# Problem: *Calculate the entropy change* that results from mixing 54.0 g of water at 280 K with 27.0 g of

g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are perfectly insulated from the surroundings. *Is this a spontaneous process?* 

Consider the heat capacity of liquid water a constant over the temperature range from 280 K to 360 K and to have the value 4.18 J K<sup>-1</sup> g<sup>-1</sup>.

### Draw a picture

Look inside the system only, and imagine the system to be in two parts, separated by a thermally conducting interface, each part doing its own system accounting of **q** (and **w**, had there been any work). Consider each part reversibly heating or cooling the other part.





initial

final

 $\mathbf{q}_{surr} = 0$  since insulated, no  $\mathbf{q}$  can pass across the boundary between system and its surroundings  $\mathbf{q}_{system} = 0$  since insulated, no  $\mathbf{q}$  can pass across the boundary between system and its surroundings Recall the definitions of concepts and terms:

Second law of thermodynamics,

$$d\mathbf{S} = d\mathbf{q}_{rev}/T$$

definition of heat capacity:

 $\mathrm{d}\mathbf{q} = C\,\mathrm{d}T$ 

**Q**A system

= 54.0 g × 4.18 J K<sup>-1</sup> g<sup>-1</sup> × ( $T_f$  -280)

**Q**B system

= 27.0 g × 4.18 J K<sup>-1</sup> g<sup>-1</sup> × ( $T_f$  -360)  $T_f$  = ?  $\mathbf{q}_{system} = 0 = \mathbf{q}_{A system} + \mathbf{q}_{B system}$ =54.0 g × 4.18 J K<sup>-1</sup> g<sup>-1</sup> × ( $T_f$  -280)+ 27.0 g × 4.18 J K<sup>-1</sup> g<sup>-1</sup> × ( $T_f$  -360) Solve for  $T_f$  :  $T_f$  = 306.67 K

$$\begin{split} d \, \bm{S} &= d \bm{q}_{rev} / T = C d T / T . \ \text{Integrating} \\ \text{gives } \Delta \, \bm{S}_{\text{A}} &= C \ln \left( \mathsf{T}_{f} \ / \mathsf{T}_{i} \right) \\ \Delta \, \bm{S}_{\text{A system}} \\ &= 54.0 \ \text{g} \times 4.18 \ \text{J} \ \text{K}^{-1} \ \text{g}^{-1} \\ &\quad \times \ln \left( 306.67 \ / 280 \right) \\ &= +20.54 \ \text{J} \ \text{K}^{-1} \end{split}$$

 $\Delta S_{B \text{ system}}$ = 27.0 g × 4.18 J K<sup>-1</sup> g<sup>-1</sup> × In (306.67/360) = -18.10 J K<sup>-1</sup>  $\Delta S_{system} = \Delta S_{A system} + \Delta S_{B system}$ = +20.54 -18.10 = +2.44 J K<sup>-1</sup>

 $\Delta S_{surr} = 0$  since no **q** passed across the insulated boundary

$$\Delta \mathbf{S}_{\text{universe}} = \Delta \mathbf{S}_{\text{system}} + \Delta \mathbf{S}_{\text{surr}}$$
$$= +2.44 \text{ J K}^{-1}$$

spontaneous process ? YES because  $\Delta S_{universe} > 0$ 

| <b>EXAMPLE:</b><br>1. Calculate the change in entropy when 50 g of water at $80^{\circ}$ C is poured into 100 g of water at $10^{\circ}$ C in an insulated vessel given that the molar heat capacity of fiquid water is 75.5 J K <sup>-1</sup> mol <sup>-1</sup> at 1 atm. | <b>EXAMPLE:</b><br>2. Calculate the difference in molar<br>entropy (a) between liquid water and ice<br>at -5°C, (b) between liquid water and its<br>vapor at 95°C and 1.00 atm. Distinguish<br>between the entropy changes of the<br>sample, the surroundings, and the total<br>system, and discuss the spontaneity of<br>the transitions at the two temperatures.<br>Given: The differences in heat capacities<br>on melting and on vaporization are<br>37.3 J K <sup>-1</sup> mol <sup>-1</sup> and - 41.9 J K <sup>-1</sup> mol <sup>-1</sup> ,<br>respectively. | $\Delta_{vap}H = 40.7 \text{ kJ mol}^{-1}$ at 373 K<br>This means<br>$C_p(liq) - C_p(s) = 37.3 \text{ J K}^{-1} \text{ mol}^{-1}$<br>$C_p(g) - C_p(liq) = -41.9 \text{ J K}^{-1} \text{ mol}^{-1}$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ycle using 1<br>tially at 25° C<br>nsion against<br>the volume.                                                                                                                                                                                                            | of $\oint dq/T$<br>of $\int dq/T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                    |
| <i>Example:</i><br>Consider the following c<br>mole of an ideal gas, init<br>and 1 atm pressure.<br>Step 1: Isothermal expan<br>zero pressure to double<br>Step 2 Isothermal reven                                                                                         | Compression from ½ atm<br>compression from ½ atm<br>(a) Calculate the values<br>(b) Calculate Δ <b>S</b> for step<br>(c) Find Δ <b>S</b> for step 1                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                    |

.

# Example:

Consider the following cycle using 1 mole of an ideal gas, initially at 25° C and 1 atm pressure.

