Solutions to Problem Set 1

1. ethane in a bulb which bursts at what temperature?

Equation	Basis for the equation	Eq. $\#$
		1
$\mathrm{n}=5 \mathrm{~g} / 30 \mathrm{~g} \mathrm{~mol}^{-1}$	ethane $\mathrm{C}_{2} \mathrm{H}_{6}$ molar mass $=2(12)+6(1)=30 \mathrm{~g} \mathrm{~mol}^{-1}$	1
$\mathrm{pV}=\mathrm{nRT}$ $10 \mathrm{~atm}(1.0 \mathrm{~L})$ $=(5 / 30)\left(0.0820578 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \mathrm{T}$ Solve for T $\mathrm{T}=731.2 \mathrm{~K}$ or $458{ }^{\circ} \mathrm{C}$	Ideal gas law.	

2. coefficients for an ideal gas

Equation	Basis for the equation	Eq. $\#$
$\begin{aligned} & \alpha=(1 / \mathrm{V})(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{p}} \\ & \beta=-(1 / \mathrm{V})(\partial \mathrm{V} / \partial \mathrm{p})_{\mathrm{T}} \end{aligned}$	Given definition of coefficient of thermal expansion Given definition of coefficient of compressibility	1 2
$\begin{aligned} & \mathrm{pV}=\mathrm{nRT} \\ & \mathrm{~V}=\mathrm{nRT} / \mathrm{p} \\ & (1 / \mathrm{V})=\mathrm{p} / \mathrm{nR} T \end{aligned}$	Ideal gas law	$\begin{aligned} & \hline 3 \\ & 4 \\ & 5 \end{aligned}$
$\begin{aligned} & (\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{p}}=(\mathrm{nR} / \mathrm{p}) \\ & \alpha=(1 / \mathrm{V})(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{p}}=[\mathrm{p} / \mathrm{nRT}] \bullet(\mathrm{nR} / \mathrm{p}) \\ & \alpha=1 / \mathrm{T} \end{aligned}$	Differentiation of Eq 4 Using Eq 5 and Eq 6	6
$\begin{align*} & (\partial V / \partial \mathrm{p})_{\mathrm{T}}=-\mathrm{nRTp} \mathrm{p}^{-2} \\ & \beta=-(1 / \mathrm{V})(\partial \mathrm{V} / \partial \mathrm{p})_{\mathrm{T}} \\ & =-[\mathrm{p} / \mathrm{nRT}] \bullet\left(-n R T p^{-2}\right) \\ & \beta=+1 / \mathrm{p} \end{align*}$	Differentiation of Eq 4 Using Eq 5 and 7	7

Problem 3.
Draw a picture
Original mixture
$p=760 \mathrm{~mm} \mathrm{Hg}$
$20^{\circ} \mathrm{C}$
N_{2}
$\mathrm{H}_{2} \mathrm{O}$

OOOOOOO
dry drying agent

Final
$p=745 \mathrm{~mm} \mathrm{Hg}$ $20^{\circ} \mathrm{C}$
N_{2}

drying agent with 0.150 g adsorbed $\mathrm{H}_{2} \mathrm{O}$

Question: (a) mole percent $\mathrm{N}_{2}=$?
(b) $V=$?

Principles and $\operatorname{Definitions:~}$
Definition of partial pressure: $p_{\mathrm{N} 2}=x_{\mathrm{N} 2} p$
Dalton's law of partial pressures:
$p_{\mathrm{N} 2}+p_{\mathrm{H} 2 \mathrm{O}}=p$

$$
p_{\mathrm{N} 2}=p
$$

Assume the gases behave ideally: $\quad p V=n R T$
For an ideal gas the partial pressure of a gas in a mixture of gases is the pressure that would be exerted by the gas if it had been alone by itself in the same volume and temperature.

