1. Understand chemical potential and the thermodynamic conditions for equilibrium, from which are derived all the important relations that you need. Be prepared to derive any of them starting from the first and second law of thermodynamics.

- The Clapeyron eq. for any two phases
- The Phase Rule $F=C-P+2$ (for T and p)
- $\mu_{\mathrm{A}, \text { liquid }}-\mu^{*}{ }_{\mathrm{A}, \text { liquid }}=R T \ln x_{A}$
- boiling point elevation (in terms of mole fraction or activity or molality)
- freezing point depression (")
- osmotic pressure (")
- definitions of activity

Be prepared to apply the thermodynamic conditions for equilibrium to a new practical problem or application.
2. Understand quantitatively p vs. x and T vs. x phase diagrams for two component systems involving gas, liquid, and solid, miscible and otherwise. Be prepared to describe completely (how many phases, composition of each phase, how much of each phase, how many degrees of freedom) any state point, and any p-changing or T-changing process in a phase diagram. Understand the relation between experimental cooling curves and the phase diagram.

Definition	Rational	Practical
applied to \rightarrow	solvent	solute
basis	X_{A}	χ_{B}
basis	Raoult	Henry
definition of activity \boldsymbol{a}	$\begin{gathered} \boldsymbol{a}_{A} \equiv f_{A} / f_{A}^{*} \\ {\left[\boldsymbol{a}_{A}=p_{A} / p_{A}^{*}\right]} \end{gathered}$	$\boldsymbol{a}_{B} \equiv p_{B} / K_{H}$
definition of activity coeff γ	$\gamma_{A} \equiv a_{A} / x_{A}$	$\gamma_{B} \equiv \boldsymbol{a}_{B} / \chi_{B}$
limiting behavior $\gamma \rightarrow 1$	$\begin{gathered} \text { as } x_{A} \rightarrow 1 \\ \gamma_{A} \rightarrow 1 \\ a_{A} \rightarrow x_{A} \end{gathered}$	$\begin{gathered} \text { as } x_{B} \rightarrow 0 \\ \gamma_{B} \rightarrow 1 \\ a_{B} \rightarrow x_{B} \end{gathered}$
ideal solution $\gamma=1$	$a_{\text {A,ideal }}=\chi_{A}$	$\boldsymbol{a}_{\text {B, ideal }}=\chi_{B}$
$a=1, \mu_{T}=\mu_{T}{ }_{T}$ for standard state at 1 bar	pure liquid A $\mu_{A}{ }^{\ominus}{ }_{T}=\mu_{A}{ }^{*}{ }_{T}$	fictitious solution having $p_{B}=K_{H}$

${ }^{H} y={ }^{g} d$ бu! $\wedge е ц$ uopnjos sno!!!?!		Jeq 1 рıериełs 1Of $L=\boldsymbol{n}$
		$l=\lambda$ uolınןos ןeәp!
$\begin{gathered} \theta_{X} \leftarrow^{g} \boldsymbol{p} \\ L \leftarrow^{\theta} \lambda \\ 0 \leftarrow \varepsilon_{X} \text { se } \end{gathered}$	$\begin{gathered} 9 u \leftarrow^{q} p \\ L \leftarrow^{q} \lambda \\ 0 \leftarrow_{X} \text { se } \end{gathered}$	$L \leftarrow \lambda$ ло!лецәq 6u!!!w!
${ }^{8} X /{ }^{9} \boldsymbol{n} \equiv 9$ 仡	${ }^{8} \boldsymbol{\mu} /{ }^{8} \boldsymbol{n} \equiv$ 旫	
${ }^{H} X^{\prime} /{ }^{8} \mathrm{~d} \equiv{ }^{9} \boldsymbol{n}$		n Kи!и!ие јо uo!!!!!!əp
Kıueh	KıиəН	siseq
${ }^{8} \boldsymbol{X}$	${ }^{9} u$	siseq
əınjos	əınjos	\leftarrow Ol pe!ldde
jeonjeld	${ }^{8}$ U'jeo!peed	uo!t!u!fer

		\boldsymbol{n} əanseəu Of MOU
$\begin{gathered} 8 x \leftarrow 8 p \\ 1 \leftarrow 8 \lambda \\ 0 \leftarrow 8 x \text { se } \end{gathered}$	$\begin{gathered} \forall X \leftarrow \forall n \\ L \leftarrow \forall h \\ L \leftarrow \forall X \text { se } \end{gathered}$	10！＾ечәq 6u！！u！
${ }^{8} \times /{ }^{8} \boldsymbol{n} \equiv$ 明	$\forall X / \forall \boldsymbol{n} \equiv \forall h$	
${ }^{H} y /{ }^{8} d \equiv 8 \mathrm{n}$	$\begin{gathered} {\left[\forall_{*} d / \forall d=\forall p\right]} \\ \forall_{*} f / \forall f \equiv \forall \boldsymbol{p} \end{gathered}$	D K！！и！！ uо！！！uəp
${ }^{8} X$	${ }^{\forall} X$	SISEq
Ojnjos	孔Uヲへ｜OS	Ot pelldde
jeonjeld	｜euoljey	UO！！！

