Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are perfectly insulated from the surroundings. Is this a spontaneous process?
Consider the heat capacity of liquid water a constant over the temperature range from 280 K to 360 K and to have the value $4.18 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$.

Draw a picture

Look inside the system only, and imagine the system to be in two parts, separated by a thermally conducting interface, each part doing its own system accounting of \mathbf{q} (and \boldsymbol{w}, had there been any work). Consider each part reversibly heating or cooling the other part.

$\mathbf{q}_{\text {surf }}=0 \quad$ since insulated, no \mathbf{q} can pass across the boundary between system and its surroundings
$\mathbf{q}_{\text {system }}=0$ since insulated, no q can
pass across the boundary between system and its surroundings
Recall the definitions of concepts and terms:
Second law of thermodynamics, $\mathrm{d} S=d \mathbf{q}_{\mathrm{rev}} / T$
definition of heat capacity:
$\mathrm{d} \mathbf{q}=\mathrm{Cd} T$
$\mathbf{q}_{\text {A system }}$

$$
=54.0 \mathrm{~g} \times 4.18 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1} \times\left(T_{f}-280\right)
$$

$q_{\mathrm{B} \text { system }}$

$$
=27.0 \mathrm{~g} \times 4.18 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1} \times\left(T_{f}-360\right)
$$

$$
T_{f}=?
$$

$\mathbf{q}_{\text {system }}=0=\mathbf{q}_{\text {A system }}+\mathbf{q}_{\mathrm{B} \text { system }}$
$=54.0 \mathrm{~g} \times 4.18 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1} \times\left(T_{f}-280\right)+$
$27.0 \mathrm{~g} \times 4.18 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1} \times\left(T_{f}-360\right)$
Solve for $T_{f}: \quad T_{f}=306.67 \mathrm{~K}$
$\mathrm{d} \mathbf{S}=\mathrm{d} \mathbf{q}_{\mathrm{rev}} / T=\operatorname{Cd} T / T$. Integrating gives $\Delta S_{\mathrm{A}}=C \ln \left(\mathrm{~T}_{f} / \mathrm{T}_{i}\right)$
$\Delta \boldsymbol{S}_{\mathrm{A} \text { system }}$

$$
\begin{aligned}
= & 54.0 \mathrm{~g} \\
\times & 4.18 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1} \\
& \times \ln (306.67 / 280) \\
= & +20.54 \mathrm{~J} \mathrm{~K}^{-1}
\end{aligned}
$$

$\Delta \boldsymbol{S}_{\text {B system }}$

$$
\begin{aligned}
&=27.0 \mathrm{~g} \times 4.18 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1} \\
& \times \ln (306.67 / 360) \\
&=-18.10 \quad \mathrm{~J} \mathrm{~K}^{-1}
\end{aligned}
$$

$\Delta S_{\text {system }}=\Delta S_{\mathrm{A} \text { system }}+\Delta \boldsymbol{S}_{\mathrm{B} \text { system }}$
$=+20.54-18.10=+2.44 \mathrm{~J} \mathrm{~K}^{-1}$

$\Delta \boldsymbol{S}_{\text {surr }}=0$ since no q passed across the insulated boundary

$\Delta \boldsymbol{S}_{\text {universe }}=\Delta \boldsymbol{S}_{\text {system }}+\Delta \boldsymbol{S}_{\text {surr }}$
$=+2.44 \mathrm{~J} \mathrm{~K}^{-1}$
spontaneous process ? YES
because $\Delta \boldsymbol{S}_{\text {universe }}>0$

This means
$C_{p}(\mathrm{liq})-C_{p}(\mathrm{~s})=37.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$C_{p}(\mathrm{~g})-C_{p}(\mathrm{liq})=-41.9 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

Example:

Consider the following cycle using 1 mole of an ideal gas, initially at $25^{\circ} \mathrm{C}$ and 1 atm pressure.
Step 1: Isothermal expansion against zero pressure to double the volume. Step 2. Isothermal, reversible compression from $1 / 2$ atm to 1 atm

Questions:
(a) Calculate the values of $\oint \mathrm{d} \boldsymbol{q} / T$
(b) Calculate $\Delta \boldsymbol{S}$ for step 2
(c) Find $\Delta \boldsymbol{S}$ for step 1
ideal gas $(\partial \boldsymbol{U} / \partial V)_{T}=0$

Step 1 +Step 2 = a cycle $\mathrm{d} \boldsymbol{U}=(\partial \boldsymbol{U} / \partial T)_{V} \mathrm{~d} T+(\partial \boldsymbol{U} / \partial V)_{T} \mathrm{~d} V$ Since $d T=0$ and $(\partial U / \partial V)_{T}=0$ for both step 1 and step 2,
$\Delta \boldsymbol{U}_{1}=0, \mathrm{~d} \boldsymbol{q}_{\text {IRREV }}=\mathrm{d} \boldsymbol{W}, \mathrm{d} \boldsymbol{W}=-0 \bullet \mathrm{~d} V$,
$\therefore \mathrm{d} \boldsymbol{q}_{\text {PREV }}=0$
$\Delta \boldsymbol{U}_{2}=0, \mathrm{~d} \boldsymbol{q}_{\mathrm{REV}}=-\mathrm{d} \boldsymbol{W}_{\mathrm{REV}}=\mathrm{R} T / \mathrm{V} \bullet \mathrm{dV}$ (a) $\oint \mathrm{d} \boldsymbol{q} / T=0+\mathrm{R} \ln (1 / 2)=-1.38 \mathrm{cal} \mathrm{K}^{-1}$
(b) $\Delta \boldsymbol{S}_{2}=\boldsymbol{q}_{\mathrm{REV}} / T=-1.38 \mathrm{cal} \mathrm{K}^{-1}$
$\Delta \boldsymbol{S}_{\text {cycle }}=0=\Delta \boldsymbol{S}_{1}+\Delta \boldsymbol{S}_{2}=\Delta \boldsymbol{S}_{1}-1.38$ (c) $\Delta \boldsymbol{S}_{1}=+1.38 \mathrm{cal} \mathrm{K}^{-1}$

EXAMPLE:

1. Calculate the change in entropy when

50 g of water at $80^{\circ} \mathrm{C}$ is poured into 100 g of water at $10^{\circ} \mathrm{C}$ in an insulated vessel given that the molar heat capacity of liquid water is $75.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ at 1 atm .