Step 1: Isothermal expansion against zero pressure to double the volume. Step 2. Isothermal, reversible compression from ½ atm to 1 atm

## Questions:

(a) Calculate the values of  $\oint d\mathbf{q}/T$ (b) Calculate  $\Delta \mathbf{S}$  for step 2 (c) Find  $\Delta \mathbf{S}$  for step 1



REV(2), dT = 0

Step1 +Step 2 = a cycle  $d\boldsymbol{U} = (\partial \boldsymbol{U}/\partial T)_V dT + (\partial \boldsymbol{U}/\partial V)_T dV$ Since dT = 0 and  $(\partial \boldsymbol{U}/\partial V)_T = 0$  for both step 1 and step 2,  $\Delta \boldsymbol{U}_1 = 0, d\boldsymbol{q}_{IRREV} = d\boldsymbol{W}, d\boldsymbol{W} = -0 \cdot dV,$  $\therefore d\boldsymbol{q}_{IRREV} = 0$ 

 $\Delta U_2 = 0, \, \mathrm{d} q_{\mathsf{REV}} = - \, \mathrm{d} W_{\mathsf{REV}} = \mathsf{R} T / V \cdot \mathrm{d} V$ (a)  $\oint \mathrm{d} q / T = 0 + \mathsf{R} \ln(1/2) = -1.38 \, \mathsf{cal} \, \mathsf{K}^{-1}$ (b)  $\Delta S_2 = q_{\mathsf{REV}} / T = -1.38 \, \mathsf{cal} \, \mathsf{K}^{-1}$  $\Delta S_{\mathsf{cycle}} = 0 = \Delta S_1 + \Delta S_2 = \Delta S_1 - 1.38$ (c)  $\Delta S_1 = +1.38 \, \mathsf{cal} \, \mathsf{K}^{-1}$ 

### EXAMPLE:

1. Calculate the change in entropy when 50 g of water at 80°C is poured into 100 g of water at 10°C in an insulated vessel given that the molar heat capacity of liquid water is 75.5 J  $K^{-1}$  mol<sup>-1</sup> at 1 atm.

1. Vessel is insulated, net q = 0. Find the common final temperature  $T_f$ .  $q = q_1 + q_2 = 0$  (insulated, therefore an adiabatic process)

Since  $C_p$  is given as a constant,

$$q_{1} = n_{1} C_{p} [I_{f} - T_{i(1)}]$$

$$q_{2} = n_{2} C_{p} [T_{f} - T_{i(2)}]$$
Do the algebra to get
$$T_{f} = \{n_{1}T_{i(1)} + n_{2}T_{i(2)}\} / \{n_{1} + n_{2}\}$$

$$= \{(1/3) \times 353\text{K} + (2/3) \times 283\text{K}\} = 306\text{K}$$

By definition,  

$$\Delta S_{1} = \int dS = \int dq_{rev}/T = n_{1} \int C_{p} dT/T$$

$$= n_{1} C_{p} \ln[T_{f}/T_{i(1)}]$$

$$\Delta S_{2} = n_{2} C_{p} \ln[T_{f}/T_{i(2)}]$$

$$\Delta S = \Delta S_{1} + \Delta S_{2}$$

$$\Delta S = 75.5 \text{ J K}^{-1} \text{ mol}^{-1} \times$$

$$\{ [50 \text{ g}/18.02 \text{ g mol}^{-1}] \ln(306/353) + [100 \text{ g}/18.02 \text{ g mol}^{-1}] \ln(306/283) \}$$

$$= +2.8 \text{ J K}^{-1}.$$

### EXAMPLE:

2. Calculate the difference in molar entropy (a) between liquid water and ice at -5°C, (b) between liquid water and its vapor at 95°C and 1.00 atm. Distinguish between the entropy changes of the sample, the surroundings, and the total system, and discuss the spontaneity of the transitions at the two temperatures.

Given: The differences in heat capacities on melting and on vaporization are  $37.3 \text{ J K}^{-1} \text{ mol}^{-1}$  and  $- 41.9 \text{ J K}^{-1} \text{ mol}^{-1}$ , respectively.

 $\Delta_{fus} H = 6.01 \text{ kJ mol}^{-1} \text{ at } 273 \text{ K}$  $\Delta_{vap} H = 40.7 \text{ kJ mol}^{-1} \text{ at } 373 \text{ K}$ 

This means  $C_p(\text{liq}) - C_p(\text{s}) = 37.3 \text{ J K}^{-1} \text{ mol}^{-1}$  $C_p(\text{g}) - C_p(\text{liq}) = -41.9 \text{ J K}^{-1} \text{ mol}^{-1}$ 



 $\Delta S_{universe} = \Delta S_{system} + \Delta S_{surr}$ = ? J mol<sup>-1</sup> K<sup>-1</sup> spontaneous change ?

2.(a) The transition being considered is liq at -5°C → solid at -5°C ΔS=? This is not a reversible process. In order to find ΔS we need to imagine achieving this net result via a reversible process. Or, by constructing a cycle in which this step is a part of the cycle while the remaining steps in the cycle are carried out reversibly. Because entropy is a state function, ΔS can be determined indirectly from the following cycle:

b liq at 0°C  $\leftarrow$  solid at 0°C  $c\downarrow$   $\uparrow a$ liq at -5°C  $\rightarrow$  solid at -5°C d Now  $\Delta S_{cycle} = 0$  since S is a state function. so  $0 = \Delta S_a + \Delta S_b + \Delta S_c + \Delta S_d$ Then solve for  $\Delta S_d$  which we want. For the reversible heating and cooling, with no change in phase,

$$\Delta \mathbf{S} = \int dq_{rev}/T = n \int C_p \, dT/T$$
$$\Delta \mathbf{S}_c = C_p(\text{liq}) \ln (268/273)$$

$$\Delta S_{a} = C_{p}(s) \ln (273/268)$$

For the reversible change in phase at that transition temperature at which the two phases are known to be in equilibrium at 1 atm:

$$\Delta \mathbf{S} = \int \partial q_{rev} / T = q_p / T = \Delta_{trans} \mathbf{H} / T_{trans}$$
  
solid at 0°C  $\rightarrow$  liq at 0°C  $\Delta_{fus} \mathbf{H}$ 

 $\Delta S_{b} = \Delta_{fus} H / 273$ 

Then, by difference,

$$\Delta S_{d} = 0 - (\Delta S_{a} + \Delta S_{b} + \Delta S_{c})$$
  
= - {  $C_{p}(s) \ln (273/268)$   
+ $\Delta_{fus}H/273 + C_{p}(liq) \ln (268/273)$ }  
= - [ $C_{p}(liq) - C_{p}(s)$ ] ln (268/273)  
- $\Delta_{fus}H/273$   
= - 37.3 ln (268/273) - 6010/273  
= - 21.3 J K<sup>-1</sup> mol<sup>-1</sup>

