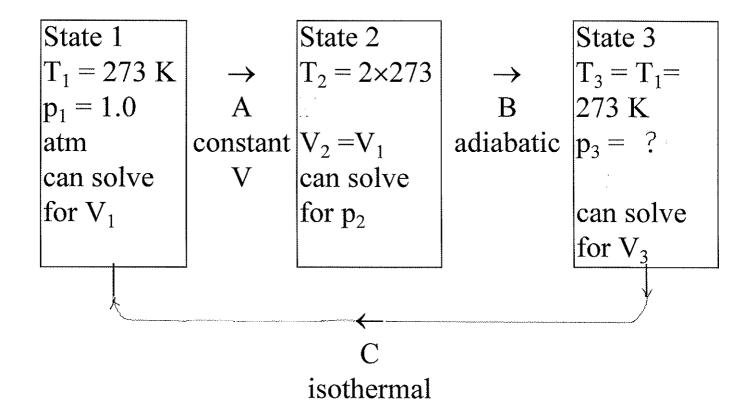
3. Given: One mole of an ideal gas of $C_V = 5$ cal $\text{mol}^{-1} \text{ K}^{-1}$, initially at 0°C and 1.0 atm pressure, is put through the following reversible cycle:

A: State 1 to state 2, heated at constant volume to twice the initial absolute temperature.

B: State 2 to state 3, expanded adiabatically until it is back to the initial temperature.

C: State 3 to state 1, compressed isothermally back to state 1.

Calculate q, W, ΔU , ΔH for steps A, B, and C.



Principles and Definitions involved:

$$\partial W = -p_{op} dV$$

The first law:
$$d\mathbf{U} = \partial q + \partial W$$

$$d\mathbf{U} = (\partial \mathbf{U}/\partial T)_V dT + (\partial \mathbf{U}/\partial V)_T dV$$

$$d\mathbf{H} = (\partial \mathbf{H}/\partial \mathsf{T})_p d\mathbf{T} + (\partial \mathbf{H}/\partial p)_T dp$$

$$C_V = (\partial U/\partial T)_V$$
 $C_p = (\partial H/\partial T)_p$

Ideal gas:
$$pV = nRT$$
 $(\partial U/\partial V)_T = 0$

$$C_p - C_V = R \quad (\partial H/\partial p)_T = 0$$

reversible
$$p_{op} = p_{gas}$$

Step
$$\mathcal{A}$$
: constant volume $dV = 0$

Step
$$\mathfrak{B}$$
: adiabatic $q = 0$

Step 6: isothermal
$$dT = 0$$

 $C_V = 5.0 \text{ cal mol}^{-1} \text{ K}^{-1}$, ideal gas, $C_p - C_V = R$, $\therefore C_p = 7 \text{ cal mol}^{-1} \text{ K}^{-1}$ B reversible, A reversible C reversible constant V, $V_2=V_1$ adiabatic $T_3=T_1$ isothermal T₁ $T_i = T_1 = 273 \text{ K}$ $T_1 = T_2 = 2 \times 273 K$ $T_i = T_3 = 273K$ $T_f = T_2 = 2 \times 273 K$ $T_f = T_3 = 273 \text{ K}$ $T_f = T_1 = 273 \text{ K}$ $p_1 = 1$ atm, solve for V_1 $|p_3 = ?, V_3 = ?$ q = 0 (adiabatic) q: $\Delta U = q + W$ $\Delta U = q + W$ q: take ∆U,W from below take ΔU , W from below \therefore can solve for V_3 by or else $dU = \partial q + \partial W = 0 + \partial W$ $C_V \equiv \partial q_V/dT$ $C_{V}dT = -p_{gas}dV$ $q_V = \int C_V dT$ $C_V dT/T = -R dV/V$ $5\ln(T_3/T_2) = -R\ln(V_3/V_1)$ $\partial W = -p_{op}dV$ W: $\Delta U = q + W$ W W: $\partial W = -p_{op}dV$ given dV = 0, $\therefore W = 0$ $\Delta U = 0 + W$ $p_{op} = p_{gas}$ (reversible) take ∆U from below $W = -\int (RT/V)dV$ $=-R273ln(V_1/V_3)$ $\Delta oldsymbol{U}$ $\Delta oldsymbol{U}$ $\Delta oldsymbol{U}$ $dU = C_V dT$ $dU = C_{V}dT$ $dU = C_{\nu}dT$ $+(\partial U/\partial V)_T dV$ $+(\partial U/\partial V)_T dV$ $+(\partial U/\partial V)_T dV$ ideal gas, as on the left ideal gas, $\Delta U = \int C_V dT$ $\therefore (\partial U/\partial V)_T = 0$ $\therefore (\partial U/\partial V)_T = 0$ or given dV=0, and given dT=0 $\therefore \Delta U = \int C_V dT$ $\Delta U = 0$ ΛH ΔH ΔH $dH = C_p dT$ $dH = C_p dT$ $dH = C_p dT$ $+(\partial H/\partial p)_T dp$ $+(\partial H/\partial p)_T dp$ $+(\partial H/\partial p)_T dp$ ideal gas, as on the left ideal gas,