1. Vessel is insulated, net $q=0$. Find the common final temperature T_{f}. $q=q_{1}+q_{2}=0 \quad$ (insulated, therefore an adiabatic process)
Since C_{p} is given as a constant,
$q_{1}=n_{1} C_{p}\left[T_{f}-T_{i(1)}\right]$
$q_{2}=n_{2} C_{p}\left[T_{f}-T_{i(2)}\right]$
Do the algebra to get

$$
\begin{aligned}
T_{f} & =\left\{n_{1} T_{i(1)}+n_{2} T_{i(2)}\right\} /\left\{n_{1}+n_{2}\right\} \\
& =\{(1 / 3) \times 353 \mathrm{~K}+(2 / 3) \times 283 \mathrm{~K}\}=306 \mathrm{~K}
\end{aligned}
$$

By definition,
$\Delta \boldsymbol{S}_{1}=\int \mathrm{d} \boldsymbol{S}=\int \mathrm{d} q_{r e v} / T=n_{1} \int C_{p} \mathrm{~d} T / T$

$$
=n_{1} C_{p} \ln \left[T_{f} / T_{i(1)}\right]
$$

$\Delta \boldsymbol{S}_{2}=n_{2} C_{p} \ln \left[T_{f} / T_{i(2)}\right]$
$\Delta \boldsymbol{S} \quad=\Delta \boldsymbol{S}_{1}+\Delta \boldsymbol{S}_{2}$
$\Delta \boldsymbol{S}=75.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times$
$\left\{\left[50 \mathrm{~g} / 18.02 \mathrm{~g} \mathrm{~mol}^{-1}\right] \ln (306 / 353)\right.$
$\left.+\left[100 \mathrm{~g} / 18.02 \mathrm{~g} \mathrm{~mol}^{-1}\right] \ln (306 / 283)\right\}$
$=+2.8 \mathrm{~J} \mathrm{~K}^{-1}$.

EXAMPLE:

2. Calculate the difference in molar entropy (a) between liquid water and ice at $-5^{\circ} \mathrm{C}$, (b) between liquid water and its vapor at $95^{\circ} \mathrm{C}$ and 1.00 atm . Distinguish between the entropy changes of the sample, the surroundings, and the total system, and discuss the spontaneity of the transitions at the two temperatures.
Given: The differences in heat capacities on melting and on vaporization are $37.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ and $-41.9 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$, respectively.

$$
\begin{aligned}
& \Delta_{\text {fus }} \boldsymbol{H}=6.01 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { at } 273 \mathrm{~K} \\
& \Delta_{\text {vap }} \boldsymbol{H}=40.7 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { at } 373 \mathrm{~K}
\end{aligned}
$$

This means
$C_{p}($ liq $)-C_{p}(\mathrm{~s})=37.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$C_{p}(\mathrm{~g})-C_{p}(\mathrm{liq})=-41.9 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
\begin{aligned}
& \text { Sur roundings } \\
& \text { (liq,-5C) } \rightarrow(\mathrm{s},,-5 \mathrm{C}) \\
& \text { System } \\
& \text { accounting } \\
& \begin{array}{l}
\Delta \boldsymbol{S}=? \\
\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
\end{array} \\
& \Delta S=\text { ? } \\
& \mathrm{J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \boldsymbol{S}_{\text {universe }}=\Delta \boldsymbol{S}_{\text {system }}+\Delta \boldsymbol{S}_{\text {surr }} \\
& =? ~ \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& \text { spontaneous change ? }
\end{aligned}
$$

2.(a) The transition being considered is

$$
\text { liq at }-5^{\circ} \mathrm{C} \rightarrow \text { solid at }-5^{\circ} \mathrm{C} \quad \Delta \boldsymbol{S}=\text { ? }
$$

This is not a reversible process. In order to find $\Delta \boldsymbol{S}$ we need to imagine achieving this net result via a reversible process. Or, by constructing a cycle in which this step is a part of the cycle while the remaining steps in the cycle are carried out reversibly. Because entropy is a state function, $\Delta \boldsymbol{S}$ can be determined indirectly from the following cycle:
b
liq at $0^{\circ} \mathrm{C} \leftarrow$ solid at $0^{\circ} \mathrm{C}$

liq at $-5^{\circ} \mathrm{C} \rightarrow$ solid at $-5^{\circ} \mathrm{C}$
d
Now $\Delta \boldsymbol{S}_{\text {cycle }}=0$ since \boldsymbol{S} is a state function. so
$0=\Delta \boldsymbol{S}_{\mathrm{a}}+\Delta \boldsymbol{S}_{\mathrm{b}}+\Delta \boldsymbol{S}_{\mathrm{c}}+\Delta \boldsymbol{S}_{\mathrm{d}}$
Then solve for $\Delta \boldsymbol{S}_{\mathrm{d}}$ which we want.

For the reversible heating and cooling, with no change in phase,
$\Delta \mathbf{S}=\int \mathrm{d} q_{r e v} / T=n \int C_{p} \mathrm{~d} T / T$
$\Delta \boldsymbol{S}_{\mathrm{c}}=C_{p}(\mathrm{liq}) \ln (268 / 273)$
$\Delta \boldsymbol{S}_{\mathrm{a}}=C_{p}(\mathrm{~s}) \ln (273 / 268)$
For the reversible change in phase at that transition temperature at which the two phases are known to be in equilibrium at 1 atm:
$\Delta \boldsymbol{S}=\int \boldsymbol{\lambda} q_{\text {rev }} / T=q_{p} / T=\Delta_{\text {trans }} \boldsymbol{H} / T_{\text {trans }}$ solid at $0^{\circ} \mathrm{C} \rightarrow$ liq at $0^{\circ} \mathrm{C} \quad \Delta_{f u s} \boldsymbol{H}$
$\Delta \boldsymbol{S}_{\mathrm{b}}=\Delta_{\text {fuss }} \boldsymbol{H} / 273$
Then, by difference,
$\Delta \boldsymbol{S}_{\mathrm{d}}=0-\left(\Delta \boldsymbol{S}_{\mathrm{a}}+\Delta \boldsymbol{S}_{\mathrm{b}}+\Delta \boldsymbol{S}_{\mathrm{c}}\right)$

$$
=-\left\{C_{p}(\mathrm{~s}) \ln (273 / 268)\right.
$$

$+\Delta_{\text {fus }} H / 273+C_{p}($ liq $\left.) \ln (268 / 273)\right\}$
$=-\left[C_{p}(\mathrm{liq})-C_{p}(\mathrm{~s})\right] \ln (268 / 273)$ - $\Delta_{\text {fuss }} H / 273$
$=-37.3 \ln (268 / 273)-6010 / 273$
$=-21.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