For the surroundings, when the system changed:

liq at  $-5^{\circ}C \rightarrow$  solid at  $-5^{\circ}C$  at 1 atm the surroundings gained  $q = q_p = \Delta_{fus} H_{268}$ , which is a number we do not have. But since *H* is a state function, we can find  $\Delta_{fus} H_{268}$  from the same cycle: For step a & c,  $\Delta H = \int C_p \, dT$  since dp = 0For the cycle,  $\Delta H = 0$  for the system:  $\Delta \boldsymbol{H}_{cycle} = \boldsymbol{0} = \Delta \boldsymbol{H}_{a} + \Delta \boldsymbol{H}_{b} + \Delta \boldsymbol{H}_{c} + \Delta \boldsymbol{H}_{d}$  $0 = C_{p}(s) (273-268) + \Delta_{fus} H_{273}$  $+C_{p}(\text{liq})$  (268-273) -  $\Delta_{fus}H_{268}$ Then by difference, for the system,  $\Delta_{fus} H_{268} = -[C_p(liq) - C_p(s)] (273-268)$ +  $\Delta_{fus} H_{273}$ = -37.3 (273-268) + 6010  $= 5823.5 \text{ J mol}^{-1}$ Thus, the surroundings gained  $q = 5823.5 \text{ J mol}^{-1}$ 

To find  $\Delta S_{surroundings}$  we need to think of this amount of heat being transferred reversibly to the surroundings at 268 K  $\Delta S_{surroundings} = q_{rev}/T$  $= 5823.5 / 268 = +21.7 \text{ J K}^{-1} \text{ mol}^{-1}$  $\Delta S_{universe} = \Delta S_{system} + \Delta S_{surroundings}$ = -21.3 + 21.7 = positiveTherefore the transformation of water liq at -5°C  $\rightarrow$  solid at -5°C occurs spontaneously.



 $\Delta S_{universe} = \Delta S_{system} + \Delta S_{surr}$ = -21.3 +21.7 J mol<sup>-1</sup> K<sup>-1</sup> > 0 spontaneous change



 $\Delta S_{universe} = \Delta S_{system} + \Delta S_{surr}$ = -21.995 +21.995 J mol<sup>-1</sup> K<sup>-1</sup> = 0 equilibrium 2.(b) The transition being considered is liq at 95°C  $\rightarrow$  gas at 95°C  $\Delta S=?$ This is not a reversible process. In order to find  $\Delta S$  we need to imagine achieving this net result via a reversible process. Or, by constructing a cycle in which this step is a part of the cycle while the remaining steps in the cycle are carried out reversibly. Because entropy is a state function,  $\Delta S$  can be determined indirectly from the following cycle:

> b liq at 100°C  $\leftarrow$  gas at 100°C c $\downarrow$   $\uparrow$  a liq at 95°C  $\rightarrow$  gas at 95°C d

Now  $\Delta S_{cycle} = 0$  since **S** is a state function.  $0 = \Delta S_a + \Delta S_b + \Delta S_c + \Delta S_d$ Then solve for  $\Delta S_d$  which we want. For the reversible heating and cooling, with no change in phase,

$$\Delta \mathbf{S} = \int \partial q_{rev} / T = n \int C_p \, \mathrm{d}T / T$$
$$\Delta \mathbf{S}_c = C_p(\mathrm{liq}) \ln (368/373)$$

$$\Delta S_{a} = C_{\rho}(g) \ln (373/368)$$

For the reversible change in phase at that transition temperature at which the two phases are known to be in equilibrium at 1 atm:

 $\Delta \mathbf{S} = \int \delta q_{rev} / T = q_p / T = \Delta_{trans} \mathbf{H} / T_{trans}$   $\Delta \mathbf{S}_b = -\Delta_{vap} \mathbf{H} / 373 \quad \text{(condensation)}$ Then, by difference,  $\Delta \mathbf{S}_d = 0 - (\Delta \mathbf{S}_a + \Delta \mathbf{S}_b + \Delta \mathbf{S}_c)$   $= - \{ C_p(g) \ln (373/368) - \Delta_{vap} \mathbf{H}/373 + C_p(\text{liq}) \ln (368/373) \}$  $= - [C_p(g) - C_p((\text{liq})] \ln (373/368) + \Delta_{vap} \mathbf{H}/373 + \Delta_{v$  For the surroundings, when the system changed:

liq at  $95^{\circ}C \rightarrow gas$  at  $95^{\circ}C$ at 1 atm the surroundings lost  $q = q_p = -\Delta_{vap} H_{368}$ which is a number we do not have. But since *H* is a state function, we can find  $\Delta_{vap} H_{368}$  from the same cycle: For step a & c,  $\Delta H = \int C_p \, dT$  since dp = 0For the cycle,  $\Delta H = 0$  for the system:  $\Delta \boldsymbol{H}_{\text{cvcle}} = \boldsymbol{0} = \Delta \boldsymbol{H}_{\text{a}} + \Delta \boldsymbol{H}_{\text{b}} + \Delta \boldsymbol{H}_{\text{c}} + \Delta \boldsymbol{H}_{\text{d}}$  $0 = C_{D}(g) (373-368) - \Delta_{VaD} H_{373}$  $+C_{p}(\text{liq}) (368-373) + \Delta_{vap} H_{368}$ Then by difference, for the system,  $= - [C_{p}(g) - C_{p}(liq)] (373 - 368)$  $\Delta_{vap} H_{368}$ +  $\Delta_{vap} H_{373}$ = 41.9 (373-368) + 40700  $= 40.91 \text{ kJ mol}^{-1}$ Thus, the surroundings lost  $q = -40.91 \text{ kJ mol}^{-1}$ 