Solution:

In the same volume $V=$ unknown and same $T=(20+273.15) \mathrm{K}, p_{\mathrm{N} 2}=p=745 \mathrm{~mm} \mathrm{Hg}$.
Therefore, $p_{\mathrm{N} 2}=745 \mathrm{~mm} \mathrm{Hg}$ in the original mixture (and $p_{\mathrm{H} 2 \mathrm{O}}=760-745=15 \mathrm{~mm} \mathrm{Hg}$).
From the definition of partial pressure:
$\left\{p_{\mathrm{N} 2}=x_{\mathrm{N} 2} p\right\}$ applies in the original mixture, where $p_{\mathrm{N} 2}=745 \mathrm{~mm} \mathrm{Hg}$ and $p=760 \mathrm{~mm} \mathrm{Hg}$, from which equation we find $x_{\mathrm{N} 2}=p_{\mathrm{N} 2} / p=745 / 760=0.980$
(a): $100 \times x_{N 2}=98 \%$
(b) Mass of water vapor in original mixture $=$ increase in weight of the drying agent $=0.150 \mathrm{~g}$ $\mathrm{H}_{2} \mathrm{O}$. Assume water vapor behaves ideally in the original mixture:
$p_{\mathrm{H} 2 \mathrm{O}}=15 \mathrm{~mm} \mathrm{Hg}$, which is the pressure $0.150 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ would exert if by itself in the volume V and temperature $T=293.15 \mathrm{~K}$. Substitute these data into

$$
\begin{gathered}
V=n R T / p \text { to obtain } V=\left(0.150 \mathrm{~g} / 18.0 \mathrm{~g} \mathrm{~mol}^{-1}\right) \times 8.20578 \times 10^{-2} \mathrm{~L} \text { atm } \mathrm{K}^{-1} \mathrm{~mol}^{-1} \times 293.15 \mathrm{~K} \\
\div(15 \mathrm{~mm} \mathrm{Hg} \times 1 \mathrm{~atm} / 760 \mathrm{~mm} \mathrm{Hg})
\end{gathered}
$$

$$
=10.2 \mathrm{~L}
$$

Not asked for, but we can also find the amount of N_{2} :
(1) We can use the ideal gas law in the final picture:

$$
\begin{aligned}
& \qquad \begin{aligned}
& n=p V / R T=745 \mathrm{~mm} \mathrm{Hg} \times(1 \mathrm{~atm} / 760 \mathrm{~mm} \mathrm{Hg}) \times 10.2 \mathrm{~L} \\
& \div\left\{8.20578 \times 10^{-2} \mathrm{Latm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 293.15 \mathrm{~K}\right\}
\end{aligned} \\
& =0.414 \mathrm{~mol} \mathrm{~N}_{2}
\end{aligned}
$$

3. A mixture of nitrogen and water vapor is admitted to a flask which contains a solid drying agent. Immediately after admission, the pressure in the flask is 760 mm . After standing some hours, the pressure reaches a steady value of 745 mm . (a) Calculate the composition, in mole percent, of the original mixture. (b) If the experiment is done at $20^{\circ} \mathrm{C}$ and the drying agent increase in weight by 0.150 g what is the volume of the flask? (The volume occupied by the drying agent may be ignored.)

Problem 4.

Draw a picture

Original mixture

$\begin{aligned} & \mathrm{O}_{2} \\ & \mathrm{H}_{2} \end{aligned}$	00000 hot CuO drying agent	

Question: \quad In original mixture, $x_{02}=$? $x_{\mathrm{H} 2}=$?

Principles and Definitions:

Chemical reactions:
$\mathrm{O}_{2}+\mathrm{CuO} \rightarrow$ no reaction
$\mathrm{H}_{2}+\mathrm{CuO} \rightarrow \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O} \quad$ amount of Cu formed is stoichiometric - based on moles H_{2} reacted.
$1 / 2 \mathrm{O}_{2}+\mathrm{Cu} \rightarrow \mathrm{CuO} \quad$ amount of O_{2} removed is stoichiometric - based on moles Cu present, which in turn, is the same as moles H_{2} reacted.
Definition of mole fraction: $x_{\mathrm{O} 2}=n_{\mathrm{O} 2} /\left(n_{\mathrm{O} 2}+n_{\mathrm{H} 2}\right)$
Assume ideal gas behavior:
$p V=n R T$

Solution:

Let $n=$ original no. of moles of gas $=n_{\mathrm{O} 2}+n_{\mathrm{H} 2}$
$n=p V / R T=750 \mathrm{~mm} \mathrm{Hg} \times(1 \mathrm{~atm} / 760 \mathrm{~mm} \mathrm{Hg}) \times 100 \mathrm{~cm}^{3} \mathrm{~L} \times\left(1 \mathrm{~L} / 10^{3} \mathrm{~cm}^{3}\right)$ $\div\left\{8.20578 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K} \mathrm{~mol}^{-1} \times(25+273.15) \mathrm{K}\right\}$
$=4.034 \times 10^{-3}$ moles gas
$x_{\mathrm{H} 2}+x_{\mathrm{O} 2}=1$
moles O_{2} in original $=x_{02}\left(4.034 \times 10^{-3}\right.$ moles $)$
moles H_{2} in original $=x_{\mathrm{H} 2}\left(4.034 \times 10^{-3}\right.$ moles $)$
After reaction, no. of moles of O_{2} gas $=p V / R T$

$$
\begin{aligned}
& =750 \mathrm{~mm} \mathrm{Hg} \times(\mathrm{I} \mathrm{~atm} / 760 \mathrm{~mm} \mathrm{Hg}) \times 84.5 \mathrm{~cm}^{3} \mathrm{~L} \times\left(1 \mathrm{~L} / 10^{3} \mathrm{~cm}^{3}\right) \\
& \div\left\{8.20578 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K} \mathrm{Kol}^{-1} \times(25+273.15) \mathrm{K}\right\}
\end{aligned}
$$

$=3.408 \times 10^{-3}$ moles O_{2} gas are left

Let $y=$ moles of H_{2} reacted $\begin{array}{ll}\mathrm{H}_{2}+\mathrm{CuO} \rightarrow \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O} \\ y & y \quad y \quad y \text { moles }\end{array}$
This amount of Cu then reacts : $\quad 1 / 2 \mathrm{O}_{2}+\mathrm{Cu} \rightarrow \mathrm{CuO}$
$1 / 2 y \quad y \quad y \quad$ using up $1 / 2 y$ moles of O_{2}.
From reaction (1), moles of $\mathrm{H}_{2}=n_{\mathrm{H} 2}=x_{\mathrm{H} 2}\left(4.034 \times 10^{-3}\right.$ moles $)=y$

$$
\text { or } X_{\mathrm{H} 2}=y /\left(4.034 \times 10^{-3} \text { moles }\right)
$$

Because of reaction (2), moles of O_{2} left $=x_{\mathrm{O} 2}\left(4.034 \times 10^{-3} \mathrm{moles}\right)-1 / 2 y=3.408 \times 10^{-3} \mathrm{moles}$

$$
\text { or } x_{02}=\left[3.408 \times 10^{-3}+1 / 2 y\right] /\left(4.034 \times 10^{-3}\right)
$$

Since $x_{\mathrm{H} 2}+x_{\mathrm{O} 2}=1$
or

$$
y /\left(4.034 \times 10^{-3} \text { moles }\right)+\left[3.408 \times 10^{-3}+1 / 2 y\right] /\left(4.034 \times 10^{-3}\right)=1
$$

$$
(3 / 2) y=(4.034-3.408) \times 10^{-3}
$$

$$
y=4.173 \times 10^{-4} \text { moles }
$$

Substitute into $x_{\mathrm{H}_{2}}=y /\left(4.034 \times 10^{-3}\right.$ moles $)$ to get $\mathrm{X}_{\mathrm{H} 2}=0.103$

$$
\therefore x_{\mathrm{O} 2}=\left(1-x_{\mathrm{H} 2}\right)=0.897
$$

4. A mixture of oxygen and hydrogen is analyzed by passing it over hot copper oxide and through a drying tube. Hydrogen reduces the CuO to metallic Cu . Oxygen then reoxidizes the copper back to $\mathrm{CuO} .100 \mathrm{~cm}^{3}$ of the mixture measured at $25^{\circ} \mathrm{C}$ and 750 mm yields $84.5 \mathrm{~cm}^{3}$ of dry oxygen measured at $25^{\circ} \mathrm{C}$ and 750 mm after passage over CuO and the drying agent. What is the original composition of the mixture? \{Hint: First write balanced chemical equations for the reactions.\}

Problem 5.