For the surroundings, when the system changed:
liq at $-5^{\circ} \mathrm{C} \rightarrow$ solid at $-5^{\circ} \mathrm{C}$ at 1 atm the surroundings gained $q=q_{p}=\Delta_{\text {fus }} \boldsymbol{H}_{268}$,
which is a number we do not have.
But since \boldsymbol{H} is a state function, we can find $\Delta_{\text {fus }} H_{268}$ from the same cycle:
For step a \& $\mathrm{c}, \Delta \boldsymbol{H}=\int C_{p} \mathrm{~d} T$ since $\mathrm{d} p=0$ For the cycle, $\Delta \boldsymbol{H}=0$ for the system:
$\Delta \boldsymbol{H}_{\text {cycle }}=0=\Delta \boldsymbol{H}_{\mathrm{a}}+\Delta \boldsymbol{H}_{\mathrm{b}}+\Delta \boldsymbol{H}_{\mathrm{c}}+\Delta \boldsymbol{H}_{\mathrm{d}}$

$$
\begin{aligned}
& 0=C_{p}(\mathrm{~s})(273-268)+\Delta_{f u s} H_{273} \\
& +C_{p}(\text { liq })(268-273)-\Delta_{f u s} H_{268}
\end{aligned}
$$

Then by difference, for the system,
$\Delta_{f u s} H_{268}=-\left[C_{p}(\mathrm{liq})-C_{p}(\mathrm{~s})\right](273-268)$
$+\Delta_{\text {fus }} \boldsymbol{H}_{273}$
$=-37.3(273-268)+6010$
$=5823.5 \mathrm{~J} \mathrm{~mol}^{-1}$
Thus, the surroundings gained $q=5823.5 \mathrm{~J} \mathrm{~mol}^{-1}$

To find $\Delta \boldsymbol{S}_{\text {surroundings }}$ we need to think of this amount of heat being transferred reversibly to the surroundings at 268 K
$\Delta \mathbf{S}_{\text {surroundings }}=q_{r e v} / T$

$$
=5823.5 / 268=+21.7 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

$\Delta \boldsymbol{S}_{\text {universe }}=\Delta \boldsymbol{S}_{\text {system }}+\Delta \boldsymbol{S}_{\text {surroundings }}$

$$
=-21.3+21.7=\text { positive }
$$

Therefore the transformation of water liq at $-5^{\circ} \mathrm{C} \rightarrow$ solid at $-5^{\circ} \mathrm{C}$
occurs spontaneously.

$$
\begin{aligned}
& \text { Sur roundings } \\
& (\text { liq, }-5 \mathrm{C}) \rightarrow(\mathrm{s},,-5 \mathrm{C}) \\
& \text { System } \\
& \text { accounting } \\
& q_{p}=\Delta \boldsymbol{H} \\
& =-5823.5 \mathrm{~J} \mathrm{~mol}^{-1} \\
& \Delta \boldsymbol{S}=-21.3 \\
& \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

$$
\begin{gathered}
\Delta \boldsymbol{S}_{\text {universe }}=\Delta \boldsymbol{S}_{\text {system }}+\Delta \boldsymbol{S}_{\text {surr }} \\
=-21.3+21.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}>0 \\
\text { spontaneous change }
\end{gathered}
$$

IN CONTRAST:

$$
\begin{aligned}
& \text { Sur soundings } \\
& q_{R E V}=q_{p}=\Delta H \\
& =-6008 \mathrm{~J} \mathrm{~mol}^{-1}=+6008 \\
& \mathrm{~J} \mathrm{~mol}^{-1} \\
& \text { make it } \\
& q_{R E V} \\
& \Delta \boldsymbol{S}=-21.995 \\
& \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

$$
\begin{gathered}
\Delta \boldsymbol{S}_{\text {universe }}=\Delta \boldsymbol{S}_{\text {system }}+\Delta \boldsymbol{S}_{\text {surf }} \\
=-21.995+21.995 \mathrm{~J} \mathrm{~mol} \\
\text { equilibrium }
\end{gathered}
$$

2.(b) The transition being considered is

$$
\text { liq at } 95^{\circ} \mathrm{C} \rightarrow \text { gas at } 95^{\circ} \mathrm{C} \quad \Delta \boldsymbol{S}=\text { ? }
$$

This is not a reversible process. In order to find $\Delta \boldsymbol{S}$ we need to imagine achieving this net result via a reversible process. Or, by constructing a cycle in which this step is a part of the cycle while the remaining steps in the cycle are carried out reversibly. Because entropy is a state function, $\Delta \boldsymbol{S}$ can be determined indirectly from the following cycle:
liq at $100^{\circ} \mathrm{C} \leftarrow$ gas at $100^{\circ} \mathrm{C}$
$c \downarrow$ ia
liq at $95^{\circ} \mathrm{C} \rightarrow$ gas at $95^{\circ} \mathrm{C}$
d
Now $\Delta \boldsymbol{S}_{\text {cycle }}=0$ since \boldsymbol{S} is a state function. $0=\Delta \boldsymbol{S}_{\mathrm{a}}+\Delta \boldsymbol{S}_{\mathrm{b}}+\Delta \boldsymbol{S}_{\mathrm{c}}+\Delta \boldsymbol{S}_{\mathrm{d}}$ Then solve for $\Delta \boldsymbol{S}_{\mathrm{d}}$ which we want.

For the reversible heating and cooling, with no change in phase,
$\Delta \boldsymbol{S}=\int \mathrm{d} q_{\mathrm{rev}} / T=n \int C_{p} \mathrm{~d} T / T$
$\Delta \boldsymbol{S}_{\mathrm{c}}=C_{p}($ liq $) \ln (368 / 373)$
$\Delta \boldsymbol{S}_{\mathrm{a}}=C_{p}(\mathrm{~g}) \ln (373 / 368)$
For the reversible change in phase at that transition temperature at which the two phases are known to be in equilibrium at 1 atm:
$\Delta \boldsymbol{S}=\int \lambda q_{\text {rev }} / T=q_{p} / T=\Delta_{\text {trans }} \boldsymbol{H} / T_{\text {trans }}$
$\Delta \boldsymbol{S}_{\mathrm{b}}=-\Delta_{\mathrm{vap}} \boldsymbol{H} / 373$ (condensation)
Then, by difference,

$$
\begin{aligned}
\Delta \boldsymbol{S}_{\mathrm{d}} & =0-\left(\Delta \boldsymbol{S}_{\mathrm{a}}+\Delta \boldsymbol{S}_{\mathrm{b}}+\Delta \boldsymbol{S}_{\mathrm{c}}\right) \\
= & -\left\{\boldsymbol{C}_{p}(\mathrm{~g}) \ln (373 / 368)-\Delta_{\text {vap }} \boldsymbol{H} / 373\right. \\
& \left.\quad+C_{p}(\mathrm{liq}) \ln (368 / 373)\right\} \\
= & -\left[C_{p}(\mathrm{~g})-C_{p}(\mathrm{liq})\right] \ln (373 / 368) \\
& +\Delta_{\text {vap }} H / 373 \\
= & +41.9 \ln (373 / 368)+40700 / 373 \\
= & +109.7 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