To find  $\Delta S_{surroundings}$  we need to think of this amount of heat being transferred reversibly to the surroundings at 368 K  $\Delta S_{\text{surroundings}} = q_{rev}/T$  $= -40.91 \times 10^3$  / 368 = -111.2 J K<sup>-1</sup> mol<sup>-1</sup>  $\Delta S_{\text{universe}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$ = 109.7 -111.2 = *negative* Therefore the transformation of water liq at  $95^{\circ}C \rightarrow gas$  at  $95^{\circ}C$ does not occur spontaneously, rather, the reverse transformation gas at  $95^{\circ}C \rightarrow \text{lig}$  at  $95^{\circ}C$ occurs spontaneously.

3. One mole of a gas with  $C_V = (3/2)R$  and equation of state pV = RT + ap where a = 0.020 L mol<sup>-1</sup> is put through the 3-step cycle Step A, Step B, Step C shown below.



| State | р   | V    | Т |
|-------|-----|------|---|
|       | atm | L    | K |
| 1     | 1   | 22.4 |   |
| 2     | 2   | 22.4 |   |
| 3     | 1   |      |   |

Carry out the set-up and calculations and complete the information called for in the tables:

 $T_3$  and  $V_3$ :

| Step A     | Step B     | Step C     |
|------------|------------|------------|
| q          | q          | q          |
| W          | W          | W          |
| ΔU         | Δ <b>U</b> | Δ <b>U</b> |
| $\Delta H$ | Δ <b>Η</b> | ΔΗ         |
| ΔS         | ΔS         | ΔS         |

**EXAMPLE:** 3. One mole of a gas with  $C_V = (3/2)R$  and equation of state pV = RT + ap where a = 0.020 L mol<sup>-1</sup> is put through the 3-step cycle Step A, Step B, Step C shown below.



Carry out the set-up and calculations and complete the information called for in the tables:

Begin: State Use the equation of р K state pV = RT + 0.02patm 22.4 273 1 1 2 2 22.4 546

3

1

Т

From (1/T){ 
$$p + (\partial U/\partial V)_T$$
} =  $(\partial p/\partial T)_V$   
 $(\partial U/\partial V)_T = T(\partial p/\partial T)_V - p$   
From the equation of state  
 $pV = RT + ap$ , we get  $p = RT/(V-a)$   
 $(\partial p/\partial T)_V = R/(V-a) = p/T$   
 $\therefore (\partial U/\partial V)_T = 0$  ♥  
From (1/T){-V +  $(\partial H/\partial p)_T$ } =  $-(\partial V/\partial T)_p$   
 $(\partial H/\partial p)_T = -T(\partial V/\partial T)_p + V$   
From the equation of state we get  
 $V = a + (RT/p)$   
 $(\partial H/\partial p)_T = -(RT/p) + a + (RT/p)$   
 $\therefore (\partial H/\partial p)_T = a$  ♥  
From the equation of state  $pV = RT + ap$   
 $(\partial V/\partial T)_p = R/p$   
We had found already  $(\partial U/\partial V)_T = 0$   
above  
 $\therefore C_p - C_V = p \times R/p = R$   
Given  $C_V = (3/2)R$  ♥

To calculate  $T_3$  and  $V_3$ : Step B (2 $\rightarrow$ 3) is an adiabatic (q = 0) reversible step, as figure shows.  $p_{op} = p$   $\vartheta W = -p_{op} dV = -p dV$ First law:  $\Delta U = q + W$ ,  $dU = \delta W$  $d\boldsymbol{U} = C_V dT + (\partial \boldsymbol{U} / \partial V)_T dV$  $d\boldsymbol{U} = C_V dT + (\partial \boldsymbol{U} / \partial V)_T dV = C_V dT + 0$  $d\boldsymbol{U} = \vartheta W = -pdV$  $\therefore C_V dT = -p dV$  $C_{V}dT = - [RT/(V-a)] dV$  $C_V dT/T = -R dV/(V-a)$ Integrating:  $C_V \ln(T_f/T_i) = -R \ln(V_{f}-a)/(V_{i}-a)$  $= Rln(p_fT_i/p_iT_f)$  from p = RT/(V-a) $C_{V}ln(T_{3}/T_{2}) = Rln(p_{3}T_{2}/p_{2}T_{3})$  $= R \ln(p_{3}/p_{2}) + R \ln(T_{2}/T_{3})$ :.  $(C_V + R) \ln(T_3/T_2) = R \ln(p_3/p_2)$  $(5/2) \ln (T_3/546) = \ln(1/2)$   $\therefore T_3 = 414 \text{ K}$ Eqn. of state:  $V_3 - 0.020 = RT_3/p_3$  $\therefore V_3 = 34 L$ 

### Now we can fill in this table

| State | р   | V    | Т   |
|-------|-----|------|-----|
|       | atm | L    | K   |
| 1     | 1   | 22.4 | 273 |
| 2     | 2   | 22.4 | 546 |
| 3     | 1   | 34   | 414 |

 $d\mathbf{G} = -\mathbf{S}dT + Vdp$   $d\mathbf{A} = -\mathbf{S}dT - pdV$ Since none of the steps are dT = 0, we can not calculate  $\Delta \mathbf{G}$  or  $\Delta \mathbf{A}$  without having **S** itself for this gas.

