$\mathrm{d} U=\mathrm{d} q+\mathrm{d} w$

(1) $\mathrm{d} q_{\text {ter }}=T \mathrm{~d} S$
(2) $\mathrm{d} w=-P \mathrm{~d} V+\mathrm{d} w_{\text {electrical }}$
(3) $\mathrm{d} H_{P}=\mathrm{d} U_{P}+P \mathrm{~d} V$

$$
\begin{aligned}
\mathrm{d} G_{T} & =\mathrm{d} H_{T}-T \mathrm{~d} S \\
& =\mathrm{d} U_{T, P}-\boldsymbol{B}^{\boldsymbol{3}}+P \mathrm{~d} V-T \mathrm{~d} S
\end{aligned}
$$

$$
=T / S-P d V+\mathrm{d} w_{\text {electrical }}+P d V-\mathcal{d} S
$$

$\mathrm{d} G_{T, P}=\mathrm{d} w_{\text {electrical }}$

Electrical work is just the amount of charge Q and the potential \mathcal{V} through which we move it. Voltage, $\mathrm{J}^{\text {coulomb }}{ }^{-1}$, is electric potential energy per unit charge
$w_{\text {electrical }}=\mathcal{V}$
$\mathrm{Q}=n \mathcal{F}$
\mathcal{F} is the charge carried by 1 mole of electrons $=96485.3365 \pm 0.0021$ coulombs per mole

A process is spontaneous when the change in its Gibbs function is negative; and the convention of negative sign for work is associated with work the system does on the surroundings.
Must choose a convention for the sign of the cell potential so that it is consistent with the signs for $\Delta \mathrm{G}$ and work. If we choose to associate a positive potential with a spontaneous process, then we need a negative sign in the equation relating $\Delta \mathbf{G}$ to EMF or voltage \mathcal{E}

$$
\Delta \mathbf{G}_{T, P}=-\mathcal{w}_{\text {efectrical }}=-n \mathcal{F} \mathcal{E} \text { joules }
$$

$\mu=\mu^{\ominus}+\mathrm{RT} \ln \mathbf{a}$
$\boldsymbol{G}=\boldsymbol{G}^{\ominus}+\mathrm{RT} \ln \boldsymbol{a}$
Standard conditions: ${ }^{\ominus}$, sometimes hypothetical, corresponds to unit activity
For a reaction, $\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD}$

At equilibrium, $\Delta_{\mathrm{rxn}} \boldsymbol{G}_{T, P}=0$
$\Delta_{\mathrm{rxn}} \boldsymbol{G}_{T}{ }^{\ominus}=-\mathrm{RT} \ln K$
K corresponds to activities at chemical equilibrium

$$
\begin{aligned}
& \mathcal{E}_{\text {cell }}=\mathcal{E}^{\ominus}{ }_{\text {cell }}-\underline{R T} \ln \underline{\mathbf{a}}_{C}{ }^{\mathrm{C}} \underline{\underline{a}}_{\underline{D}}{ }^{\mathrm{d}} . \\
& \mathrm{n} \mathcal{F} \quad \boldsymbol{a}_{\mathrm{A}}{ }^{\mathrm{a}} \boldsymbol{a}_{\mathrm{B}}{ }^{\mathrm{b}}
\end{aligned}
$$

At equilibrium $\mathcal{E}_{\text {cell }}=0$

$$
\mathcal{E}^{\ominus}{ }_{\text {cell }}=\frac{\mathrm{RT}}{\mathrm{n} \mathcal{F}} \ln K
$$

Conventions equil. electrochemistry:

- Right hand side of the cell (as written in cell diagram) is positive
- A reaction that abstracts electrons from the electrode makes it positive
- Tables of half electrode potentials are of reduction potentials, e.g.,

$$
\mathrm{Cu}^{+2}+2 \mathrm{e}=\mathrm{Cu}^{0} .
$$

cell diagram:

$$
-\mathrm{Zn}\left|\mathrm{Zn}^{2+} \| \mathrm{Cu}^{2+}\right| \mathrm{Cu}+
$$

Half reactions:
RHS $\mathrm{Cu}^{2+}+2 \mathrm{e} \rightarrow \mathrm{Cu} \quad$ RED
LHS $\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}$ OXID
$\mathcal{E}_{\text {total }}=\mathcal{E}_{\text {right }}+\mathcal{E}_{\text {left }}$
$\mathcal{E}^{\ominus}{ }_{\text {right }}=$ from table of std reduction half cell potentials
$\mathcal{E}_{\text {left }}=$ reverse sign from table of half cells cell reaction:

$$
\mathrm{Cu}^{2+}+\mathrm{Zn} \rightarrow \mathrm{Cu}+\mathrm{Zn}^{2+}
$$

Knowledge of the standard electrode potentials of the half-cell reactions allows the thermodynamically favored direction of the cell reaction (at standard conditions) to be established. If \mathcal{E}^{\ominus} cell >0 then $K>1$, which means that the forward direction of the overall reaction, when written as the summation of the cell reaction at the right-hand electrode (a reduction process) and the cell reaction at the left-hand electrode (an oxidation process) is the spontaneous direction of the cell reaction. If \mathcal{E}^{\ominus} cell <0 then $K<1$, so the reverse reaction will be the spontaneous one, or energy will be required to drive the reaction in the forward direction of the cell reaction.

EXAMPLE:
Given the following
electrochemical cell:
$\mathrm{Fe}_{(\mathrm{s})}+\mathrm{Sn}^{4+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}+\mathrm{Sn}^{2+}{ }_{(\mathrm{aq})}$
(i) Calculate the standard cell potential.
(ii) Under standard conditions,
will this reaction occur spontaneously as written?
(iii) Calculate the equilibrium constant, K.
Standard reduction potentials
are: $\mathcal{E}^{\ominus}{ }_{\mathrm{Fe} 2+/ \mathrm{Fe}}=-0.44 \mathrm{~V}$;

$$
\mathcal{E}^{\ominus} \mathrm{Sn} 4+/ \mathrm{Sn} 2+=+0.15 \mathrm{~V}
$$

Half reduction potentials are:
$\mathrm{Fe}^{2+}+2 \mathrm{e} \rightarrow \mathrm{Fe}_{(\mathrm{s})}$
$E^{\circ}=-0.44 V$
$\mathrm{Sn}^{4+}+2 \mathrm{e} \rightarrow \mathrm{Sn}^{2+} \quad \mathrm{E}^{\circ}=+0.15 \mathrm{~V}$

The half-cell reactions are:
Oxidation: $\mathrm{Fe}_{(\mathrm{s})} \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{e}$
Reduction: $\mathrm{Sn}^{4+}+2 \mathrm{e} \rightarrow \mathrm{Sn}^{2+}$
(i) The standard cell potential
$\mathcal{E}^{\ominus}{ }_{\text {cell }}=\mathcal{E}^{\ominus}{ }_{\mathrm{Sn} 4+/ \mathrm{Sn} 2+}+-\left(\mathcal{E}^{\ominus} \mathrm{Fe} 2+/ \mathrm{Fe}\right)$
$=0.15+-(-0.44)=+0.59 \mathrm{~V}$
(ii) Positive \mathcal{E}^{\ominus} cell means reaction will occur spontaneously at std conditions
(iii) Find equilibrium constant

$$
\mathcal{E}^{\ominus}{ }_{\text {cell }}=\frac{\mathrm{RT}}{\mathrm{n} \mathcal{F}} \ln K
$$

$\ln K=\frac{2(96485)(0.59)}{8.31451(298)}=45.96$
$K=9.13 \times 10^{19}$

EXAMPLE:

Given the following galvanic cell:

$\mathrm{Ag}(\mathrm{s})\left|\mathrm{Ag}^{+}\left(3.0 \times 10^{-4} \mathrm{M}\right)\right|\left|\mathrm{Fe}^{3+}\left(1.1 \times 10^{-3} \mathrm{M}\right), \mathrm{Fe}^{2+}(0.040 \mathrm{M})\right| \mathrm{Pt}_{(\mathrm{s})}$
Predict the cell potential at $25^{\circ} \mathrm{C}$.

The standard cell potential

$$
\begin{aligned}
& \left.\mathcal{E}^{\ominus}{ }_{\text {cell }}=\mathcal{E}^{\ominus} \mathrm{Fe} 3+/ \mathrm{Fe} 2+^{+-\left(\mathcal{E}^{\ominus}\right.} \mathrm{Ag+/Ag}\right) \\
& =+0.77+-(+0.80)=-0.03 \mathrm{~V}
\end{aligned}
$$

Assuming mean ionic activity coefficient $=1$:

$$
\begin{aligned}
& \mathcal{E}_{\text {cell }}=-0.03 \\
& -\frac{(8.31451)(298)}{(1) 96485} \ln \frac{\left(3.0 \times 10^{-4}\right)(0.040)}{(1)\left(1.1 \times 10^{-3}\right)}
\end{aligned}
$$

$$
E_{\mathrm{cell}}=+0.086 \mathrm{~V}
$$

Answer

EXAMPLE:

An electrochemical cell consists of a silver electrode in contact with 346 mL of $0.0100 \mathrm{M} \mathrm{AgNO}_{3}$ solution and a magnesium electrode in contact with 288 mL of $0.100 \mathrm{M} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ solution
(i) Predict the cell potential at $25^{\circ} \mathrm{C}$.
(ii) A current is drawn from the cell until 1.20 g of silver has been deposited at the silver electrode. Calculate the cell potential at this stage of operation.

$$
\begin{aligned}
& \mathrm{Mg}_{(\mathrm{s})} \\
& \rightarrow \mathrm{Mg}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e} \\
& \text { Anode } \\
& \mathrm{Ag}^{+}{ }_{(\mathrm{aq})}+\mathrm{e} \quad \rightarrow \mathrm{Ag}_{(\mathrm{s})} \quad \text { Cathode } \\
& \mathrm{Mg}_{(\mathrm{s})}+2 \mathrm{Ag}^{+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Mg}^{2+}{ }_{(\mathrm{aq})}+\mathrm{Ag}_{(\mathrm{s})} \quad \mathrm{Net} \\
& \mathcal{E}_{\text {cell }}=\mathcal{E}_{\text {cell }}^{\ominus}-\frac{\mathrm{RT}}{\mathrm{n} \mathcal{F}} \ln \underline{\underline{a}_{\mathrm{Ag}}} \underline{\boldsymbol{a}}_{\mathrm{Mg} 2+}- \\
& \boldsymbol{a}_{\mathrm{Ag}}=1, \boldsymbol{a}_{\mathrm{Mg}}=1 \text {, pure solid substances }
\end{aligned}
$$

(i) The standard cell potential
$\mathcal{E}^{\ominus}{ }_{\text {cell }}=\mathcal{E}^{\ominus}{ }_{\mathrm{Ag}+/ \mathrm{Ag}}+-\left(\mathcal{E}^{\ominus}{ }_{\mathrm{Mg} 2+/ \mathrm{Mg}}\right)$
$=+0.80+-(-2.37)=+3.17 \mathrm{~V}$
Assuming mean ionic activity coefficient $=1$:
$\mathcal{E}_{\text {cell }}=+3.17$
$-\frac{(8.31451)(298)}{(2) 96485} \ln \frac{(1)(0.0100)}{(1)(0.0100)^{2}}$
$\mathcal{E}_{\text {cell }}=+3.14 \mathrm{~V}$
(ii) first find the number of moles of Ag deposited in order to find the new concentration of $\mathrm{Ag}^{+}{ }_{(\mathrm{aq})}$

Originally in solution,
$0.100 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{Ag}^{+}{ }_{\text {(aq) }} \bullet 0.346 \mathrm{~L}=$ $0.0346 \mathrm{~mol} \mathrm{Ag}^{+}{ }_{(\mathrm{aq})}$
Ag deposited $=1.20 \mathrm{~g} \cdot \frac{1 \mathrm{~mol}}{107.9 \mathrm{~g}}$

$$
=0.0111 \mathrm{~mol}
$$

Ag remaining in solution,
$0.0346-0.0111=0.0235 \mathrm{~mol}$

$$
\left[\mathrm{Ag}^{+}{ }_{(\mathrm{aq})}\right]=0.0235 \mathrm{~mol} / 0.346 \mathrm{~L}
$$

$$
=0.0679 \mathrm{M}
$$

Originally in solution,
$0.100 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{Mg}^{2+}{ }_{(\mathrm{aq})} \bullet 0.288 \mathrm{~L}=$ $0.0288 \mathrm{~mol} \mathrm{Mg}^{2+}{ }_{(\mathrm{aq})}$
Reaction which deposited $\mathrm{Ag}_{(\mathrm{s})}$
also produced more $\mathrm{Mg}^{2+}{ }_{(\mathrm{aq})}$:
$\mathrm{Mg}_{(\mathrm{s})}+2 \mathrm{Ag}^{+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Mg}^{2+}{ }_{(\mathrm{aq})}+\mathrm{Ag}_{(\mathrm{s})}$
New moles $\mathrm{Mg}^{2+}{ }_{(\mathrm{aq})}$ in solution,
$0.0288+1 / 2(0.0111) \mathrm{mol}$
0.288 L
$\left[\mathrm{Mg}^{2+}{ }_{(\mathrm{aq})}\right]=0.199 \mathrm{M}$
Assuming mean ionic activity coefficient $=1$:
$\mathcal{E}_{\text {cell }}=+3.17$
$-\frac{(8.31451)(298)}{(2) 96485} \ln \frac{(1)(0.199)}{(1)(0.0679)^{2}}$
$\mathcal{E}_{\text {cell }}=+3.13 \mathrm{~V}$
Answer