For the surroundings, when the system changed:
liq at $95^{\circ} \mathrm{C} \rightarrow$ gas at $95^{\circ} \mathrm{C}$ at 1 atm the surroundings lost
$q=q_{p}=-\Delta_{\text {vap }} \boldsymbol{H}_{368}$
which is a number we do not have.
But since \boldsymbol{H} is a state function, we can find $\Delta_{\text {vap }} \boldsymbol{H}_{368}$ from the same cycle:
For step a \& c, $\Delta \boldsymbol{H}=\int C_{p} \mathrm{~d} T$ since $\mathrm{d} p=0$ For the cycle, $\Delta \boldsymbol{H}=0$ for the system:
$\Delta \boldsymbol{H}_{\text {cycle }}=0=\Delta \boldsymbol{H}_{\mathrm{a}}+\Delta \boldsymbol{H}_{\mathrm{b}}+\Delta \boldsymbol{H}_{\mathrm{c}}+\Delta \boldsymbol{H}_{\mathrm{d}}$

$$
\begin{aligned}
0= & C_{p}(\mathrm{~g})(373-368)-\Delta_{\text {vap }} H_{373} \\
& +C_{p}(\mathrm{liq})(368-373)+\Delta_{\text {vap }} H_{368}
\end{aligned}
$$

Then by difference, for the system,
$\Delta_{\text {vap }} H_{368}=-\left[C_{p}(\mathrm{~g})-C_{p}(\mathrm{liq})\right](373-368)$
$+\Delta_{\text {vap }} \boldsymbol{H}_{373}$
$=41.9(373-368)+40700$
$=40.91 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Thus, the surroundings lost
$q=-40.91 \mathrm{~kJ} \mathrm{~mol}^{-1}$

To find $\Delta \boldsymbol{S}_{\text {surroundings }}$ we need to think of this amount of heat being transferred reversibly to the surroundings at 368 K
$\Delta \boldsymbol{S}_{\text {surroundings }}=q_{\text {rev }} / T$
$=-40.91 \times 10^{3} / 368=-111.2 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\Delta \boldsymbol{S}_{\text {universe }}=\Delta \boldsymbol{S}_{\text {system }}+\Delta \boldsymbol{S}_{\text {surroundings }}$
= 109.7-111.2 = negative

Therefore the transformation of water liq at $95^{\circ} \mathrm{C} \rightarrow$ gas at $95^{\circ} \mathrm{C}$
does not occur spontaneously, rather, the reverse transformation
gas at $95^{\circ} \mathrm{C} \rightarrow \mathrm{liq}$ at $95^{\circ} \mathrm{C}$
occurs spontaneously.
3. One mole of a gas with $C_{V}=(3 / 2) R$ and equation of state $p V=R T+a p$ where $a=0.020 \mathrm{~L} \mathrm{~mol}^{-1}$ is put through the 3-step cycle Step A, Step B, Step C shown below.

State	p $a t m$	V L	T K
1	1	22.4	
2	2	22.4	
3	1		

Carry out the set-up and calculations and complete the information called for in the tables:
T_{3} and V_{3} :

Step A	Step B	Step C
q	q	q
W	W	W
$\Delta \boldsymbol{U}$	$\Delta \boldsymbol{U}$	$\Delta \boldsymbol{U}$
$\Delta \boldsymbol{H}$	$\Delta \boldsymbol{H}$	$\Delta \boldsymbol{H}$
$\Delta \boldsymbol{S}$	$\Delta \boldsymbol{S}$	$\Delta \boldsymbol{S}$

EXAMPLE: 3. One mole of a gas with $C_{V}=(3 / 2) R$ and equation of state
$p V=R T+a p$ where $a=0.020 \mathrm{~L} \mathrm{~mol}^{-1}$ is put through the 3-step cycle Step A, Step B, Step C shown below.

State	$\begin{gathered} p \\ \text { atm } \end{gathered}$	$\begin{aligned} & V \\ & L \end{aligned}$	$\begin{aligned} & T \\ & K \end{aligned}$
1	1	22.4	
2	2	22.4	
3	1		

Carry out the set-up and calculations and complete the information called for in the tables:

Begin:
Use the equation of
state $p V=R T+0.02 p$

State	p atm	V L	T K
1	1	22.4	273
2	2	22.4	546
3	1		

From $(1 / T)\left\{p+(\partial \mathbf{U} / \partial \mathbf{V})_{T}\right\}=(\partial p / \partial T)_{V}$ $(\partial \boldsymbol{U} / \partial \mathrm{V})_{T}=T(\partial p / \partial T)_{V}-p$
From the equation of state

$$
\begin{gathered}
p V=R T+a p, \quad \text { we get } p=R T /(V-a) \\
(\partial p / \partial T)_{V}=R /(V-a)=p / T \\
\therefore(\partial U / \partial V)_{T}=0
\end{gathered}
$$

From $(1 / T)\left\{-V+(\partial H / \partial p)_{T}\right\}=-(\partial V / \partial T)_{p}$
$(\partial \boldsymbol{H} / \partial p)_{T}=-T(\partial V / \partial T)_{p}+V$
From the equation of state we get
$V=a+(R T / p)$
$(\partial H / \partial p)_{T}=-(R T / p)+a+(R T / p)$
$\therefore(\partial H / \partial p)_{T}=a$
From $C_{p}-C_{V}=\left\{p+(\partial U / \partial V)_{T}\right\}(\partial V / \partial T)_{p}$ From the equation of state $p V=R T+a p$ $(\partial V / \partial T)_{p}=R / p$
We had found already $(\partial \mathbf{U} / \partial \mathbf{V})_{T}=0$ above
$\therefore C_{p}-C_{V}=p \times R / p=R$
Given $C_{V}=(3 / 2) R$

