EXAMPLE

For the reaction:
$\mathrm{C}($ graphite $)+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$
the change in enthalpy is $-21045 \mathrm{cal} \mathrm{mol}^{-1}$
at $600^{\circ} \mathrm{C}$.
The third law entropies (cal $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$ at
$600^{\circ} \mathrm{C}$ and 1 atm are:
4.98 for C (graphite)
38.9 for $\mathrm{H}_{2}(\mathrm{~g})$
56.6 for $\mathrm{CH}_{4}(\mathrm{~g})$
(a) Calculate the equilibrium constant for the reaction at $600^{\circ} \mathrm{C}$.
(b) What experimental information would you need, besides that given above, in order to be able to evaluate K_{p} at any temperature? Make a suitable approximation that is adequate over a short temperature range and use it to estimate the equilibrium constant at $750^{\circ} \mathrm{C}$.
(b) For the all-gas reaction $\mathrm{CO}_{2}+\mathrm{H}_{2}=\mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$ the temperature dependence has been measured.

EXAMPLE

For the reaction:
C (graphite) $+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$
the change in enthalpy is $-21045 \mathrm{cal} \mathrm{mol}^{-1}$ at $600^{\circ} \mathrm{C}$.
The third law entropies ($\mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ at $600^{\circ} \mathrm{C}$ and 1 atm are:
4.98 for C(graphite)
38.9 for $\mathrm{H}_{2}(\mathrm{~g})$
56.6 for $\mathrm{CH}_{4}(\mathrm{~g})$
(a) Calculate the equilibrium constant for the reaction at $600^{\circ} \mathrm{C}$.
(b) What experimental information would you need, besides that given above, in order to be able to evaluate K_{p} at any temperature?
Make a suitable approximation that is adequate over a short temperature range and use it to estimate the equilibrium constant at $750^{\circ} \mathrm{C}$.

(a) Calculate the equilibrium constant for

 the reaction at $600^{\circ} \mathrm{C}$.$$
\Delta_{\mathrm{rxn}} \boldsymbol{G}_{T}^{\ominus}=-R T \ln K_{p}
$$

$$
\Delta_{\mathrm{rxn}} \boldsymbol{G}^{\ominus}{ }_{T}=\Delta_{\mathrm{rxn}} \boldsymbol{H}_{T}{ }_{T}-\boldsymbol{T} \Delta_{\mathrm{rx} \times} \boldsymbol{S}_{T}{ }_{T}
$$

$$
\Delta_{\mathrm{rxn}} \boldsymbol{S}_{T}^{\ominus}=\boldsymbol{S}^{\ominus}{ }_{\mathrm{CH} 4, T}-2 \boldsymbol{S}^{\ominus}{ }_{\mathrm{H} 2, T}-\boldsymbol{S}_{\text {graphite }, T}^{\ominus}
$$

$$
\Delta_{\mathrm{rx}} \boldsymbol{S}_{873}^{\ominus}=56.6-2(38.9)-4.98=-26.18 \mathrm{cal}
$$

$$
\mathrm{mol}^{-1} \mathrm{~K}^{-1}
$$

$$
\Delta_{\mathrm{rxn}} \boldsymbol{H}_{873}^{\ominus}=-21045 \mathrm{cal} \mathrm{~mol}^{-1}
$$

$$
\Delta_{\mathrm{rxn}} \boldsymbol{G}_{873}^{\ominus}=-21045-(873)(-26.18)=1810
$$