$d={ }^{\text {leəp！}} f$	$\begin{gathered} d^{\forall} X= \\ \forall d={ }^{\prime \text { epp!' }} \forall f \end{gathered}$	$\begin{gathered} l=\lambda \\ \operatorname{seb} \text { ןeəp! } \end{gathered}$
$\begin{gathered} d \leftarrow f \\ L \leftarrow h \\ 0 \leftarrow d \text { se } \end{gathered}$	$\begin{gathered} d^{\forall} X \leftarrow \forall f \\ L \leftarrow \forall \lambda \\ 0 \leftarrow d \text { se } \end{gathered}$	$1 \leftarrow \lambda$ JO！лецəq 6u！！！u！
$d / f \equiv \lambda$	$\forall d / \forall f \equiv \forall \lambda$	
	$\forall \boldsymbol{f} \equiv \forall \boldsymbol{n}$	（sese6 10」 K！！ n＇К！！ı！！ ио！！！！！əр
Кןеәр！ 6u！лецәq Jeq \downarrow 戸 seb sno！！！！！！	Кןеәр！ бu！лецәq req 1 je se6 and sno！！！！？！	$\begin{gathered} \stackrel{\perp}{\prime} \\ \text { req } \perp \stackrel{\ominus}{p} \mathrm{e} \text { әpels } \end{gathered}$ piepueps
se6 oind	Oınıxıu se6	\leftarrow－1 pelddde
		UO！！！$!1 \ominus \square$

AVOID	Instead, DO THIS
$\begin{aligned} & d T=0 \text { since } \\ & \text { adiabatic } \end{aligned}$	adiabatic means $q=0$, and T has to change [except if ideal gas and $W=0$].
$\Delta \boldsymbol{U}=\Delta \boldsymbol{H}=0$ since isothermal	only happens for ideal gas under p, V changes
$\Delta U=q$	$\begin{aligned} & \mathrm{d} \boldsymbol{U}=\int C_{V} \mathrm{~d} T+ \\ & \int_{(\partial \boldsymbol{U} / \partial V)_{T} \mathrm{~d} V} \\ & \text { leads to } \\ & \Delta \boldsymbol{U}_{V}=\int_{\mathrm{V}} \mathrm{~d} T=q_{V} \end{aligned}$
$\Delta H=q$	$\begin{aligned} & \int \mathrm{d} \boldsymbol{H}=\int C_{p} \mathrm{~d} T+ \\ & \text { leads to } \int(\partial \boldsymbol{H} / \partial p)_{T} \mathrm{~d} p \\ & \Delta \boldsymbol{H}_{p}=\int C_{p} \mathrm{~d} T=q_{p} \end{aligned}$
$\Delta \boldsymbol{S}_{T}=q / T$	$\mathrm{d} \mathrm{~d} \boldsymbol{S}=\int \mathrm{d} q_{R E V} / \mathrm{T}$ leads to $\Delta \boldsymbol{S}_{T}=q_{R E V} / T$
$\Delta \boldsymbol{A}_{T}=W$	$\begin{aligned} & \int \mathrm{d} \boldsymbol{A}=\int-p \mathrm{~d} V-\int \mathrm{S} \mathrm{~d} T \\ & \text { leads to } \Delta \boldsymbol{A}_{T}=W_{R E V} \end{aligned}$