$$
\therefore C_{p}=(5 / 2) R
$$

To calculate T_{3} and V_{3} :
Step $B(2 \rightarrow 3)$ is an adiabatic $(q=0)$ reversible step, as figure shows.
$p_{o p}=p \quad d W=-p_{o p} \mathrm{~d} V=-p \mathrm{~d} V$
First law: $\Delta \boldsymbol{U}=q+W, \quad \mathrm{~d} \boldsymbol{U}=\grave{\jmath} W$
$\mathrm{d} \boldsymbol{U}=C_{V} \mathrm{~d} T+(\partial \boldsymbol{U} / \partial V)_{T} \mathrm{~d} V$
$\mathrm{d} \boldsymbol{U}=C_{V} \mathrm{~d} T+(\partial \boldsymbol{U} / \partial V)_{T} \mathrm{~d} V=C_{V} \mathrm{~d} T+0$
$\mathrm{d} U=\mathrm{d} W=-p \mathrm{~d} V$
$\therefore C_{V} \mathrm{~d} T=-p \mathrm{~d} V$
$C_{V} \mathrm{~d} T=-[R T /(V-a)] \mathrm{d} V$
$C_{V} \mathrm{~d} T / T=-R \mathrm{~d} V /(V-a)$
Integrating:
$C_{V} \ln \left(T_{f} / T_{i}\right)=-R \ln \left(V_{f}-a\right) /\left(V_{i}-a\right)$

$$
=R \ln \left(p_{f} T_{i} / p_{i} T_{f}\right) \text { from } p=R T /(V-a)
$$

$C_{V} \ln \left(T_{3} / T_{2}\right)=R \ln \left(p_{3} T_{2} / p_{2} T_{3}\right)$
$=R \ln \left(p_{3} / p_{2}\right)+R \ln \left(T_{2} / T_{3}\right)$
$\therefore\left(C_{V}+R\right) \ln \left(T_{3} / T_{2}\right)=R \ln \left(p_{3} / p_{2}\right)$
$(5 / 2) \ln \left(T_{3} / 546\right)=\ln (1 / 2) \quad \therefore T_{3}=414 \mathrm{~K}$
Eqn. of state: $V_{3}-0.020=R T_{3} / p_{3}$
$\therefore V_{3}=34 \mathrm{~L}$

Now we can fill in this table

State	p atm	V L	T K
1	1	22.4	$\mathbf{2 7 3}$
2	2	22.4	$\mathbf{5 4 6}$
3	1	$\mathbf{3 4}$	$\mathbf{4 1 4}$

$\mathrm{d} \boldsymbol{G}=-\mathrm{S} \mathrm{d} T+V \mathrm{~d} p \quad \mathrm{~d} \mathbf{A}=-\mathrm{Sd} T-p \mathrm{~d} V$ Since none of the steps are $d T=0$, we can not calculate $\Delta \boldsymbol{G}$ or $\Delta \boldsymbol{A}$ without having S itself for this gas.

Step A	Step B	Step C
$\mathrm{d} V=0$	adiabatic, $q=0$ \& reversible	$\mathrm{d} p=0$
$q_{v}=\Delta \boldsymbol{U}$ get from below	$\begin{aligned} & q=0 \\ & \text { given } \end{aligned}$	$q_{p}=\Delta \boldsymbol{H}$ get from below
$\begin{aligned} & W=-\int \mathrm{p}_{\text {op }} \mathrm{d} V \\ & W=0 \\ & \text { since } \mathrm{d} V=0 \end{aligned}$	$W=\Delta U$ get from below	$\begin{aligned} & W=-\int p_{o p} \mathrm{~d} V \\ & =-\mathrm{p}_{\mathrm{op}} \mathrm{~d} V \\ & =-1 \mathrm{~d} V \\ & =-1(22.4-34) \\ & \quad \quad \mathrm{L} \text { atm } \end{aligned}$
$\Delta \boldsymbol{U}$	$\Delta \boldsymbol{U}$	ΔU
$\mathrm{d} \boldsymbol{U}=C_{V} \mathrm{~d} T$	same here	same here
$+(\partial \boldsymbol{U} / \partial V)_{T} \mathrm{~d} V$	$\Delta \boldsymbol{U}=\int C_{V} \mathrm{~d} T=$	$\Delta \boldsymbol{U}=\int C_{V} \mathrm{~d} T=$
$=C_{V} \mathrm{~d} T+0$	(3/2)(8.3144)	(3/2)(8.3144)
$\begin{aligned} & \Delta \boldsymbol{U}=\int C_{\nu} \mathrm{d} T= \\ & (3 / 2)(8.3144) \\ & \times(546-273) \mathrm{J} \end{aligned}$	$\times(414-546) \mathrm{J}$	$\times(273-414) \mathrm{J}$

$\mathrm{d} \boldsymbol{H}=C_{p} \mathrm{~d} T+(\partial \boldsymbol{H} / \partial p)_{T} \mathrm{~d} p$
$=C_{p} \mathrm{~d} T+a \mathrm{~d} p$
$\Delta \boldsymbol{H}=\int \boldsymbol{C}_{p} \mathrm{~d} T+\int a \mathrm{a} p$

$\mathrm{d} \mathbf{S}=C_{V} \mathrm{~d} T / T+(\partial \mathbf{S} / \partial V)_{T} \mathrm{~d} V$ but $(\partial \mathbf{S} / \partial V)_{T}=(\partial \mathrm{p} / \partial T)_{V}=R /(V-a)$
$\mathrm{d} S=C_{V} \mathrm{~d} T / T+R \mathrm{~d} V /(V-a)$
or $\mathrm{d} \boldsymbol{S}=C_{p} \mathrm{~d} T / T+(\partial \boldsymbol{S} / \partial p)_{T} \mathrm{~d} p$
but $(\partial \mathbf{S} / \partial p)_{T}=-(\partial V / \partial T)_{p}=-R / p$
$\mathrm{d} S=C_{p} \mathrm{~d} T / T-R \mathrm{~d} p / p$
ΔS for $d V=0 \Delta S$
$\Delta \boldsymbol{S}$ for $\mathrm{d} p=0$
d $q_{r e v}=0$
$\mathrm{d} \boldsymbol{S}=C_{V} \mathrm{~d} T / T \quad \therefore \Delta \boldsymbol{S}=0$
$\Delta \boldsymbol{S}=\int \boldsymbol{C}_{\downarrow} \mathrm{d} T / T \left\lvert\, \begin{aligned} & \text { or } \\ & \mathrm{d} \boldsymbol{S}=C_{p} \mathrm{~d} T / T\end{aligned}\right.$
$=\quad-R \mathrm{~d} p / p=$
$(3 / 2)(8.3144) \Delta \boldsymbol{S}=\int C_{p} \mathrm{~d} T / T(5 / 2)(8.3144)$
$\ln (546 / 273)$ JK^{-1}