EXAMPLE:

Electroplating of a copper crown is carried out in an aqueous solution of KCN with a current density of $100 \mathrm{~A} / \mathrm{m}^{2}$, using an electrochemical reaction:
$\mathrm{Au}(\mathrm{CN})_{2}{ }^{-}+\mathrm{e} \rightarrow \mathrm{Au}+2 \mathrm{CN}^{-}$
The surface area of the crown is $0.73 \mathrm{~m}^{2}$. The density of gold is $19.32 \mathrm{~g} / \mathrm{cm}^{3}$ and the atomic mass of gold is $196.967 \mathrm{~g} / \mathrm{mol}$. Determine the time required for plating 0.20 mm thickness of gold on the crown surface.

We need to find the moles of Au plated, which will provide us with the required number of moles of electrons that passed as current. moles of gold $=$

$$
\begin{aligned}
& 0.020 \mathrm{~cm} \cdot 0.73 \times 10^{4} \mathrm{~cm}^{2} \\
& \bullet 19.32 \mathrm{~g} / \mathrm{cm}^{3} \cdot \frac{1 \mathrm{~mol}}{196.967 \mathrm{~g}} \\
& =14.3208 \mathrm{~mol}
\end{aligned}
$$

$1 \mathrm{Amp}=1 \mathrm{C} \mathrm{s}^{-1}$
14.3208 mol of electrons $96485 \mathrm{C} \mathrm{mol}^{-1}$
$=0.73 \mathrm{C} \mathrm{s}^{-1} \cdot($ time $) \mathrm{s}$
time $=14.3208(96485) / 0.73$

$$
=18928 \text { s or } 5.26 \text { hours }
$$

EXAMPLE:

$m / \mathrm{mol} \mathrm{kg}^{-1}$	E / mV
0.01006	110.4
0.03844	66.0
0.04970	57.4
0.09006	37.8
0.1347	26.1
0.1573	20.0
0.1848	13.9
0.2231	6.9
0.2994	-2.6
0.3159	-4.9
0.6414	-31.1
0.7740	-38.9
1.0158	-50.9
1.4077	-66.1

J. Electroanal. Chem., 230 (1987) 69-75

Fig. 1. Scheme of the $\mathrm{Hg}_{2} \mathrm{Succ} \mid \mathrm{Hg}$ electrode used.

The emf of the $\mathrm{Hg}_{2} \mathrm{Succ} \mid \mathrm{Hg}$ electrode cell at $25^{\circ} \mathrm{C}$ shown in the figure has been measured against a standardized glass electrode as a function of the molality \boldsymbol{m} of the $\mathrm{Na}_{2} \mathrm{Succ}$ solution. (The values are shown in the table.) This is the salt of succinic acid or butanedioic acid:

$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4} 118.09$
Suck ${ }^{2-}=\left[\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right]^{2-}$

Determine the $\mathcal{E}^{\ominus}{ }_{\mathrm{Hg} 2 \mathrm{Succ} \mid \mathrm{Hg}}$ by making the appropriate plot of the experimental data and knowing the standard potential of the standardized glass electrode is $(486.4 \pm 0.3) \times 10^{-3} \mathrm{~V}$.

$$
\begin{aligned}
& \mathcal{E}_{\text {cell }}=\mathcal{E}^{\ominus}{ }_{\mathrm{Hg} 2 \text { SucclHg }}-(-0.134) \\
& \mathcal{E}_{\text {cell }}=\mathcal{E}^{\ominus}{ }_{\text {cell }}-\frac{\mathrm{RT}}{2 \mathcal{F}} \ln \left(\boldsymbol{a}_{\mathrm{Na+}}\right)^{2} \boldsymbol{a}_{\text {Succ2- }} \\
& \mathcal{E}_{\text {cell }}=\mathcal{E}^{\ominus}{ }_{\text {cell }}-\frac{\mathrm{RT}}{2 \mathcal{F}} \ln (\boldsymbol{m})^{3} \gamma_{ \pm}^{3}
\end{aligned}
$$

$$
\mathcal{E}_{\text {cell }}+\underline{3 R T} \ln \boldsymbol{m}=\mathcal{E}_{\text {cell }}-\underline{3 R T} \ln \gamma_{ \pm}
$$