 $\Delta H = \int C_p dT$

 $\therefore (\partial H/\partial p)_T = 0$

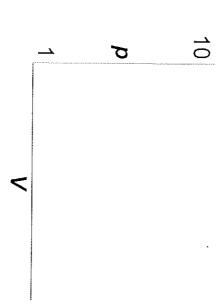
given dT=0, $\Delta H=0$

 $\therefore (\partial H/\partial p)_T = 0$

 $\therefore \Delta H = \int C_p dT$

Assume that air behaves as an ideal gas with $C_p = (7/2)R$.

(a) In one experiment 1.00 mole of "air molecules" is compressed from 1.00 atm to 10.0 atm at 25°C by the following reversible process: (1) heating at constant volume to the final pressure followed by (2) cooling at constant pressure to 25°C. Sketch these processes on a pV diagram.



Calculate ΔU , ΔH , \mathbf{q} , and \mathbf{W} , in kJ for each step in the process and for the overall process.

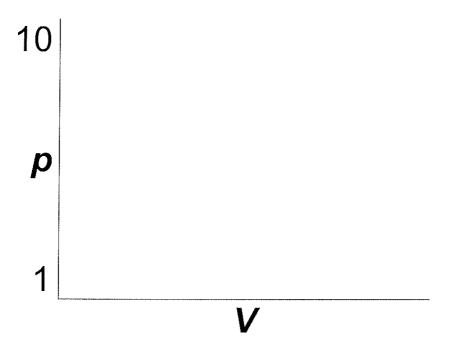
EXAMPLE:

n moles of a gas obeying the eqn. of state p(V-nb) = nRT where b=0.1 L mol^{-1} and has $(\partial \mathbf{U}/\partial V)_T=0$, $(\partial \mathbf{H}/\partial p)_T=-b$ is subjected to an isothermal reversible expansion from an initial volume of 1.00 L to 24.89 L at 298 K.

Calculate the values of ΔU , ΔH , \boldsymbol{q} , and \boldsymbol{W} , in kJ in terms of \boldsymbol{n} .

Assume that air behaves as an ideal gas with $C_p = (7/2)R$.

(a) In one experiment 1.00 mole of "air molecules" is compressed from 1.00 atm to 10.0 atm at 25°C by the following reversible process: (1) heating at constant volume to the final pressure followed by (2) cooling at constant pressure to 25°C. Sketch these processes on a *pV* diagram.



Calculate ΔU , ΔH , q, and W, in kJ for each step in the process and for the overall process.

