EXAMPLE

For the reaction:

 $C(\text{graphite}) + 2H_2(g) \rightarrow CH_4(g)$

the change in enthalpy is -21 045 cal mol⁻¹ at 600°C.

The third law entropies (cal $mol^{-1} K^{-1}$ at 600°C and 1 atm are:

4.98 for C(graphite)

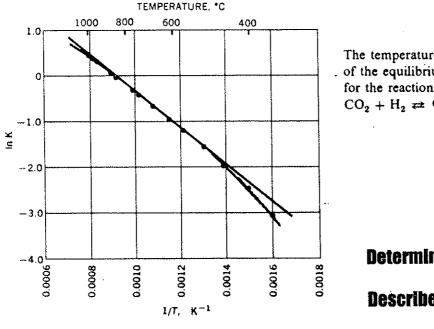
38.9 for H₂(g)

56.6 for $CH_4(g)$

(a) Calculate the equilibrium constant for the reaction at 600°C.

(b) What experimental information would you need, besides that given above, in order to be able to evaluate K_p at any temperature? Make a suitable approximation that is adequate over a short temperature range and use it to estimate the equilibrium constant at 750°C.

(b) For the all-gas reaction $CO_2 + H_2 = CO + H_2O$ the temperature dependence has been measured.



The temperature dependence of the equilibrium constant for the reaction $CO_2 + H_2 \rightleftharpoons CO + H_2O$

> **Determine** $\Delta_{nn} H^{\Theta}$ for this reaction at 600 °C. **Describe** the states that this $\Delta_{rxn} H^{\ominus}$ corresponds to.

EXAMPLE

For the reaction:

 $C(graphite) + 2H_2(g) \rightarrow CH_4(g)$

the change in enthalpy is -21 045 cal mol^{-1} at 600°C.

The third law entropies (cal $mol^{-1} K^{-1}$ at 600°C and 1 atm are:

4.98 for C(graphite)

38.9 for $H_2(g)$

56.6 for CH₄(g)

(a) Calculate the equilibrium constant for the reaction at 600°C.

(b) What experimental information would you need, besides that given above, in order to be able to evaluate K_p at any temperature? Make a suitable approximation that is adequate over a short temperature range and use it to estimate the equilibrium constant at 750°C. (a) Calculate the equilibrium constant for the reaction at 600°C.

 $\Delta_{rxn} \mathbf{G}^{\ominus}{}_{7} = -RT \ln K_{p}$ $\Delta_{rxn} \mathbf{G}^{\ominus}{}_{7} = \Delta_{rxn} \mathbf{H}^{\ominus}{}_{7} - T\Delta_{rxn} \mathbf{S}^{\ominus}{}_{7}$ $\Delta_{rxn} \mathbf{S}^{\ominus}{}_{7} = \mathbf{S}^{\ominus}{}_{CH4, T} - 2\mathbf{S}^{\ominus}{}_{H2, T} - \mathbf{S}^{\ominus}{}_{graphite, T}$ $\Delta_{rxn} \mathbf{S}^{\ominus}{}_{873} = 56.6 - 2(38.9) - 4.98 = -26.18 \text{ cal}$ $mol^{-1} \text{ K}^{-1}$ $\Delta_{rxn} \mathbf{H}^{\ominus}{}_{873} = -21045 \text{ cal mol}^{-1}$ $\Delta_{rxn} \mathbf{G}^{\ominus}{}_{873} = -21045 - (873)(-26.18) = 1810$ $cal mol^{-1}$ $= -RT \ln K_{p}$

- $\ln K_p = 1810/(1.987)(873) = 1.0435$ $K_p = 0.352$

(b) Estimate the equilibrium constant at 750°C. Consider G/T: $(\partial (\boldsymbol{G}/T) / \partial T)_{p} = - (\boldsymbol{G}/T^{2}) + (1/T)(\partial \boldsymbol{G}/\partial T)_{p}$ using **G** = **H** - **TS** $(\partial (\boldsymbol{G}/T) / \partial T)_{p} = -(\boldsymbol{H}/T^{2}) + (S/T) +$ $(1/T)(\partial \boldsymbol{G}/\partial T)_{\rho}$ Recall that: $(\partial G/\partial T)_p = -S$ Thus, $(\partial (\mathbf{G}/T) / \partial T)_p = - (\mathbf{H}/T^2)$ Combine equations like this for each of reactants and products: $(\partial (\Delta_{\mathrm{rxn}} \boldsymbol{G}^{\boldsymbol{\Theta}}_{T} / T) / \partial T)_{\boldsymbol{p}} = - (\Delta_{\mathrm{rxn}} \boldsymbol{H}^{\boldsymbol{\Theta}}_{T} / T^{2})$ $\Delta_{\rm rxn} \boldsymbol{G}^{\Theta}_{T} = -RT \ln K_{\rho}$ $\therefore (\partial \ln K_p / \partial T)_p = (\Delta_{rxn} H^{\ominus}_T / RT^2)$ Integrating we get $\int d \ln K_{\rho} = \int (\Delta_{rxn} H^{\ominus}_{T} / R T^{2}) dT$ We need to know the T dependence of $\Delta_{\rm rxn} H^{\ominus}_{T}$. (for that we need heat capacities of

reactants and products).