$$
\mathrm{cal} \mathrm{~mol}^{-1}
$$

$$
=-R T \ln K_{p}
$$

$$
-\ln K_{p}=1810 /(1.987)(873)=1.0435
$$

$$
K_{p}=0.352
$$

(b) Estimate the equilibrium constant at $750^{\circ} \mathrm{C}$. Consider G/T:
$(\partial(\boldsymbol{G} / T) / \partial T)_{p}=-\left(\boldsymbol{G} / T^{2}\right)+(1 / T)(\partial \boldsymbol{G} / \partial T)_{p}$
using $\boldsymbol{G} \equiv \boldsymbol{H}-T \boldsymbol{S}$
$(\partial(\boldsymbol{G} / T) / \partial T)_{p}=-\left(\boldsymbol{H} / T^{2}\right) \quad+(\mathrm{S} / T)+$
$(1 / T)(\partial \boldsymbol{G} / \partial T)_{p}$
Recall that: $(\partial \mathbf{G} / \partial T)_{p}=-\mathbf{S}$
Thus, $(\partial(\boldsymbol{G} / T) / \partial T)_{p}=-\left(\boldsymbol{H} / T^{2}\right)$
Combine equations like this for each of reactants and products:
$\left(\partial\left(\Delta_{\mathrm{rxn}} \boldsymbol{G}^{\ominus}{ }_{T} / T\right) / \partial T\right)_{p}=-\left(\Delta_{\mathrm{rxn}} \boldsymbol{H}^{\ominus} / T^{2}\right)$
$\Delta_{\mathrm{rxn}} \boldsymbol{G}^{\ominus}{ }_{T}=-R T \ln K_{p}$
$\therefore\left(\partial \ln K_{p} / \partial T\right)_{p}=\left(\Delta_{\mathrm{rxn}} H^{\ominus}{ }_{T} / R T^{2}\right)$
Integrating we get
$\int \mathrm{d} \ln K_{p}=\int\left(\Delta_{\mathrm{rxn}} H^{\ominus} / R T^{2}\right) \mathrm{d} T$
We need to know the T dependence of $\Delta_{\mathrm{rxn}} \boldsymbol{H}_{T}{ }$.
(for that we need heat capacities of reactants and products).

If we assume that the change with T is small, then approximately,
$\int \mathrm{d} \ln K_{p}=+\left(\Delta_{\mathrm{rxn}} \boldsymbol{H}^{\ominus} / R\right) \int T^{-2} \mathrm{~d} T$ the integral $\int T^{-2} \mathrm{~d} T$ is $-\left\{\left(1 / T_{2}\right)-\left(1 / T_{1}\right\}\right.$ In ($K_{p, 1023} / K_{p, 873}$)

$$
\begin{aligned}
&=\left(\Delta_{\mathrm{rxn}} \boldsymbol{H}_{T} / R\right)\{(1 / 873)-(1 / 1023)\} \\
&=\left(-21045 \mathrm{cal} \mathrm{~mol}^{-1} / 1.987\right) \\
& \quad \times\{(1 / 873)-(1 / 1023)\} \\
&=-1.779 \quad \\
& \therefore \quad\left(K_{p, 1023} / K_{p, 873}\right)=0.169 \\
& K_{p, 1023}=0.0594
\end{aligned}
$$

On the other hand, suppose we had been given the following data. The heat capacities (cal $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$ in the range $600-750^{\circ} \mathrm{C}$ and 1 atm) are:
2.038 for C(graphite)
6.888 for $\mathrm{H}_{2}(\mathrm{~g})$
8.438 for $\mathrm{CH}_{4}(\mathrm{~g})$

C (graphite, 873 K$)+2 \mathrm{H}_{2}(\mathrm{~g}, 873 \mathrm{~K}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}, 873 \mathrm{~K})$

- $\{\mathrm{C}($ graphite, 873 K$) \rightarrow \mathrm{C}$ (graphite, $T)\}$
$-2\left\{\mathrm{H}_{2}(\mathrm{~g}, 873 \mathrm{~K}) \rightarrow \mathrm{H}_{2}(\mathrm{~g}, T)\right\}$
$+\left\{\mathrm{CH}_{4}(\mathrm{~g}, 873 \mathrm{~K}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}, ~ T)\right\}$
$\mathrm{C}($ graphite, $T \mathrm{~K})+2 \mathrm{H}_{2}(\mathrm{~g}, T) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}, T)$

$$
\begin{aligned}
\Delta_{\mathrm{rxn}} \boldsymbol{H}^{\ominus} & =\Delta_{\mathrm{rxn}} \boldsymbol{H}^{\ominus}{ }_{873 K}-\int_{873}{ }^{T} C_{p}^{C} \mathrm{~d} T \\
& -2 \int_{873}{ }^{T} C_{p}^{H 2} \mathrm{~d} T+\int_{873}^{T} C_{p}{ }^{C H 4} \mathrm{~d} T
\end{aligned}
$$