Draw a picture

At ground level $(z=0)$
Atmosphere: $p=1 \mathrm{~atm}$
$V=10^{4} \mathrm{~m}^{3} \mathrm{He}$
$T=(20+273.15) \mathrm{K}$ ain \uparrow 个 ain
mass of empty balloon $=1.3 \times 10^{6} \mathrm{~g}$
Total mass $=m_{\text {balloon }}+m_{\text {load }}+m_{\text {He }}$

$$
\text { At } z=h=?
$$

$$
p=\boldsymbol{?} \mathrm{atm}
$$

$$
V=10^{4} \mathrm{~m}^{3} \mathrm{He}
$$

$$
T=(20+273.15) \mathrm{K}
$$

$$
\text { mass of empty balloon }=1.3 \times 10^{6} \mathrm{~g}
$$

Total mass $=m_{\text {balloon }}+0.80\left(m_{\text {load }}\right)+m_{\text {He }}$

Question:

$$
h=?
$$

Principles and Definitions:

1. Archimedes principle : At equilibrium, the surrounding fluid (air, in this case) supports a body (balloon + load it is carrying) whose weight is equal to the weight of the displaced fluid.
This means:
at height $Z=h$ equilibrium is reached when mass of displaced air $=m_{\text {balloon }}+0.80\left(m_{\text {load }}\right)+m_{\mathrm{He}}$ at ground level $z=0$, equilibrium is reached when mass of displaced air $=m_{\text {balloon }}+m_{\text {load }}+m_{\mathrm{He}}$
2. Barometric formula: $\rho / \rho_{0}=\rho / \rho_{0}=\exp [-M g h / R T]$
3. Assume ideal gas behavior for both air and $\mathrm{He}: p V=n R T$ or units: $\mathrm{J} \equiv \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$
Assume that we can neglect the volume of air displaced by the load in comparison to the volume of the balloon.

Solution:

At ground level, the mass of displaced air $=\rho_{0} V \quad$ At h, the mass of displaced air $=\rho V$
The equilibrium conditions are:
we obtain

From eq. (1), we obtain
$\therefore m_{\text {load }}=1.1972 \times 10^{7} \mathrm{~g}-\left[1.3 \times 10^{6} \mathrm{~g}+1.663 \times 10^{6} \mathrm{~g}\right]=9.01 \times 10^{6} \mathrm{~g}$
Substitute this into eq. (3),

$$
\begin{aligned}
\rho / \rho_{0} & =\left[1.3 \times 10^{6}+1.663 \times 10^{6}+0.80 \times 9.01 \times 10^{6}\right] /\left[1.3 \times 10^{6}+1.663 \times 10^{6}+9.01 \times 10^{6}\right]=0.85 \\
\rho / \rho_{0} & =0.85=\exp [-M g h / R T] \\
& =\exp \left[28.8 \mathrm{~g} \mathrm{~mol}^{-1} \times 1 \mathrm{~kg} / 10^{3} \mathrm{~g} \times 9.80665 \mathrm{~m} \mathrm{~s}^{-2} \times h \mathrm{~m} / 8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 293.15 \mathrm{~K}\right] \\
0.85 & =\exp \left[1.159 \times 10^{-4} h\right] \quad \text { or } 1.159 \times 10^{-4} h=\ln (0.85), \quad h=1.402 \times 10^{3} \mathrm{~m} \quad \text { Answer }
\end{aligned}
$$