Problem: Two moles of a monatomic ideal gas begins in a state with $p=$ 1.00 atm and $T=300 \mathrm{~K}$. It is expanded reversibly and adiabatically until the volume has doubled; then it is expanded irreversibly and isothermally into a vacuum until the volume has doubled again; then it is heated reversibly and isothermally until a final state with $p=1.00 \mathrm{~atm}$ and $T=400 \mathrm{~K}$ is reached. Calculate $\Delta \boldsymbol{S}$ system for this process. (Hint: There is an easy way to solve this problem and a hard way. You should, of course, choose the easy way.)
(1) Draw a picture

ideal monatomic gas
(2) Recall the definitions of concepts and terms: Second law of thermodynamics, $\mathrm{d} S=\mathrm{d} \mathbf{q}_{\text {rev }} / T$ definition of heat capacity: $d q=C d T$ heat capacities of one mole of an ideal gas are related: $C_{p}=C_{V}+R$ heat capacity at constant volume for a monatomic gas is entirely due to its translational energy
kinetic energy $=3 / 2 k_{B} T$ for one molecule $\quad N_{\text {Avogadro }} \times k_{B}=R$ Sum up over all the infinitesimal slivers dS to get:
$\int_{S \mathrm{Si}}^{\mathrm{Sf}} \mathrm{d} \boldsymbol{S}=\boldsymbol{S}_{f}-\boldsymbol{S}_{i}=\Delta \boldsymbol{S}$ because \boldsymbol{S} is a state function.
(3) Solve the problem in the space below:

Using the concept that \mathbf{S} is a state function, we could go from the given initial state to the given final state via a reversible one-step constant pressure heating, for which path:

$$
\begin{aligned}
& \int_{\text {Si }}^{\mathrm{Sf}} \mathrm{dS}=\mathbf{S}_{f}-\boldsymbol{S}_{i}=\Delta \boldsymbol{S}=\int_{\mathrm{Ti}}^{\mathrm{Tf}} \mathrm{~d} \mathbf{q}_{\mathrm{rev}} / T=\int_{\mathrm{Ti}^{\mathrm{Tf}}}^{\mathrm{Ti}} C_{p} \mathrm{~d} T / T=C_{p} \ln \left(\mathrm{~T}_{\mathrm{f}} / \mathrm{T}_{\mathrm{i}}\right) \\
& \text { Since this is a monatomic gas, } C_{V}=3 / 2 R . \\
& \text { Since it is an ideal gas, } C_{p}=C_{V}+R=(5 / 2) R \\
& C_{p}=(5 / 2)\left(8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\
& \Delta \boldsymbol{S}=C_{p} \ln \left(\mathrm{~T}_{\mathrm{f}} / \mathrm{T}_{\mathrm{i}}\right)=2 \mathrm{~mol}^{2} \times(5 / 2)\left(8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times \ln (400 / 300) \\
& \Delta \boldsymbol{S}_{\text {system }}=11.96 \mathrm{~J} \mathrm{~K}^{-1}
\end{aligned}
$$

Alternatively we could have solved the problem by calculating $\Delta \boldsymbol{S}$ for each step and adding up the values to get the overall $\Delta \boldsymbol{S}$.

Considering each step separately:
(1) Draw a picture
ideal monatomic gas

Let us examine each step; if we had to calculate $\Delta \boldsymbol{S}_{\text {system }}$ for just this step, how would we do it? In the following pages we analyze what do we know about each step ? based on what concept or known condition of the system before/after for each step? to see how to go about calculating various quantities like $C_{V}, C_{p}, \mathbf{q}, \boldsymbol{w}, \Delta \boldsymbol{U} ., \Delta \boldsymbol{S}$, for an ideal gas.

$p_{1} V_{1} T_{1}$
Since this was a reversible step, $\mathrm{dq}_{\text {rev }}=\mathrm{dq}=0, \therefore \mathrm{~d} \mathbf{S}_{\text {system }}=0$ for this step Also, we can find out all the other quantities, including the $p V$ and T for state 2, which we shall need in order to get the description of state 3 .

	What do we know?	Based on what concept?
1	$\Delta \boldsymbol{U}=\mathbf{q}+\mathbf{w}$	First law of thermodynamics
2	$\mathbf{q}=0$	definition of adiabatic
3	$\mathrm{~d} \boldsymbol{U}=C_{V} \mathrm{~d} T$	ideal gas, internal energy depends only on temperature
4	$C_{V}=(3 / 2) \mathrm{R}$ per mole	monatomic gas
5	$\mathrm{~d} \mathbf{w}=-p_{\text {opposing }} \mathrm{d} V$	definition of work
6	$p_{\text {gas }}=p_{\text {opposing }}$ at all times	reversible
7	$p_{\text {gas }} V=n R T$	ideal gas
8	$\mathrm{~d} \boldsymbol{S}=\mathrm{d} \mathbf{q}_{\text {rev }} / T$	Second law of thermodynamics
9	$\therefore \mathrm{~d} \boldsymbol{U}=\mathrm{d} \mathbf{w}$	$1 \& 2$
10	$\mathrm{~d} \mathbf{w}=-(n R T / V) \mathrm{d} V$	$5,6 \& 7$
11	$\mathrm{~d} \boldsymbol{U}=n(3 / 2) R \mathrm{~d} T$	$3 \& 4$
12	$\therefore n(3 / 2) R \mathrm{~d} T=-(n R T / V) \mathrm{d} V$	$9,10 \& 11$
13	$(3 / 2) \mathrm{d} T / T=-\mathrm{d} V / V$	rearrange
14	$(3 / 2) \ln \left(T_{2} / T_{1}\right)=-\ln \left(V_{2} / V_{1}\right)$	summing up on both sides
15	$\Delta \boldsymbol{U}_{\mathrm{a}}=n(3 / 2) \mathrm{R}\left(T_{2}-T_{1}\right)$	summing up the small $\mathrm{d} \boldsymbol{U}$ in 11
16	$\therefore \mathbf{w}=\Delta \boldsymbol{U}$	9
17	$\mathbf{q}=\mathbf{q}_{\text {rev }}$	reversible
18	$\therefore \mathrm{~d}=0$	$2,8,17$
19	$\therefore \Delta \mathbf{S}_{\mathrm{a}}=0$	

we are given p_{1}, T_{1} and n,
so we can solve for V_{1} from $p_{1} V_{1}=n R T_{1}$
we are given $V_{2}=2 V_{1}$, which when substituted into eq. 14 gives

$$
(3 / 2) \ln \left(T_{2} / T_{1}\right)=-\ln \left(V_{2} / V_{1}\right)=-\ln (2) \quad \text { or }\left(T_{2} / 300\right)^{3 / 2}=(1 / 2)
$$