| Step A                                  | Step B                                                         | Step C                                                         |
|-----------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| d <i>V</i> =0                           | adiabatic,q=0                                                  | dp = 0                                                         |
|                                         | & reversible                                                   |                                                                |
| $q_V = \Delta U$                        | <i>q</i> = 0                                                   | $q_p = \Delta H$                                               |
| get from                                | given                                                          | get from                                                       |
| below                                   |                                                                | below                                                          |
| $W = -\int p_{op} dV$                   | $W = \Delta U$                                                 | $W = -\int p_{op} dV$                                          |
| W = 0                                   | get from                                                       | = -p <sub>op</sub> ∫dV                                         |
| since $dV = 0$                          | below                                                          | = -1∫d <i>V</i>                                                |
|                                         |                                                                | = -1(22.4-34)                                                  |
|                                         |                                                                | Latm                                                           |
| $\Delta \boldsymbol{U}$                 | $\Delta \boldsymbol{U}$                                        | $\Delta \boldsymbol{U}$                                        |
| $d\boldsymbol{U} = C_V dT$              | same here                                                      | same here                                                      |
| +(∂ <b>U</b> /∂V) <sub>T</sub> dV       | $\Delta \boldsymbol{U} = \int C_V \mathrm{d} \boldsymbol{T} =$ | $\Delta \boldsymbol{U} = \int C_V \mathrm{d} \boldsymbol{T} =$ |
| $= C_V dT + 0$                          | (3/2)(8.3144)                                                  | (3/2)(8.3144)                                                  |
| $\Delta \boldsymbol{U} = \int C_V dT =$ | ×(414-546) J                                                   | ×(273-414) J                                                   |
| (3/2)(8.3144)                           |                                                                | -                                                              |
| ×(546-273) J                            |                                                                |                                                                |
| -                                       |                                                                |                                                                |
|                                         |                                                                |                                                                |



$$d\mathbf{S} = C_V dT/T + (\partial \mathbf{S}/\partial V)_T dV$$
  
but  $(\partial \mathbf{S}/\partial V)_T = (\partial p/\partial T)_V = R/(V-a)$   
 $d\mathbf{S} = C_V dT/T + R dV/(V-a) \quad \mathbf{*}$   
or  $d\mathbf{S} = C_p dT/T + (\partial \mathbf{S}/\partial p)_T dp$   
but  $(\partial \mathbf{S}/\partial p)_T = - (\partial V/\partial T)_p = - R/p$   
 $d\mathbf{S} = C_p dT/T - R dp/p \quad \mathbf{*}$   
 $\Delta \mathbf{S}$  for  $dV = 0$   
 $\Delta \mathbf{S}$  for  $dV = 0$   
 $\Delta \mathbf{S}$  for  $dV = 0$   
 $\Delta \mathbf{S} = C_V dT/T$   
 $= (\Delta \mathbf{S} = C_p dT/T + R dp/p)$   
 $(3/2)(8.3144)$   
 $\ln(546/273)$   
 $J K^{-1}$   
 $(5/2)(8.3144)$   
 $\ln(414/546)$   
 $- R \int dp/p$   
 $= (5/2)(8.3144)$   
 $\ln(414/546)$   
 $- 8.3144$   
 $\ln(2/1) = 0$   
 $(5/2)(R - 1)$ 

**Problem:** Two moles of a monatomic ideal gas begins in a state with p = 1.00 atm and T = 300 K. It is expanded reversibly and adiabatically until the volume has doubled; then it is expanded irreversibly and isothermally into a vacuum until the volume has doubled again; then it is heated reversibly and isothermally until a final state with p = 1.00 atm and T = 400 K is reached. Calculate  $\Delta$ **S** system for this process. (Hint: There is an easy way to solve this problem and a hard way. You should, of course, choose the easy way.)



(2) Recall the definitions of concepts and terms: Second law of thermodynamics,  $d\mathbf{S} = d\mathbf{q}_{rev}/T$ definition of heat capacity: dq = C dTheat capacities of one mole of an ideal gas are related:  $C_p = C_V + R$ heat capacity at constant volume for a monatomic gas is entirely due to its translational energy kinetic energy =  $3/2k_B T$  for one molecule  $N_{Avogadro} \times k_B = R$ Sum up over all the infinitesimal slivers  $d\mathbf{S}$  to get:

 $\int_{S_i}^{S_f} d\mathbf{S} = \mathbf{S}_f - \mathbf{S}_i = \Delta \mathbf{S}$  because **S** is a state function.

(3) Solve the problem in the space below:

Using the concept that **S** is a state function, we could go from the given initial state to the given final state via a reversible one-step <u>constant</u> <u>pressure heating</u>, for which path:

|                | constant <i>p</i>            |        |
|----------------|------------------------------|--------|
| <i>p</i> =1.00 | reversible                   | p=1.00 |
| atm            | $\rightarrow$                | atm    |
| 300 K          | heating                      | 400 K  |
|                | $d\mathbf{q}_{rev} = C_p dT$ |        |

 $\int_{\text{Si}}^{\text{Sf}} d\mathbf{S} = \mathbf{S}_{f} - \mathbf{S}_{i} = \Delta \mathbf{S} = \int_{\text{Ti}}^{\text{Tf}} d\mathbf{q}_{\text{rev}} / T = \int_{\text{Ti}}^{\text{Tf}} C_{p} dT / T = C_{p} \ln (T_{f} / T_{i})$ Since this is a monatomic gas,  $C_{V} = 3/2R$ . Since it is an ideal gas,  $C_{p} = C_{V} + R = (5/2)R$   $C_{p} = (5/2)(8.31451 \text{ J K}^{-1} \text{ mol}^{-1})$   $\Delta \mathbf{S} = C_{p} \ln (T_{f} / T_{i}) = 2 \text{ mol} \times (5/2)(8.31451 \text{ J K}^{-1} \text{ mol}^{-1}) \times \ln(400/300)$  $\Delta \mathbf{S}_{\text{system}} = \underline{11.96} \text{ J K}^{-1}$ 

Alternatively we could have solved the problem by calculating  $\Delta S$  for each step and adding up the values to get the overall  $\Delta S$ .