$$
2 \mathcal{F} \quad 2 \mathcal{F}
$$

$(3 R T / 2 \mathcal{F})=0.03852 \mathrm{~V}$
$\gamma_{ \pm}$is the mean ionic activity coefficient which is a function of \boldsymbol{m}
$\mathcal{E}_{\text {cell }}+0.03852 \operatorname{In} m=\mathcal{E}^{\ominus}{ }_{\text {cell }}-0.03852 \ln \gamma_{ \pm}$
As suggested by the Debye-Huckel limiting behavior, $\gamma_{ \pm}$goes as $I^{1 / 2}$
$I=\frac{1}{2} \sum_{\mathrm{i}=1}^{n} c_{\mathrm{i}} z_{\mathrm{i}}^{2} \mathrm{I}=(1 / 2)\left\{2 \boldsymbol{m}(+1)^{2}+\boldsymbol{m}(-2)^{2}\right\}=(5 / 2) \boldsymbol{m}$
Since $\gamma_{ \pm}$goes to 1 at infinitely dilute limit, we use a plot of $\mathcal{E}_{\text {cell }}+0.03852 \ln \boldsymbol{m}$ vs. $\boldsymbol{m}^{1 / 2}$

At the intercept, $\mathrm{m}^{1 / 2} \rightarrow 0, \gamma_{ \pm} \rightarrow 1$ and $\left\{\mathcal{E}_{\text {cell }}\right.$ $+0.03852 \ln \boldsymbol{m}\} \rightarrow \mathcal{E}^{\ominus}{ }_{\text {cell }}$
from which we get $\mathcal{E}^{\ominus}{ }_{\mathrm{Hg} 2 \mathrm{Succ} \mid \mathrm{Hg}}$ by $\mathcal{E}^{\ominus}{ }_{\text {cell }}=\mathcal{E}^{\ominus}{ }_{\mathrm{Hg} 2 \text { Succ|Hg }}-(486.4 \mathrm{mV})$

Intercept is $\approx-80 \mathrm{mV}$

$-80 \mathrm{mV}=\mathcal{E}^{\ominus}{ }_{\mathrm{Hg} 2 \text { Succ| }} \mathrm{Hg}-(486.4 \mathrm{mV})$
$\mathcal{E}^{\ominus}{ }_{\mathrm{Hg} 2 \mathrm{Succ} \mid \mathrm{Hg}} \approx 406 \mathrm{mV}$
Answer
Incidentally, a more accurate representation of the behavior of $\gamma_{ \pm}$ than the Debye-Huckel limit yields 425 mV .

Fig. 2. Plot of $\log \gamma_{ \pm}$against $I^{1 / 2}$, ($\mathbf{\Delta}$) This work; (a) sodium fumarate and (b) sodium maleate

EXAMPLE:

The temperature dependence of the voltage of a copper-silver cell has been measured and is shown below:

Temperature dependence of the cell voltage of a copper-silver-cell
Find the reaction entropy from the data. dG = Vdp - SdT
$(\partial \mathbf{G} / \partial \mathbf{T})_{\mathrm{p}}=-\mathbf{S}$
When applied to products and reactants of a chemical reaction
$\left(\partial \Delta_{\mathrm{rxn}} \mathbf{G} / \partial \mathbf{T}\right)_{\mathrm{p}}=-\Delta_{\mathrm{rxn}} \mathbf{S}$
Using $\Delta_{\text {rxn }} \boldsymbol{G}_{T, P}=-n \mathcal{F} \mathcal{E}$ joules,
$\mathrm{n} \mathcal{F}(\partial \mathcal{E} / \partial \mathrm{T})_{\mathrm{p}}=\Delta_{\mathrm{rxn}} \mathbf{S}$

Cathode (reduction) : $\mathrm{Cu}^{2+}+2 \mathrm{e} \rightarrow \mathrm{Cu}$ Anode (oxidation): $\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}$ Cell reaction: $\mathrm{Cu}^{2+}+\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Cu}$ The reaction entropy for this reaction is therefore the value of $n \mathcal{F}(\partial \mathcal{E} / \partial T)_{p}$.
The temperature coefficient of the cell voltage (slope of the plot) is $(\partial \mathcal{E} / \partial \mathrm{T})_{\mathrm{p}}=-0.63 \mathrm{mV} \mathrm{K}^{-1}$
$\Delta_{\mathrm{rxn}} \mathbf{S}$ for $\mathrm{Cu}^{2+}+\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Cu}$
$=2\left(96485 \mathrm{C} \mathrm{mol}^{-1}\right)\left(-0.63 \times 10^{-3} \mathrm{~V} \mathrm{~K}^{-1}\right)$
$=121.6 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \quad$ Answer