Principles and equations for this problem: Ideal gas, for which: $pV = nRT (\partial U/\partial V)_T = 0$ $(\partial H/\partial p)_T = 0$, $C_D - C_V = R$ $C_p = (7/2)R$, given ideal gas :: $C_V = C_p - R = (5/2)R$

definition of heat capacity $C: \mathbf{q} = \mathbf{J}C d\mathbf{T}$ First law $\Delta U = q + W$ $dW = -p_{op}dV$ U(T,V): $dU = C_V dT + (\partial U/\partial V)_T dV$ H(T,pV): $dH = C_p dT + (\partial H/\partial p)_T dp$

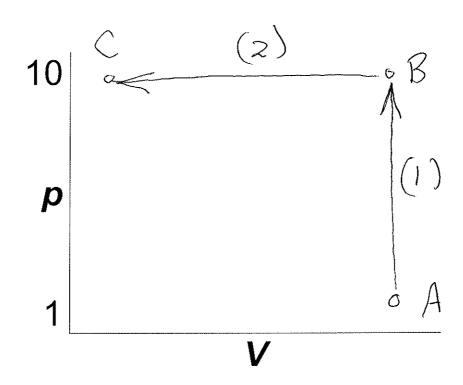
definition of **reversible** process: $p_{op} = p_{gas}$

Solution:

step 1 A→B constant volume step 2 B→C constant pressure

(state) _A	(state) _B	(state) _C	
$p_A = 1$ given	$p_{\rm B} = 10$ given	$p_{\rm C} = 10$ given	
$T_A = 298$ given	$T_{\rm B} = 10 V_{\rm A}/R$	$T_{\rm C} = 298$ given	
$V_A = R \ 298/1$	$V_{B} = V_{A}$ given	$V_{\rm C} = R \ 298/10$	

n=1, p in atm, T in K, V in L



step 1 dV=0	step 2 dp=0	overall= 1+2
$q = q_V =$	$q = q_{\rho} =$	55.748 +
$\int_{T_A}^{T_B} C_V dT =$	$\int_{T_B}^{T_C} C_p dT =$	(-78.047) = -22.3 kJ
(5/2)8.314[2980- 298] = 55.748 kJ	(7/2)8.314[298- 2980] = -78.047 kJ	
$dW = -\boldsymbol{p}_{op}dV$	$W = \Delta U - q =$	0
dV=0	-55.748 –(-78.047)	+ 22.3 kJ
.: W = 0	= +22.3 kJ	
$d\mathbf{U} = C_V dT$	$d\boldsymbol{U} = C_V dT$	△ <i>U</i> =0 since
+ (∂ U /∂V) _T dV	+ (∂ U /∂V) _T dV	$T_C = T_A$ and
d <i>V</i> =0	(∂ U /∂ V) _T =0	ideal
$\Delta U = \int_{T_A}^{T_B} C_V dT$	$\Delta U = \int_{T_B}^{T_C} C_V dT$	
	=(5/2)8.314[298- 2980] = -55.748 kJ	
$dH = C_p dT$	$d\mathbf{H} = C_p dT$	△ <i>H</i> =0 since
+ (∂ H /∂p) _T dp	+ (∂ H /∂p) _T dp	$T_C = T_A$ and
(∂ H /∂p) _T =0	$d\rho=0$	ideal
$\Delta H = \int_{T_A}^{T_B} C_p dT$	$\Delta H = \int_{T_B}^{T_C} C_p dT$	
(7/2)8.314[2980- 298] = 78.047 kJ	(7/2)8.314[298- 2980] = -78.047 kJ	

Note that $d\mathbf{W} = -\mathbf{p}_{op} dV$ could also have been used for step 2, giving the same answer:

since p_{op} = constant= 10 atm in step 2,

$$W = -10 \int_{V_B}^{V_C} dV$$

$$=-10atm \int_{R298/1}^{R298/10} dV$$

$$= -10 \left[\frac{R298}{10} - \frac{R298}{1} \right]$$

= 220.077 L atm×<u>0.0083144</u> kJ 0.082057 L atm

= 22.3 kJ

n moles of a gas obeying the eqn. of state p(V-nb) = nRT where b=0.1 L mol^{-1} and has $(\partial \mathbf{U}/\partial V)_T = 0$, $(\partial \mathbf{H}/\partial p)_T = -b$ is subjected to an isothermal reversible expansion from an initial volume of 1.00 L to 24.89 L at 298 K.

Calculate the values of ΔU , ΔH , q, and W, in kJ in terms of n.