If we assume that the change with T is small, then approximately,

 $\int d \ln K_{p} = + (\Delta_{rxn} H^{\ominus}_{T} / R) \int T^{-2} dT$ the integral $\int T^{-2} dT$ is $- \{(1/T_{2}) - (1/T_{1})\}$ ln $(K_{p, 1023} / K_{p, 873})$ $= (\Delta_{rxn} H^{\ominus}_{T} / R) \{ (1/873) - (1/1023) \}$ $= (-21045 \text{ cal mol}^{-1} / 1.987)$ $\times \{ (1/873) - (1/1023) \}$ = -1.779

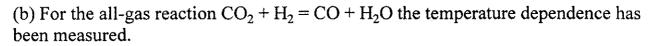
$$\therefore (K_{p, 1023} / K_{p, 873}) = 0.169 K_{p, 1023} = 0.0594$$

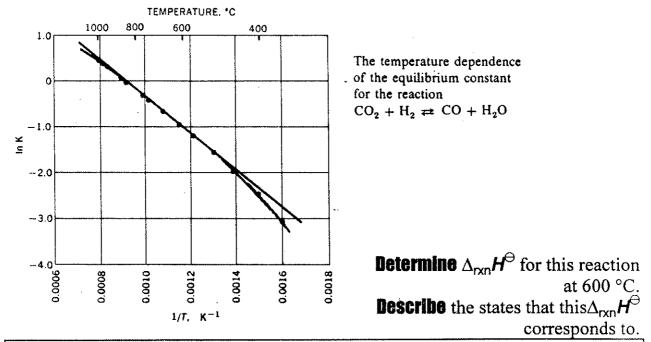
On the other hand, suppose we had been given the following data. The heat capacities (cal $mol^{-1} K^{-1}$ in the range 600-750°C and 1 atm) are:

2.038 for C(graphite) 6.888 for H₂(g) 8.438 for CH₄(g) C(graphite, 873 K) + 2H₂(g, 873 K) → CH₄(g, 873 K) - {C(graphite, 873 K) → C(graphite, *T*)} -2{H₂(g, 873 K) →H₂(g, *T*)} + {CH₄(g, 873 K) → CH₄(g, *T*)} C(graphite, *T* K) + 2H₂(g, *T*) → CH₄(g, *T*)

$$\Delta_{rxn} H^{\ominus}_{T} = \Delta_{rxn} H^{\ominus}_{873 K} - \int_{873}^{T} C_{p}^{C} dT$$
$$-2 \int_{873}^{T} C_{p}^{H2} dT + \int_{873}^{T} C_{p}^{CH4} dT$$

$$\begin{split} \Delta_{rxn} \boldsymbol{H}^{\ominus}_{T} & \text{cal mol}^{-1} = -21045 - 2.038(T-873) \\ &\quad -2 \times 6.888(T-873) + 8.438(T-873) \\ &\quad = -21045 + 7.376(873) - 7.376T \\ &\quad = -14605.7 - 7.376T \\ &\quad = -14605.7 - 7.376T \\ \int d \ln K_{p} &= \int_{873}^{1023} (\Delta_{rxn} \boldsymbol{H}^{\ominus}_{T} / R T^{2}) dT \\ &\quad = \int [-14605.7 - 7.376T] / 1.987 T^{2} dT \\ &\quad = \int (-14605.7 / 1.987) d(-1/T) \\ &\quad + \int (-7.376 / 1.987) d(\ln T) \\ &\quad = +7350.6[(1/1023) - (1/873)] \\ &\quad - 3.708 \ln[1023/873] \\ \int d \ln K_{p} &= -1.2346 - 0.5879 = -1.8225 \\ \ln (K_{p, \ 1023} / K_{p, \ 873}) &= 0.162 \qquad K_{p, \ 1023} = 0.0569 \end{split}$$





Equation	Basis for the equation	Eq. #
$\Delta_{rxn} \mathbf{G}^{\ominus} = - \operatorname{RT} \operatorname{In} \mathbf{K}_{p}$ or $(\Delta_{rxn} \mathbf{G}^{\ominus} / \mathbf{T}) = - \operatorname{RIn} \mathbf{K}_{p}$	Derived in lecture notes Part 9	1
$(\partial (\Delta_{rxn} \mathbf{G}^{\Theta} / \mathbf{T}) / \partial \mathbf{T})_{p}$ = - R d(ln K _p /dT)	differentiate Eq 1 with respect to T at constant p	2
$(\partial (\Delta_{rxn} \mathbf{G}^{\Theta} / \mathbf{T}) / \partial \mathbf{T})_{p}$ $= - \Delta_{rxn} \mathbf{H}^{\Theta} / \mathbf{T}^{2}$	We derived in the previous problem	3
- R d(ln K _p /dT) = - Δ_{rxn} H $^{\ominus}$ /T ²	Combine Eq 2 & 3	4
d In K _p = (- Δ_{rxn} H $^{\Theta}$ /R)d(1/T)	From Eq 4	5
This states that		
- $\Delta_{rxn} \mathbf{H}^{\Theta}/\mathbf{R}$ at temperature T ₁ is the slope of the tangent to the ln K _p vs (1/T) curve at that temperature		