AVOID	Instead, DO THIS
$\begin{aligned} & \Delta \boldsymbol{S}_{T, p}= \\ & \quad \Delta \boldsymbol{H}_{\text {trans }} / T_{\text {trans }} \end{aligned}$	At constant T and p, $q_{p}=\Delta \boldsymbol{H}$ but $q_{p}=q_{R E V}$ only when the 2 phases are at equilibrium at this (T, p)
$\Delta \boldsymbol{S}_{T}=-R \ln p_{2} / p_{1}$	$\begin{gathered} \mathrm{d} \boldsymbol{S}=(\partial \boldsymbol{S} / \partial T)_{p} \mathrm{~d} T+ \\ \quad(\partial \mathbf{S} / \partial p)_{T} \mathrm{~d} p \\ \Delta \boldsymbol{S}_{T}=\int(\partial \mathbf{S} / \partial p)_{T} \mathrm{~d} p \\ (\partial \mathbf{S} / \partial p)_{T}=-(\partial V / \partial T)_{p} \\ =-R / p \text { only for } \\ \quad \text { an ideal gas } \end{gathered}$
$\Delta \boldsymbol{G}_{T}=R T \ln p_{2} / p_{1}$	$\begin{aligned} & \mathrm{d} \boldsymbol{G}=V \mathrm{~d} p-\mathbf{S} \mathrm{d} T \\ & \Delta \boldsymbol{G}_{T}=\int \mathrm{V} \mathrm{~d} p \\ & V=R T / p \text { only for } \\ & \text { an ideal gas } \end{aligned}$
$\begin{aligned} & p_{C}=x_{C} p_{C}^{*} \text { or } \\ & p_{C}=x_{C} K_{H, C} \end{aligned}$	$\begin{aligned} & \lim \boldsymbol{x}_{C} \rightarrow \mathbf{0} p_{C}= \\ & x_{C} K_{H, C} \\ & p_{C}=\boldsymbol{a}_{C} p_{C}{ }^{*}(\text { rational }) \\ & \text { or } \\ & p_{C}=\boldsymbol{a}_{C} K_{H, C}(\text { practical }) \\ & \text { where } \gamma_{C}=\boldsymbol{a}_{C} / x_{C} \end{aligned}$

- When integrating:
(a) Must integrate both sides of an equation in order for the equality to hold. (b) Must integrate using the same state point for the lower limit on both sides of the equation. Likewise must integrate using the same state point for the upper limit on both sides of the equation.
- If no phase or chemical changes, can use $\Delta \boldsymbol{H}=\int(\partial \boldsymbol{H} / \partial T)_{p} \mathrm{~d} T+\int(\partial \boldsymbol{H} / \partial p)_{T} \mathrm{~d} p$
$\Delta \boldsymbol{U}=\int(\partial \boldsymbol{U} / \partial T)_{V} \mathrm{~d} T+\int(\partial \boldsymbol{U} / \partial V)_{T} \mathrm{~d} V$
$\Delta \boldsymbol{S}=\int(\partial \boldsymbol{S} / \partial T)_{p} \mathrm{~d} T+\int(\partial \boldsymbol{S} / \partial p)_{T} \mathrm{~d} p$
$\Delta \boldsymbol{S}=\int(\partial \boldsymbol{S} / \partial T)_{V} \mathrm{~d} T+\int(\partial \boldsymbol{S} / \partial V)_{T} \mathrm{~d} V$
$\Delta \boldsymbol{G}=\int(\partial \boldsymbol{G} / \partial T)_{p} \mathrm{~d} T+\int(\partial \boldsymbol{G} / \partial p)_{T} \mathrm{~d} p$
where $(\partial \boldsymbol{G} / \partial T)_{p}=-\boldsymbol{S}$ and $(\partial \boldsymbol{G} / \partial p)_{T}=V$ otherwise there is a $\Delta_{\text {vap }} \boldsymbol{U}, \Delta_{\text {vap }} \boldsymbol{H}, \Delta_{\text {vap }} \boldsymbol{S}$, $\Delta_{\text {vap }} \boldsymbol{H}, \Delta_{\text {vap }} \boldsymbol{G}$ for a phase change itself and there is a $\Delta_{r x n} \boldsymbol{U}, \Delta_{r x n} \boldsymbol{H}, \Delta_{r x n} \boldsymbol{S}, \Delta_{r x n} \boldsymbol{H}$, $\Delta_{r \times n} \boldsymbol{G}$ for a chemical change.
- Only when the phase change occurs reversibly (that is the two phases are at equilibrium with each other during the phase change) we can use
$\Delta_{\text {vap }} \boldsymbol{S}=\Delta_{\text {vap }} \boldsymbol{H} / T_{b}$ and $\Delta_{\text {vap }} \boldsymbol{G}=0$.
At any other (T, p) conditions, can not use these. It is always possible to find $\Delta \boldsymbol{U}, \Delta \boldsymbol{H}, \Delta \boldsymbol{S}, \Delta \boldsymbol{H}, \Delta \boldsymbol{G}$ for a (for example irreversible) process by using an algebraic sum of alternate (for example, reversible) paths from initial to final states.
- A tie line provides, at each of its ends, a description (what phases and what compositions in each phase) of the nature of the phases at equilibrium.
- A pure substance does not have variable composition! A phase that has variable x_{A} can not be a pure substance!