Now that we have V_{2}, and T_{2}, we can calculate all the quantities: Calculate $\Delta \boldsymbol{U}$ from 15. Calculate w from 16. Calculate p_{2} from 7.

p_{2}	
$V_{2}=2 V_{1}$	
T_{2}	irrev. into a vacuum
	(b) isothermal

$$
\begin{gathered}
p_{3} \\
V_{3}=2 V_{2} \\
=4 V_{1} \\
T_{3}=T_{2}
\end{gathered}
$$

	What do we know?	Based on what concept?
1	$\Delta \boldsymbol{U}=\mathbf{q}+\mathbf{w}$	First law of thermodynamics
2	$\mathrm{~d} T=0$	isothermal
3	$\mathrm{~d} \boldsymbol{U}=C_{V} \mathrm{~d} T$	ideal gas, internal energy depends only on temperature
4	$C_{V}=(3 / 2) \mathrm{R} \mathrm{per} \mathrm{mole}$	monatomic gas
5	$\mathrm{~d} \mathbf{w}=-p_{\text {opposing }} \mathrm{d} V$	definition of work
6	$p_{\text {gas }} V=n R T$	ideal gas
7	$\mathrm{~d} \mathbf{S}=\mathrm{d} \mathbf{q}_{\text {rev }} / T$	Second law of thermodynamics
8	$p_{2} V_{2}=n R T_{2}$	ideal gas in state 2
9	$p_{3} 2 V_{2}=n R T_{2}$	ideal gas in state $3, T_{3}=T_{2}, V_{3}=2 V_{2}$
10	$\therefore p_{3}=1 / 2 p_{2}$	$9 \div 8$
11	$p_{\text {opposing }}=0$	expansion into vacuum
12	$\therefore \mathbf{w}=0=\mathbf{w}_{\text {irrev }}$	$5 \& 11$, expansion into vacuum is
irrev		

Now we know $p_{3}=1 / 2 p_{2}, V_{3}=2 V_{2}=4 V_{1}, T_{3}=T_{2}$.

| p_{3} |
| :---: | :---: | :---: |
| $V_{3}=4 V_{1}$ |
| T_{3} | | (c) |
| :---: |
| constant V |
| \rightarrow |
| reversible |
| heating |\quad| p_{4} |
| :---: |
| $V_{4}=V_{3}$ |
| $=4 V_{1}$ |
| $T_{4}=400 \mathrm{~K}$ |

	What do we know?	Based on what concept?
1	$\Delta \boldsymbol{U}=\mathbf{q}+\mathbf{w}$	First law of thermodynamics
2	$\mathrm{d} V=0$	constant volume
3	$\mathrm{d} \boldsymbol{U}=\mathrm{C}_{V} \mathrm{~d} T$	ideal gas, internal energy depends only on temperature
4	$C_{V}=(3 / 2) \mathrm{R}$ per mole	monatomic gas
5	$\mathrm{d} \mathbf{w}=-p_{\text {opposing }} \mathrm{d} V$	definition of work
6	$p_{\text {gas }} V=n R T$	ideal gas
7	$\mathrm{d} S=\mathrm{dq}_{\mathrm{rev}} / T$	Second law of thermodynamics
8	w $=0$	2 \& 5
9	$\therefore \mathrm{d} \boldsymbol{U}=\mathrm{dq}$	1 \& 8
10	$\mathrm{d} \boldsymbol{U}=n(3 / 2) R \mathrm{~d} T$	3 \& 4
11	$\mathrm{dq}=\mathrm{d} \mathbf{q}_{\mathrm{rev}}$	reversible heating
12	$\therefore \mathrm{d} \mathbf{q}_{\text {rev }}=n(3 / 2) R \mathrm{~d} T$	9, 10, \& 11
13	$\therefore \mathrm{dS}=n(3 / 2) R \mathrm{~d} T / T$	7,12
14	$\therefore \Delta \mathbf{S}_{\mathrm{c}}=n(3 / 2) R \ln \left(T_{4} / T_{3}\right)$	summing up the small dS in 13
15	$\therefore \Delta \boldsymbol{U}_{\mathrm{c}}=n(3 / 2) \mathrm{R}\left(T_{4}-T_{3}\right)$	summing up the small d \boldsymbol{U} in 10
16	$\therefore \mathbf{q}_{\text {rev }}=n(3 / 2) \mathrm{R}\left(T_{4}-T_{3}\right)$	9 \& 15
17	$p_{4}=n R T_{4} / V_{3}$	2 \& 6
18	$p_{4}=n R 400 / 4 V_{1}$	$V_{4}=V_{3}=2 V_{2}=4 V_{1}, T_{4}=400$
19	$\Delta \boldsymbol{S}_{\mathrm{c}}=n(3 / 2) R \ln \left(400 / T_{2}\right)$	$\left(T_{4} / T_{3}\right)=\left(400 \mathrm{~K} / T_{2}\right)$
20	$\begin{aligned} \Delta \boldsymbol{S}_{\mathrm{c}}= & n(3 / 2) R \ln (400 / 300) \\ & +n R \ln (2) \end{aligned}$	$\begin{gathered} 19 \text { and } \\ \left(T_{2} / 300\right)^{3 / 2}=(1 / 2) \text { from step (a) } \end{gathered}$