$$
\begin{align*}
& m_{\text {balloon }}+m_{\text {load }}+m_{\mathrm{He}}=\rho_{0} \mathrm{~V} \text { (1) and } m_{\text {balloon }}+0.80\left(m_{\text {load }}\right)+m_{\mathrm{He}}=\rho \mathrm{V} \tag{2}\\
& \text { Eq. (2) } \div \text { Eq. (1): } \quad \rho / \rho_{0}=\left[m_{\text {balloon }}+0.80\left(m_{\text {load }}\right)+m_{\text {He }}\right] /\left[m_{\text {balloon }}+m_{\text {load }}+m_{\text {He }}\right] \tag{3}\\
& m_{\mathrm{He}}=\mathrm{M}_{\mathrm{He}}(p V / R T) \\
& =4.0 \mathrm{~g} \mathrm{~mol}^{-1} \times 1 \mathrm{~atm} \times 10^{4} \mathrm{~m}^{3} \times\left(10^{3} \mathrm{~L} / 1 \mathrm{~m}^{3}\right) \\
& \div\left[8.20578 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 293.15 \mathrm{~K}\right]=1.663 \times 10^{6} \mathrm{~g} \\
& \rho_{0} V=m_{\text {air }} \\
& =28.8 \mathrm{~g} \mathrm{~mol}^{-1} \times 1 \mathrm{~atm} \times 10^{4} \mathrm{~m}^{3} \times\left(10^{3} \mathrm{~L} / 1 \mathrm{~m}^{3}\right) \\
& \div\left[8.20578 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 293.15 \mathrm{~K}\right] \quad=1.1972 \times 10^{7} \mathrm{~g} \\
& =28.8 \mathrm{~g} \mathrm{~mol}^{-1} \times 1 \mathrm{~atm} \times 10^{4} \mathrm{~m}^{3} \times\left(10^{3} \mathrm{~L} / 1 \mathrm{~m}^{3}\right)
\end{align*}
$$

Approximate method: If $m_{\text {balloon }}+m_{\mathrm{He}} \ll m_{\mathrm{load}}$ then, the equilibrium conditions are:

$$
\begin{gathered}
m_{\text {load }} \approx \rho_{0} V \\
\rho / \rho_{0} \approx 0.80=\exp [-M \mathrm{gh} / R T] \\
=\exp \left[28.8 \mathrm{~g} \mathrm{~mol}^{-1} \times 1 \mathrm{~kg} / 10^{3} \mathrm{~g} \times 9.80665 \mathrm{~m} \mathrm{~s}^{-2} \times h \mathrm{~m} / 8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 293.15 \mathrm{~K}\right] \\
0.80 \approx \exp \left[1.159 \times 10^{-4} h\right] \quad \text { or } \quad 1.159 \times 10^{-4} h \approx \ln (0.80), \quad \therefore h \approx 1.926 \times 10^{3} \mathrm{~m}
\end{gathered}
$$

5. A balloon having a capacity of $10,000 \mathrm{~m}^{3}$ is filled with helium at $20^{\circ} \mathrm{C}$ and 1 atm pressure. If the balloon is loaded with 80% of the load that it can lift at ground level, at what height will the balloon come to rest? Assume that the volume of the balloon is constant, the atmosphere isothermal, $20^{\circ} \mathrm{C}$; the molecular weight of air is 28.8 and the ground level pressure is 1 atm . The mass of the balloon is 1.3×10^{6} g.
6. Composition of the atmosphere as function of height above ground level