#### Considering each step separately:



Let us examine each step; if we had to calculate  $\Delta S_{\text{system}}$  for just this step, how would we do it? In the following pages we analyze <u>what do we know</u> <u>about each step</u>? <u>based on what concept</u> or known condition of the system before/after for each step? to see how to go about calculating various quantities like  $C_V$ ,  $C_p$ , **q**, **w**,  $\Delta U$ ,  $\Delta S$ , for an ideal gas.



Since this was a reversible step,  $d\mathbf{q}_{rev} = d\mathbf{q} = 0$ ,  $\therefore d\mathbf{S}_{system} = 0$  for this step Also, we can find out all the other quantities, including the *p* V and T for state 2, which we shall need in order to get the description of state 3.

|    | What do we know?                                    | Based on what concept?                |
|----|-----------------------------------------------------|---------------------------------------|
| 1  | $\Delta \boldsymbol{U} = \mathbf{q} + \mathbf{w}$   | First law of thermodynamics           |
| 2  | $\mathbf{q} = 0$                                    | definition of adiabatic               |
| 3  |                                                     | ideal gas, internal energy depends    |
|    | $d\boldsymbol{U} = C_V dT$                          | only on temperature                   |
| 4  | $C_V = (3/2)R$ per mole                             | monatomic gas                         |
| 5  | $d\mathbf{w} = - p_{\text{opposing}} dV$            | definition of work                    |
| 6  | $p_{\text{gas}} = p_{\text{opposing}}$ at all times | reversible                            |
| 7  | $p_{gas} V = nRT$                                   | ideal gas                             |
| 8  | d <b>S</b> = d <b>q</b> <sub>rev</sub> / <i>T</i>   | Second law of thermodynamics          |
|    |                                                     | 1.9.0                                 |
| 9  | ∴ d <b>U</b> = d <b>W</b>                           | 1&2                                   |
| 10 | $d\mathbf{w} = -(nRT/V) dV$                         | 5, 6 & 7                              |
| 11 | dU = n(3/2)R dT                                     | 3 & 4                                 |
| 12 | $\therefore n(3/2)R dT = - (nRT/V) dV$              | 9, 10 & 11                            |
| 13 | (3/2) dT/T = - dV/V                                 | rearrange                             |
| 14 | $(3/2) \ln(T_2/T_1) = - \ln(V_2/V_1)$               | summing up on both sides              |
| 15 | $\Delta U_{a} = n(3/2)R(T_{2} - T_{1})$             | summing up the small d <b>U</b> in 11 |
| 16 | $\therefore$ w = $\Delta U$                         | 9                                     |
| 17 | $\mathbf{q} = \mathbf{q}_{rev}$                     | reversible                            |
| 18 | ∴ d <b>S</b> = 0                                    | 2, 8, 17                              |
| 19 | ∴ ∆ <b>S</b> <sub>a</sub> = 0                       | summing up the small d <b>S</b> in 18 |

we are given  $p_1$ ,  $T_1$  and n,

so we can solve for  $V_1$  from  $p_1$   $V_1 = n RT_1$ we are given  $V_2 = 2V_1$ , which when substituted into eq. 14 gives (3/2)  $\ln(T_2/T_1) = -\ln(V_2/V_1) = -\ln(2)$  or  $(T_2/300)^{3/2} = (1/2)$ Now that we have  $V_2$ , and  $T_2$ , we can calculate all the quantities: Calculate  $\Delta U$  from 15. Calculate **w** from 16. Calculate  $p_2$  from 7.

| $ \begin{array}{c} p_2 \\ V_2 = 2V_1 \\ T_2 \end{array} $ | (b)<br>irrev. into a vacuum<br>→ | $p_3 V_3 = 2V_2 = 4V_1$ |
|-----------------------------------------------------------|----------------------------------|-------------------------|
| 1 <sub>2</sub>                                            | →<br>isothermal                  | $= 4 V_1$ $T_3 = T_2$   |