Principles and equations for this problem:

First law $\Delta U = q + W$ $dW = -p_{op}dV$ U(T,V): $dU = C_V dT + (\partial U/\partial V)_T dV$ H(T,p): $dH = C_p dT + (\partial H/\partial p)_T dp$ definition of **reversible** process: $p_{op} = p_{gas}$

definition of *isothermal* process: $T_{final} = T_{initial}$

Given:

eqn. of state:
$$p(V-nb) = nRT$$
 $b=0.1 L mol^{-1}$ $(\partial U/\partial V)_T = 0$, $(\partial H/\partial p)_T = -b$

Solution:

(state) _{initial}	(state) _{final}	
$T_i = 298 \text{ K}$ given	T _f =298 K given	
V _i = 1 L given	V _f = 24.8 L given	
ļ 	$p_{\rm f} = nR298$	
(1.0-0.1 <i>n</i>)	(24.8-0.1 <i>n</i>)	

$$d\mathbf{W} = -\mathbf{p}_{op} dV \qquad p_{op} = p_{gas}$$

$$\mathbf{W} = -\int_{V_{i}}^{V_{f}} \frac{nR \ 298}{V - nb} dV = -nR \ 298 \ln \left(\frac{24.8 - 0.1n}{1.0 - 0.1n} \right)$$

$$d\mathbf{U} = C_{V} dT + (\partial \mathbf{U}/\partial V)_{T} dV$$

$$dT = 0, \ (\partial \mathbf{U}/\partial V)_{T} = 0 \ given, \ \therefore \Delta \mathbf{U} = 0$$

$$\mathbf{q} = \Delta \mathbf{U} - \mathbf{W} = -\mathbf{W} = nR \ 298 \ln \left(\frac{24.8 - 0.1n}{1.0 - 0.1n} \right)$$

$$d\mathbf{H} = C_{p} dT + (\partial \mathbf{H}/\partial p)_{T} dp$$

$$dT = 0, \ (\partial \mathbf{H}/\partial p)_{T} = -b, \ \therefore \Delta \mathbf{H} = \int (\partial \mathbf{H}/\partial p)_{T} dp$$

$$= -b \int_{p_{i}}^{p_{f}} dp$$

$$= -0.1 \times n0.0083144 \times 298 \left[\frac{1}{24.8 - 0.1n} - \frac{1}{1.0 - 0.1n} \right] \text{kJ}$$

	Ch	emistry	116
--	----	---------	-----

Quiz 1 on Chapter 7-8

Name

Problem: A 0.583 g sample of $C_2H_6(g)$ is burned in a bomb calorimeter containing 121 g of water as the heat exchange substance. The temperature rises from 22.145 to 41.405 °C. Taking the heat capacity of the calorimeter to be 1.0489 kJ/°C calculate \mathbf{q}_V the molar heat of combustion of $C_2H_6(g)$ at constant volume, in kJ mol⁻¹. What is $\Delta \mathbf{E}$ for the combustion of C_2H_6 ? Assuming that the gases behaved ideally, what is $\Delta \mathbf{H}_c$ for C_2H_6 ? The specific heat capacity of liquid water is 4.184 J g⁻¹/°C. R = 8.31451 J K⁻¹ mol⁻¹

(1) Draw a picture

22.145

 $^{\circ}C$

41.405

system = surr 0.583 gound $C_2H_6(g)$ ings include bomb enough $O_2(g)$ calori meter 121 g and liquid water

CO₂(g)
H₂O(liq)

121 g
liquid
water

initial

final

(2) molar mass of $C_2H_6 =$ moles of $C_2H_6(g) =$ _____g mol⁻¹ _____mol

(3) definition of heat capacity: $q = C \Delta T$ surroundings: $q_{surr} =$

kJ

$(4) :: \mathbf{q}_{system} = \mathbf{q}_V =$	kJ
	(g) at constant volume, molar $q_V =$
7.10	(9) 50 90 100 100 100 100 100 100 100 100 100
	kJ mol ⁻¹ .
(5) First law of thermodynamics leads to	
(o) I had law of thermodynamics leads to	
	pressure volume work
. A E of combustion of C 11 (a) -	is possible)
∴ ΔE of combustion of $C_2H_6(g) =$	kJ mol ⁻¹ .
(6) Definition of enthalmy, $H = \Gamma + n V$	
(6) Definition of enthalpy: $H = E + pV$	7.
Ideal gas equation of state: $pV = nF$	K I
The balanced chemical equation:	
(neglect the volume occupied by th	e liquid water resulting from the
combustion.)	o nquid victor rooming from the
For 1 mole of C ₂ H ₆ :	
gases initial:	gases final:
calculate $\Delta \boldsymbol{H}$ here:	
calculate $\Delta \boldsymbol{n}$ here.	
∴ ΔH of combustion of $C_2H_6(g)$	
=	= kJ mol ⁻¹