Equation	Basis for the equation	Eq. \#
$\mathrm{p}_{\mathrm{i}} / \mathrm{p}_{\mathrm{i} 0}=\exp \left[-\mathrm{M}_{\mathrm{i}} \mathrm{~g} \mathrm{z} / \mathrm{RT}\right]$ $\text { joule }=\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$ use M in $\mathrm{kg} \mathrm{mol}^{-1}$ and z in m or equivalently, use M in $\mathrm{g} \mathrm{mol}^{-1}$ and z in km with $\mathrm{g}=9.8 \mathrm{~m} \mathrm{~s}^{-2}$ so that Mgz is in $\mathrm{J} \mathrm{mol}^{-1}$ thus use $\mathrm{R}=8.31451 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$	Relation of partial pressure of a gas at height Z relative to its partial pressure at ground level depends on molar mass of gas, as derived in lecture notes part 1 RT has units of energy, has to have same units as Mgz Use $\mathrm{g}=9.8 \mathrm{~m} \mathrm{~s}^{-2}$	1
$\begin{aligned} & \text { For } \mathrm{N}_{2}, \\ & \text { molar mass }=2(14)=28 \mathrm{~g} \mathrm{~mol}^{-1} \\ & \mathrm{p}_{\mathrm{N} 20}=0.7809(1 \mathrm{~atm})=0.7809 \mathrm{~atm} \\ & \mathrm{p}_{\mathrm{N} 2} / \mathrm{p}_{\mathrm{N} 20} \\ & \quad=\exp \left[-28 \mathrm{~g} \mathrm{~mol}^{-1} \bullet \mathrm{z} \cdot 9.8 \mathrm{~m} \mathrm{~s}^{-2}\right. \\ & \quad /\left(8.31451 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} 298 \mathrm{~K}\right] \\ & \quad=\exp \left[-28 \mathrm{~g} \mathrm{~mol}^{-1} \bullet \mathrm{z} \mathrm{~km} \bullet 0.003955\right] \end{aligned}$	At ground level $\mathrm{p}_{\mathrm{tot}}=1 \mathrm{~atm}, \mathrm{~T}=298 \mathrm{~K}$ $\mathrm{p}_{\mathrm{i}}=\text { mole fraction } \bullet \mathrm{p}_{\mathrm{tot}}$	2 3
$\mathrm{p}_{\mathrm{i} 0}=$ mole fraction •1 atm At Z km $\mathrm{p}_{\mathrm{i}}=\mathrm{p}_{\mathrm{i} 0} \exp \left[\left[-\mathrm{M} \mathrm{~g} \mathrm{~mol}{ }^{-1} \bullet \mathrm{z} \mathrm{~km}^{\mathrm{k}} \bullet\right.\right.$ $0.003955]$ $p_{\text {tot }}$ at $Z \mathrm{~km}=$ sum over p_{i} Using this $p_{\text {tot }}$ we can find the mole fractions at $Z \mathrm{~km}$ by mole fraction $=p_{i} / p_{\text {tot }}$ All answers are in the table below.	How to fill the table This is the $\mathrm{p}_{\mathrm{i} 0}$ we will use for all calculations at different heights z. Note that in the earth's atmosphere T is different at different heights above ground level, but we will ignore this and use $\mathrm{T}=298 \mathrm{~K}$ Note that the mol \% of heavier gases are going down, whereas the mol \% of lighter gases (He, Ne) are going up	4 5 6 7 7 8

Gas	mole \% at grd level	$\mathrm{p}_{\text {io }}$ atm	molar mass	p_{i} atm at 50 km	mole \% at 50 km	p_{i} atm at 100 km	mole \% at 100 km
$\mathrm{~N}_{2}$	78.09	0.7809	28	0.003075	89.01	1.211×10^{-5}	87.70
O_{2}	20.93	0.2093	32	0.000374	10.82	6.67×10^{-7}	4.83
Ar	0.93	0.0093	39.95	3.44×10^{-6}	0.0996	1.28×10^{-9}	0.009
CO_{2}	0.03	0.0003	44	4.99×10^{-8}	0.0015	8.31×10^{-12}	6×10^{-5}
Ne	0.0018	1.8×10^{-5}	20.18	3.33×10^{-7}	0.0098	6.15×10^{-9}	0.044
He	0.0005	5×10^{-6}	4.003	2.27×10^{-6}	0.0657	1.028×10^{-6}	7.44
$\mathrm{p}_{\text {tot }}$		1 atm		0.003455		1.381×10^{-5}	