p_{4}		
$V_{4}=4 V_{1}$		
$T_{4}=400$	reversible resthermal	$p_{5}=$

	What do we know?	Based on what concept?
1	$\Delta \boldsymbol{U}=\mathbf{q}+\mathbf{w}$	First law of thermodynamics
2	$\mathrm{d} T=0$	isothermal
3	$\mathrm{d} \boldsymbol{U}=C_{V} \mathrm{~d} T$	ideal gas, internal energy depends only on temperature
4	$C_{V}=(3 / 2) \mathrm{R}$ per mole	monatomic gas
5	$\mathrm{d} \mathbf{w}=-p_{\text {opposing }} \mathrm{d} V$	definition of work
6	$p_{\text {gas }} V=n R T$	ideal gas
7	$\mathrm{dS}=\mathrm{dq}_{\text {rev }} / T$	Second law of thermodynamics
8	$p_{\text {gas }}=p_{\text {opposing }}$ at all times	reversible
9	$p_{4} V_{4}=n R T_{4}$	ideal gas in state 4
10	$\begin{gathered} p_{5} V_{5}=n R T_{5} ; \\ \left.V_{5}=n R 400 \mathrm{~K} / 1 \mathrm{~atm}\right) \end{gathered}$	ideal gas in state 5
11	$V_{5}=V_{4}\left(p_{4} / 1 \mathrm{~atm}\right)$	$10 \div 9$
12	$V_{5} / V_{4}=400 /(300 \times 4)=1 / 3$	$11, p_{4}=n R 400 \mathrm{~K} / 4 V_{1}$ step (c) and $1 \mathrm{~atm}=\mathrm{nR} 300 / V_{1}$ step (a)
13	$\mathrm{dw}_{\text {rev }}=-(n R T / V) \mathrm{d} V$	5, 6 \& 8
14	$\mathrm{d} \boldsymbol{U}=0$	2 \& 3
15	$\therefore \mathrm{dq}_{\text {rev }}=-\mathrm{d} \mathbf{w}_{\text {rev }}$	1 \& 14
16	$\therefore \mathrm{dq} \mathbf{q}_{\text {ev }}=(n R T / V) \mathrm{d} V$	13 \& 15
17	$\mathrm{d} S=n R \mathrm{~d} V / V$	7 \& 16
18	$\begin{aligned} \Delta \mathbf{S}_{\mathrm{d}} & =n R \ln \left(V_{5} / V_{4}\right) \\ & =n R \ln (1 / 3) \end{aligned}$	summing up the small dS in 17 and 12
19	$\begin{aligned} \mathbf{w}_{\text {rev }} & =-n R T_{4} \ln \left(V_{5} / V_{4}\right) \\ & =-n R 400 \ln (1 / 3) \end{aligned}$	summing up the small dw in 13 and 12
20	$\mathbf{q}_{\mathrm{rev}}=n R 400 \ln (1 / 3)$	15 \& 19

Now we know everything about each and every step.

Summary: $\Delta \boldsymbol{S}_{\text {total }}=\Delta \boldsymbol{S}_{\mathrm{a}}+\Delta \boldsymbol{S}_{\mathrm{b}}+\Delta \boldsymbol{S}_{\mathrm{c}}+\Delta \mathbf{S}_{\mathrm{d}}$

(a)	$\Delta \boldsymbol{S}_{\mathrm{a}}=0$
(b)	$\Delta \boldsymbol{S}_{\mathrm{b}}=n R \ln (2)$
(c)	$\Delta \boldsymbol{S}_{\mathrm{c}}=n(3 / 2) R \ln (400 / 300)+n R \ln (2)$
(d)	$\Delta \boldsymbol{S}_{\mathrm{d}}=n R \ln (1 / 3)$
all	$\Delta \boldsymbol{S}_{\text {total }}=n R \ln \left[(4 / 3)(400 / 300)^{3 / 2}\right]$ $=n R(5 / 2) \ln (400 / 300)$
	$\therefore \Delta \boldsymbol{S}_{\text {total }}=11.96 \mathrm{~J} \mathrm{~K}^{-1}$

exactly the same answer as was obtained doing it the easy way

Summary: $\Delta \boldsymbol{U}_{\text {total }}=\Delta \boldsymbol{U}_{\mathrm{a}}+\Delta \boldsymbol{U}_{\mathrm{b}}+\Delta \boldsymbol{U}_{\mathrm{c}}+\Delta \boldsymbol{U}_{\mathrm{d}}$

(a)	$\Delta \boldsymbol{U}_{\mathrm{a}}=n(3 / 2) \mathrm{R}\left(T_{2}-T_{1}\right)$		
(b)	$\Delta \boldsymbol{U}_{\mathrm{b}}=0$		
(c)	$\Delta \boldsymbol{U}_{\mathrm{c}}=n(3 / 2) \mathrm{R}\left(T_{4}-T_{3}\right)$		
(d)	$\Delta \boldsymbol{U}_{\mathrm{d}}=0$	$\mathrm{all}^{\text {all }}$	$\Delta \boldsymbol{U}_{\text {total }}=n(3 / 2) \mathrm{R}\left(T_{2}-T_{1}+T_{4}-T_{3}\right)$
:---:			
$=n(3 / 2) \mathrm{R}\left(T_{4}-T_{1}\right)$,		

$$
\text { since }\left(T_{2}=T_{3}\right)
$$

exactly the same answer as can be obtained by going directly from initial to final state, using $\Delta \boldsymbol{U}=n(3 / 2) \mathrm{R}\left(T_{f}-T_{i}\right)$

Summary:

$$
\mathbf{q}_{\text {total }}=\mathbf{q}_{\mathrm{a}}+\mathbf{q}_{\mathrm{b}}+\mathbf{q}_{\mathrm{c}}+\mathbf{q}_{\mathrm{d}} \quad \boldsymbol{w}_{\text {total }}=\boldsymbol{w}_{\mathrm{a}}+\boldsymbol{w}_{\mathrm{b}}+\boldsymbol{w}_{\mathrm{c}}+\boldsymbol{w}_{\mathrm{d}}
$$

(a)	$\mathbf{q}_{\mathrm{a}}=0$	$\mathbf{w}=n(3 / 2) \mathrm{R}\left(T_{2}-T_{1}\right)$
(b)	$\mathbf{q}_{\text {irrev }}=0$	$\mathbf{W}_{\text {irrev }}=0$
(c)	$\mathbf{q}_{\text {rev }}=n(3 / 2) \mathrm{R}\left(T_{4}-T_{3}\right)$	$\mathbf{w}=0$
(d)	$\mathbf{q}_{\text {rev }}=n R 400 \ln (1 / 3)$	$\mathbf{w}_{\text {rev }}=-n R 400 \ln (1 / 3)$
all	$\begin{aligned} \mathbf{q}_{\text {total }} & =n(3 / 2) R\left(T_{4}-T_{3}\right) \\ & +n R 400 \ln (1 / 3) \end{aligned}$	$\begin{aligned} \hline \boldsymbol{\boldsymbol { W } _ { \text { total } }}= & n(3 / 2) \mathrm{R}\left(T_{2}-T_{1}\right) \\ & -n R 400 \ln (1 / 3) \end{aligned}$
	$\begin{gathered} \Delta \boldsymbol{U}_{\text {total }}=\mathbf{q} \text { total }+\boldsymbol{w}_{\text {total }} \\ =n(3 / 2) \mathrm{R}\left(T_{2}-T_{1}+T_{4}-T_{3}\right) \\ =2494.35 \mathrm{~J} \end{gathered}$	exactly the same answer as above