Quiz 1 on Chapter 7-8

Name

Problem: A 0.583 g sample of $C_2H_6(g)$ is burned in a bomb calorimeter containing 121 g of water as the heat exchange substance. The temperature rises from 22.145 to 41.405 °C. Taking the heat capacity of the calorimeter to be 1.0489 kJ/°C calculate \mathbf{q}_V the molar heat of combustion of $C_2H_6(g)$ at constant volume, in kJ mol⁻¹. What is Δ**E** for the combustion of C_2H_6 ? Assuming that the gases behaved ideally, what is $\Delta \mathbf{H}_c$ for C_2H_6 ? The specific heat capacity of liquid water is 4.184 J g⁻¹/°C. R = 8.31451 J K⁻¹ mol⁻¹

(1) Draw a picture

22.145

41.405

 $^{\circ}C$ system = surr 0.583 gound ings $C_2H_6(g)$ include bomb enough calori $O_2(g)$ meter 121 a and liquid water

CO₂(g)
H₂O(liq)

121 g
liquid
water

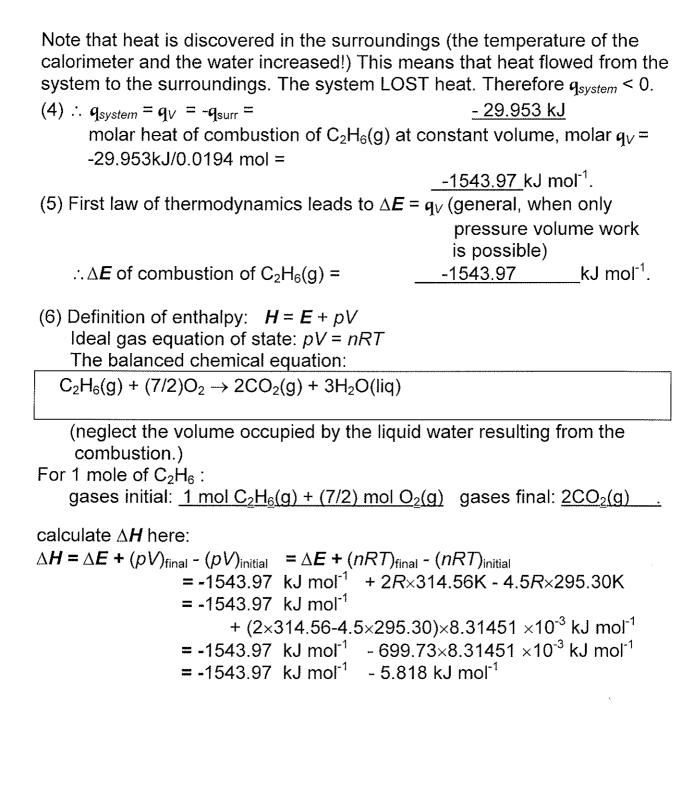
initial

final

- (2) molar mass of $C_2H_6 = 2\times12+6\times1.008$ moles of $C_2H_6(g) = 0.583/30.048 \text{ g mol}^{-1} = \frac{30.048 \text{ g mol}^{-1}}{0.0194 \text{ mol}}$
- (3) definition of heat capacity: $q = C \Delta T$

surroundings: q_{surr} = 1.0489 kJ/°C ×(41.405-22.145) °C + 121 g × 4.184 J g⁻¹/°C ×(41.405-22.145) °C × 10⁻³ kJ/J = 20.202 kJ + 9.751 kJ =

<u>29.953</u> kJ



∴ ΔH of combustion of C₂H₆(g) = ____1549.79 kJ mol⁻¹