|    | What do we know?                                                           | Based on what concept?                |
|----|----------------------------------------------------------------------------|---------------------------------------|
| 1  | $\Delta \boldsymbol{U} = \mathbf{q} + \mathbf{w}$                          | First law of thermodynamics           |
| 2  | dT = 0                                                                     | isothermal                            |
| 3  |                                                                            | ideal gas, internal energy depends    |
|    | $d\boldsymbol{U} = C_V dT$                                                 | only on temperature                   |
| 4  | $C_V = (3/2)R$ per mole                                                    | monatomic gas                         |
| 5  | $d\mathbf{w} = - p_{\text{opposing}} dV$                                   | definition of work                    |
| 6  | $p_{qas} V = nRT$                                                          | ideal gas                             |
| 7  | $d\mathbf{S} = d\mathbf{q}_{rev} / T$                                      | Second law of thermodynamics          |
| 0  | n V - n PT                                                                 | ideal ago in state 2                  |
| 0  | $\frac{p_2 v_2 = nRT_2}{p_2 V_2 = nPT}$                                    | ideal gas in state 2 $T - T = V - 2V$ |
| 9  | $p_{32}v_{2} = n_{17}v_{2}$                                                | 1000000000000000000000000000000000000 |
| 10 | $p_3 = \frac{1}{2} p_2$                                                    |                                       |
| 11 | $p_{\text{opposing}} = 0$                                                  | expansion into vacuum                 |
| 12 | $\therefore$ <b>w</b> = 0= <b>w</b> <sub>irrev</sub>                       | 5 & 11, expansion into vacuum is      |
|    |                                                                            | Irrev                                 |
| 13 | $\therefore \mathbf{q} = \mathbf{q}_{\text{irrev}} = \Delta \mathbf{U}$    | 1 & 12                                |
| 14 | dU = n(3/2)R dT                                                            | 3 & 4                                 |
| 15 | $\Delta U = n(3/2) R (T_3 - T_2)$                                          | summing up the small d <b>U</b> in 14 |
| 16 | ∴ ∆ <b>U</b> <sub>b</sub> = 0                                              | 2 & 15                                |
| 17 | $\mathbf{q}_{irrev} = 0$                                                   | 13 & 16                               |
| 18 | we need $\mathbf{q}_{rev} = -\mathbf{w}_{rev}$                             | 1 & 16                                |
| 19 | $p_{\text{gas}} = p_{\text{opposing}}$ at all times                        | imagine a reversible expansion        |
| 20 | $d\mathbf{w}_{rev} = -(nRT/V) dV$                                          | 5, 6 & 19                             |
| 21 | $\mathbf{w}_{rev} = -nRT_2 \ln (2V_2/V_2)$                                 | summing up the small dw in 20         |
| 22 | $\therefore \mathbf{q}_{\text{rev}} = + nR\overline{T_2} \ln (2V_2 / V_2)$ | 18 & 21                               |
| 23 | ∴ ∆ <b>S</b> <sub>b</sub> = <i>nR</i> ln (2)                               | 7 & 22                                |

Now we know  $p_3 = \frac{1}{2} p_2$ ,  $V_3 = 2V_2 = 4V_1$ ,  $T_3 = T_2$ .

$$\begin{array}{cccc} p_{3} & (c) & p_{4} \\ V_{3} = 4 V_{1} & constant V & V_{4} = V_{3} \\ T_{3} & \rightarrow & = 4 V_{1} \\ reversible \\ heating & T_{4} = 400 \text{ K} \end{array}$$

|    | What do we know?                                                               | Based on what concept?                  |
|----|--------------------------------------------------------------------------------|-----------------------------------------|
| 1  | $\Delta \boldsymbol{U} = \mathbf{q} + \mathbf{w}$                              | First law of thermodynamics             |
| 2  | dV = 0                                                                         | constant volume                         |
| 3  |                                                                                | ideal gas, internal energy depends      |
|    | $d\boldsymbol{U} = C_V dT$                                                     | only on temperature                     |
| 4  | $C_V = (3/2)R$ per mole                                                        | monatomic gas                           |
| 5  | $d\mathbf{w} = - p_{\text{opposing}} dV$                                       | definition of work                      |
| 6  | $p_{gas} V = nRT$                                                              | ideal gas                               |
| 7  | $d\mathbf{S} = d\mathbf{q}_{rev} / T$                                          | Second law of thermodynamics            |
|    | -                                                                              |                                         |
| 8  | $\mathbf{w} = 0$                                                               | 2 & 5                                   |
| 9  | ∴ d <b>U</b> = d <b>q</b>                                                      | 1 & 8                                   |
| 10 | dU = n(3/2)R dT                                                                | 3 & 4                                   |
| 11 | $d\mathbf{q} = d\mathbf{q}_{rev}$                                              | reversible heating                      |
| 12 | $\therefore d\mathbf{q}_{rev} = n(3/2)R dT$                                    | 9, 10, & 11                             |
| 13 | $\therefore d\mathbf{S} = n(3/2)R dT/T$                                        | 7, 12                                   |
| 14 | $\therefore \Delta \mathbf{S}_{c} = n(3/2)R \ln(T_{4}/T_{3})$                  | summing up the small d <b>S</b> in 13   |
| 15 | $\therefore \Delta \boldsymbol{U}_{c} = \boldsymbol{n}(3/2) R (T_{4} - T_{3})$ | summing up the small d <b>U</b> in 10   |
| 16 | : $\mathbf{q}_{rev} = n(3/2) R (T_4 - T_3)$                                    | 9 & 15                                  |
| 17 | $p_4 = nRT_4 / V_3$                                                            | 2&6                                     |
| 18 | $p_4 = nR400/4 V_1$                                                            | $V_4 = V_3 = 2V_2 = 4V_1, T_4 = 400$    |
| 19 | $\Delta S_{\rm c} = n(3/2)R\ln(400/T_2)$                                       | $(T_4/T_3) = (400 \text{ K}/T_2)$       |
| 20 | $\Delta \mathbf{S}_{c} = n(3/2)R \ln(400/300)$                                 | 19 and                                  |
|    | $+ nR \ln(2)$                                                                  | $(T_2/300)^{3/2} = (1/2)$ from step (a) |

$$\begin{array}{c|c} p_4 & (d) & p_5 = \\ V_4 = 4 V_1 & reversible \\ T_4 = 400 & \rightarrow \\ isothermal & T_5 = T_4 \end{array}$$