$$
\begin{array}{r}
\Delta_{\mathrm{rxn}} \boldsymbol{H}^{\ominus} \mathrm{cal} \mathrm{~mol}^{-1}=-21045-2.038(T-873) \\
-2 \times 6.888(T-873)+8.438(T-873) \\
=-21045+7.376(873)-7.376 T \\
=-14605.7-7.376 T
\end{array}
$$

$$
\int \mathrm{d} \ln K_{p}=\int_{873}{ }^{1023}\left(\Delta_{\mathrm{rxn}} \boldsymbol{H}_{T} / R T^{2}\right) \mathrm{d} T
$$

$$
=\int[-14605.7-7.376 T] / 1.987 T^{2} \mathrm{~d} T
$$

$$
=\int_{(-14605.7 / 1.987)} \mathrm{d}(-1 / T)
$$

$$
+\int(-7.376 / 1.987) d(\ln T)
$$

$$
=+7350.6[(1 / 1023)-(1 / 873)]
$$

$$
-3.708 \ln [1023 / 873]
$$

$$
\int \mathrm{d} \ln K_{p}=-1.2346-0.5879=-1.8225
$$

$$
\ln \left(K_{p, 1023} / K_{p, 873}\right)=-1.8225
$$

$$
\left(K_{p, 1023} / K_{p, 873}\right)=0.162 \quad K_{p, 1023}=0.0569
$$

(b) For the all-gas reaction $\mathrm{CO}_{2}+\mathrm{H}_{2}=\mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$ the temperature dependence has been measured.

The temperature dependence of the equilibrium constant for the reaction $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$

Determine $\Delta_{r x n} H^{\ominus}$ for this reaction at $600^{\circ} \mathrm{C}$. Describe the states that this $\Delta_{\mathrm{rxn}} \mathrm{H}^{\ominus}$ corresponds to.

Equation	Basis for the equation	Eq. \#
$\begin{aligned} & \Delta_{\mathrm{rxn}} \mathbf{G}^{\ominus}=-\mathrm{RT} \operatorname{lnK_{p}} \\ & \text { or }\left(\Delta_{\mathrm{rxn}} \mathbf{G}^{\ominus} / \mathrm{T}\right)=-\mathrm{R} \ln \mathrm{~K}_{\mathrm{p}} \end{aligned}$	Derived in lecture notes Part 9	1
$\begin{aligned} & \left(\partial\left(\Delta_{\mathrm{rxn}} \mathbf{G}^{\ominus} / \mathrm{T}\right) / \partial \mathrm{T}\right)_{\mathrm{p}} \\ & \quad=-\mathrm{Rd}\left(\ln \mathrm{~K}_{\mathrm{p}} / \mathrm{dT}\right) \end{aligned}$	differentiate Eq 1 with respect to T at constant p	2
$\begin{aligned} &\left(\partial\left(\Delta_{\mathrm{rxn}} \mathbf{G}^{\ominus} / \mathrm{T}\right) / \partial \mathrm{T}\right)_{\mathrm{p}} \\ &=-\Delta_{\mathrm{rxn}} \mathbf{H}^{\ominus} / \mathrm{T}^{2} \end{aligned}$	We derived in the previous problem	3
$\begin{aligned} & -\mathrm{R} \mathrm{~d}\left(\ln \mathrm{~K}_{\mathrm{p}} / \mathrm{d} T\right) \\ & =-\Delta_{\mathrm{rxn}} \mathrm{H}^{\ominus} / \mathrm{T}^{2} \end{aligned}$	Combine Eq 2 \& 3	4
$d \ln \mathrm{~K}_{\mathrm{p}}=$ $\left(-\Delta_{\mathrm{rxn}} \mathbf{H}^{\ominus / R}\right) \mathrm{d}(1 / \mathrm{T})$ This states that - $\Delta_{\mathrm{rx}} \mathbf{H}^{\ominus} / \mathrm{R}$ at temperature T_{1} is the slope of the tangent to the $\ln K_{p}$ vs ($1 / \mathrm{T}$) curve at that temperature	From Eq 4	5