7. (a) Total number of molecules

\begin{tabular}{|c|c|c|}
\hline Equation \& Basis for the equation \& Eq.
\(\#\) \\
\hline \(\mathrm{p}_{\mathrm{i}} / \mathrm{p}_{\mathrm{i} 0}=\exp \left[-\mathrm{M}_{\mathrm{i}} \mathrm{g} \mathrm{z} / \mathrm{RT}\right]\) \& Using the barometric formula \& 1 \\
\hline \begin{tabular}{l}
Let A = area of earth's surface Assume \(\mathrm{p}_{\mathrm{io}}\) for the gas throughout \(z=0\) up to \(z=R T / M g\) \\
This means number density of gas, is constant \(=\mathrm{N}_{\mathrm{i} 0}\) molecules \(\mathrm{L}^{-1}\), \\
throughout the volume, the volume \(\mathrm{V}=\mathrm{A}\left(\mathrm{RT} / \mathrm{M}_{\mathrm{i}} \mathrm{g}\right)\) \\
Total number of molecules, \(\mathrm{N}_{\mathrm{i}}\) molecules \(=\mathrm{N}_{\mathrm{i} 0}\) molecules \(\mathrm{L}^{-1} \bullet \mathrm{~V} \mathrm{~L}\)
\[
N_{i}=N_{i 0} A R T / M_{i} g \quad \text { Q.E.D. }
\]
\end{tabular} \& \begin{tabular}{l}
Given
\[
V=A \bullet Z
\] \\
Using V from Eq 3
\end{tabular} \& 2
3 \\
\hline \begin{tabular}{l}
On the other hand, total number of molecules in the atmosphere can be obtained by integrating from \(z=0\) to \(\infty\) \\
Let \(d N_{i}=\) number density in the slice between \(z\) and \(z+d z\) \\
\(d N_{i}=A N_{i 0} \exp \left[-M_{i} g z / R T\right] d z\) \\
\(\mathrm{N}_{\mathrm{i}}=\int \mathrm{d} \mathrm{N}_{\mathrm{i}}\) \\
\(=\int_{0}^{\infty} A N_{i 0} \exp \left[-M_{i} g z / R T\right] d z\) \\
\(=A N_{i 0} \exp \left[-M_{i} g z / R T\right] /\left(-M_{i} g / R T\right) \mid 0^{\infty}\)
\[
\begin{aligned}
= \& \left.\left\{-A N_{i 0} R T / M_{i} g\right\} \bullet \exp \left[-M_{i} g z / R T\right]\right|_{0} ^{\infty} \\
\& =\left\{-A N_{i 0} R T / M_{i} g\right\} \bullet[0-1] \\
N_{i} \& =A N_{i 0} R T / M_{i} g \quad \text { Q.E.D. }
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
Use the barometirc formula in Eq 1 for how number density drops off with height Integrate over all these \(\mathrm{dN}_{\mathrm{i}}\) \\
This is the same total number of molecules as for a uniform partial pressure at ground level through a height \(\mathrm{RT} / \mathrm{M}_{\mathrm{i}} \mathrm{g}\) and no molecules above this height. (That is, Eq 8 is the same as Eq 4)
\end{tabular} \& 5
6
7

8

\hline
\end{tabular}

7. (b) Total mass of earth's atmosphere

Equation	Basis for the equation	Eq. $\#$
$\mathrm{N}_{\mathrm{i}}=(\mathrm{ART} / \mathrm{g})\left(\mathrm{N}_{\mathrm{i} 0} / \mathrm{M}_{\mathrm{i}}\right)$ is the total number of molecules of type i in the atmosphere. mass of i in the atmosphere $\begin{gathered} =\left(N_{i} / N_{\mathrm{Avo}}\right) \mathrm{M}_{\mathrm{i}} \\ \mathrm{~m}_{\text {tot }}=\text { all mass }=\left(1 / \mathrm{N}_{\mathrm{Avo}}\right) \Sigma_{\mathrm{i}} \mathrm{~N}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}} \\ =\left(1 / \mathrm{N}_{\mathrm{Avo}}\right) \Sigma_{\mathrm{i}}(\mathrm{ART} / \mathrm{g}) \mathrm{N}_{\mathrm{io}} \\ =(\mathrm{A} / \mathrm{g}) \mathrm{RT} \Sigma_{\mathrm{i}} \mathrm{~N}_{\mathrm{io}} / \mathrm{N}_{\mathrm{Avo}} \end{gathered}$ RT $\Sigma_{\mathrm{i}} \mathrm{N}_{\mathrm{i} 0} / \mathrm{N}_{\text {Avo }}$ gives total pressure at ground level, that is, p_{0}. Total mass of the atmosphere is then $\mathrm{m}_{\mathrm{tot}}=(\mathrm{A} / \mathrm{g}) \mathrm{p}_{0}$ Q.E.D.	Derived in 7(a) above Summing up over all i and Using Eq 2 Using N_{i} from Eq 1 Rearranging $\sum_{i} N_{i 0} / N_{\text {Avo }}$ is $\mathrm{mol} \mathrm{L}^{-1}$ at ground level Using ideal gas law $p=R T(n / V)$ Substituting p_{0} into Eq 4	1 2 3 4 4 5
OR ELSE $\begin{array}{ll} F=\left(\sum_{i} N_{i} M_{i}\right) \bullet g=m_{\text {tot }} \bullet g & \text { also } F=p_{0} A \\ m_{\text {toto }} \bullet g=p_{0} A & \text { Q.E.D. } \end{array}$	Fundamental equations for Force	