|    | What do we know?                                    | Based on what concept?                                                |
|----|-----------------------------------------------------|-----------------------------------------------------------------------|
| 1  | $\Delta U = q + w$                                  | First law of thermodynamics                                           |
| 2  | dT = 0                                              | isothermal                                                            |
| 3  |                                                     | ideal gas, internal energy depends                                    |
|    | $d\boldsymbol{U} = C_V dT$                          | only on temperature                                                   |
| 4  | $C_V = (3/2)R$ per mole                             | monatomic gas                                                         |
| 5  | $d\mathbf{w} = - p_{\text{opposing}} dV$            | definition of work                                                    |
| 6  | $p_{gas} V = nRT$                                   | ideal gas                                                             |
| 7  | $d\mathbf{S} = d\mathbf{q}_{rev} / T$               | Second law of thermodynamics                                          |
| 8  | $p_{\text{gas}} = p_{\text{opposing}}$ at all times | reversible                                                            |
|    |                                                     |                                                                       |
| 9  | $p_4V_4 = nRI_4$                                    | ideal gas in state 4                                                  |
| 10 | $p_5V_5 = nRT_5;$                                   | ideal gas in state 5                                                  |
|    | $V_5 = nR400 \text{ K/1 atm}$                       |                                                                       |
| 11 | $V_5 = V_4 (p_4/1 \text{ atm})$                     | 10 ÷ 9                                                                |
| 12 | $V_5 / V_4 = 400 / (300 \times 4) = 1/3$            | 11, <i>p</i> <sub>4</sub> = <i>nR</i> 400 K/4 V <sub>1</sub> step (c) |
|    |                                                     | and 1 atm = $nR300 / V_1$ step (a)                                    |
| 13 | $d\mathbf{w}_{rev} = -(nRT/V) dV$                   | 5, 6 & 8                                                              |
| 14 | d <b>U</b> = 0                                      | 2 & 3                                                                 |
| 15 | $\therefore d\mathbf{q}_{rev} = -d\mathbf{w}_{rev}$ | 1 & 14                                                                |
| 16 | $\therefore d\mathbf{q}_{rev} = (nRT/V) dV$         | 13 & 15                                                               |
| 17 | $d\mathbf{S} = nR  dV/V$                            | 7 & 16                                                                |
| 18 | $\Delta \mathbf{S}_{d} = nR \ln(V_5/V_4)$           | summing up the small d <b>S</b> in 17                                 |
|    | $= nR \ln(1/3)$                                     | and 12                                                                |
| 19 | $\mathbf{w}_{\text{rev}} = - nRT_4 \ln(V_5/V_4)$    | summing up the small dw in 13                                         |
|    | = - <i>nR</i> 400 ln(1/3)                           | and 12                                                                |
| 20 | $q_{rev} = nR 400 \ln(1/3)$                         | 15 & 19                                                               |

Now we know everything about each and every step.

| (a) | $\Delta \mathbf{S}_{a} = 0$                              |
|-----|----------------------------------------------------------|
| (b) | $\Delta \mathbf{S}_{b} = nR \ln (2)$                     |
| (C) | $\Delta S_{c} = n(3/2)R \ln(400/300) + nR \ln(2)$        |
| (d) | $\Delta \mathbf{S}_{d} = nR \ln(1/3)$                    |
| all | $\Delta S_{\text{total}} = nR \ln[(4/3)(400/300)^{3/2}]$ |
|     | = <i>nR</i> (5/2) ln (400/300)                           |
|     | ∴ ∆ <b>S</b> <sub>total</sub> = 11.96 J K <sup>-1</sup>  |
|     |                                                          |

exactly the same answer as was obtained doing it the easy way

Summary:  $\Delta U_{\text{total}} = \Delta U_{\text{a}} + \Delta U_{\text{b}} + \Delta U_{\text{c}} + \Delta U_{\text{d}}$ 

| (a) | $\Delta U_{a} = n(3/2)R(T_{2} - T_{1})$                      |
|-----|--------------------------------------------------------------|
| (b) | $\Delta U_{\rm b} = 0$                                       |
| (C) | $\Delta U_{c} = n(3/2)R(T_{4}-T_{3})$                        |
| (d) | $\Delta \boldsymbol{U}_{d} = 0$                              |
| all | $\Delta U_{\text{total}} = n(3/2) R (T_2 - T_1 + T_4 - T_3)$ |
|     | $= n(3/2)R(T_4 - T_1)$                                       |
|     | ∴ ∆ <b>U</b> <sub>total</sub> = 2494.35 J                    |
|     |                                                              |
|     |                                                              |
|     |                                                              |

since  $(T_2 = T_3)$ 

exactly the same answer as can be obtained by going directly from initial to final state, using  $\Delta U = n(3/2) R (T_f - T_i)$ 

Summary:

| q | total = 0 | <b>a</b> + | · <b>q</b> b | + q | <sub>c</sub> + | q | d |
|---|-----------|------------|--------------|-----|----------------|---|---|
|---|-----------|------------|--------------|-----|----------------|---|---|

 $\boldsymbol{W}_{total} = \boldsymbol{W}_{a} + \boldsymbol{W}_{b} + \boldsymbol{W}_{c} + \boldsymbol{W}_{d}$ 

| (a) | $\mathbf{q}_{\mathbf{a}} = 0$                                                                          | $\mathbf{w} = n(3/2) R (T_2 - T_1)$               |
|-----|--------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| (b) | $\mathbf{q}_{irrev} = 0$                                                                               | <b>w</b> <sub>irrev</sub> = 0                     |
| (C) | $\mathbf{q}_{rev} = n(3/2) R (T_4 - T_3)$                                                              | <b>w</b> = 0                                      |
| (d) | <b>q</b> <sub>rev</sub> = <i>nR</i> 400 ln(1/3)                                                        | <b>w</b> <sub>rev</sub> = - <i>nR</i> 400 ln(1/3) |
| all | $\mathbf{q}_{total} = n(3/2)R(T_4 - T_3)$                                                              | $W_{\text{total}} = n(3/2)R(T_2 - T_1)$           |
|     | + <i>nR</i> 400 ln(1/3)                                                                                | - <i>nR</i> 400 ln(1/3)                           |
|     | $\Delta \boldsymbol{U}_{\text{total}} = \boldsymbol{q}_{\text{total}} + \boldsymbol{w}_{\text{total}}$ |                                                   |
|     | $= n(3/2) R (T_2 - T_1 + T_4 - T_3)$<br>= 2494.35 J                                                    | exactly the same answer as above                  |