7. (c) Total mass of earth's atmosphere in grams

Equation	Basis for the equation	Eq. $\#$
$\mathrm{~m}_{\text {tot }}=(\mathrm{A} / \mathrm{g}) \mathrm{p}_{0}$	Derived in part 7 (b)	1
$\mathrm{r}=6.37 \times 10^{8} \mathrm{~cm}$	Given radius of earth	2
$\mathrm{A}=4 \mathrm{r}^{2}=4(3.14159)\left(6.37 \times 10^{8}\right)^{2}$ $=509.9 \times 10^{16} \mathrm{~cm}^{2}$	surface area of a sphere	3
$\mathrm{~g}=980 \mathrm{~cm} \mathrm{~s}^{-2}$	Acceleration of gravity constant	4
$\mathrm{p}_{0}=1 \mathrm{~atm}=101325 \mathrm{~Pa}$ $=101325 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$	1 Pa is $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}$	5
$\mathrm{m}_{\text {tot }}=(\mathrm{A} / \mathrm{g}) \mathrm{p}_{0}=509.9 \times 10^{16} \mathrm{~cm}^{2}$ 980 cm s $\bullet 10^{-2} \mathrm{~m} / \mathrm{cm}^{-2} \bullet 101325 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$ $\mathrm{~m}_{\text {tot }}=527.2 \times 10^{16} \mathrm{~kg} \quad$ Answer		

8. Ar from Julius Caesar's last breath

Equation	Basis for the equation	Eq.
```last breath \(=500 \mathrm{~cm}^{3}\) at 300 K 1 atm last breath \(n_{\text {tot }}=\frac{(0.500 \mathrm{~L})(1 \mathrm{~atm})}{(0.0820578) 300 \mathrm{~K}}\) \(\mathrm{n}_{\text {tot }}=0.02031 \mathrm{~mol}\) 1 mole \% Ar : 0.0002031 mol Ar```	Given   Assuming ideal gas behavior	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
0.0002031 mol Ar distributed throughout earth's atmosphere $=0.0002031 \mathrm{~mol} \bullet 6.022 \times 10^{23}$ atoms $\mathrm{mol}^{-1}$ $=1.22 \times 10^{20} \mathrm{Ar}$ atoms	$\mathrm{N}_{\text {Avo }}$	3
At $z=R T / M_{A r} g$ a uniform distribution of gas throughout the volume will have the equivalent Ar content as entire atmosphere $\begin{aligned} & \mathrm{z}=\left(8.31451 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2} \mathrm{~m}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\ & \bullet(300 \mathrm{~K}) / 0.03995 \mathrm{~kg} \mathrm{~mol}^{-1} 9.80 \mathrm{~m} \mathrm{~s}^{-2} \\ & \mathrm{z}=6371 \mathrm{~m} \end{aligned}$	We proved this in problem 7 (a)   1 Pa is $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}$   Atomic mass of $\mathrm{Ar}=0.03995 \mathrm{~kg} \mathrm{~mol}^{-1}$ $\mathrm{g}=9.80 \mathrm{~m} \mathrm{~s}^{-2}$	4
$\begin{aligned} & \text { Volume }=A \bullet z \\ & A=509.9 \times 10^{16} \mathrm{~cm}^{2} \\ & z=6371 \times 10^{2} \mathrm{~cm} \\ & \text { Volume }=3.248573 \times 10^{24} \mathrm{~cm}^{3} \\ & \text { has } 1.22 \times 10^{20} \mathrm{Ar} \text { atoms } \end{aligned}$	From 7 (c) we found surface area of the earth	5
To get at least one Ar atom we need to inhale at least $\begin{aligned} & 3.249 \times 10^{24} \mathrm{~cm}^{3} / 1.22 \times 10^{20} \\ & =2.663 \times 10^{4} \mathrm{~cm}^{3} \end{aligned}$   One inhalation is $500 \mathrm{~cm}^{3}$ $\begin{aligned} & 2.663 \times 10^{4} \mathrm{~cm}^{3} / 500 \mathrm{~cm}^{3} \\ & =53 \text { inhalations } \end{aligned}$   Answer	Given	6

