Solutions to Problem Set 2

1. isothermal	reversible	
3 moles ideal gas 20.0 L, 300 K	→ 60.0 L, 300 K	
Equation	Basis for the equation	Eq.
		#
$d\mathbf{U} = (\partial \mathbf{U} / \partial T)_V dT + (\partial \mathbf{U} / \partial V)_T dV$	$.\mathbf{U} = \mathbf{U}(T,V)$	1
dT = 0	.Given	2
$(\partial \mathbf{U}/\partial \mathbf{V})_{\mathrm{T}} = 0$.Given an ideal gas, property of an ideal gas	3
$\Delta \mathbf{U} = \int d\mathbf{U} = 0 \qquad \mathbf{Answer}$		4
d H = (∂ H /∂T) _p dT + (∂ H /∂p) _T dp	. H = H (T,p)	5
dT = 0	.Given	
$(\partial \mathbf{H}/\partial \mathbf{p})_{\mathrm{T}} = 0$. property of an ideal gas	6
$\Delta H = \int dH = 0$ Answer		7
$\delta W = -p_{op} dV$	Definition	8
$p_{op} = p_{gas}$.reversible expansion	9
p _{gas} = nRT/V	ideal gas equation of state	10
W = -∫ (nRT/V)dV	.Using Eq 8,9,10 in and integrating between given	11
= - nRT ln(V _f /Vi)	initial and final conditions	12
= - 3mol (8.31451 J mol⁻¹ K⁻¹)		
 300 K In(60.0/20.0) 		
W = - 8220. J		13
Answer		
$\Delta \mathbf{U} = \mathbf{q} + \mathbf{W}$.First Law of thermodynamics	14
q = -W = + 8220. J Answer	.Applying Eq 4, 14 and 13	

2. iso	othermal, reversible	
1 mole van der Waals gas 10.0 L, 300	$K \rightarrow 30.0 \text{ L}, 300 \text{ K}$	
Equation	Basis for the equation	Eq.
		#
$d\mathbf{U} = (\partial \mathbf{U} / \partial \mathbf{T})_{V} d\mathbf{T} + (\partial \mathbf{U} / \partial V)_{T} d\mathbf{V}$	$.\mathbf{U} = \mathbf{U}(T,V)$	1
dT = 0	.Given	2
$p = RT/(V-b) - a/V^2$	van der Waals Equation of state, V is molar	3
	volume	
$(\partial \mathbf{U}/\partial V)_T = T(\partial p/\partial T)_V - p$	derived from first and second law, as we shall see	4
	derived later in lecture notes part 4	
$(\partial p/\partial T)_V = (\partial /\partial T)_V \{ RT/(V-b) - a/V^2 \}$	Apply to a van der Waals gas	5
$(\partial p/\partial T)_V = R/(V-b)$	Differentiating, provided a is not a function of T, as	6
	is the case in this problem	
$(\partial \mathbf{U}/\partial \mathbf{V})_{T} = T(\partial p/\partial T)_{V} - p$		7
$= RT/(V-b) - \{ RT/(V-b) - a/V^2 \}$		
$= a/V^2$		

$\Delta \mathbf{U} = \int (\partial \mathbf{U} / \partial \mathbf{V})_{T} d\mathbf{V} = \mathbf{a} \int d\mathbf{V} / \mathbf{V}^2$.Substituting Eq 7 and Eq 2 into Eq 1 and	8
$= -a[V_{f}^{-1} - V_{i}^{-1}]$	integrating	
= - 5.49 L ² atm mol ⁻² [30 ⁻¹ – 10 ⁻¹]	given a = 5.49 L ² atm mol ⁻²	
$= + 0.366 \text{ L} \text{ atm mol}^{-1}$		
Answer		
$\delta W = -p_{op} dV$	Definition	9
$p_{op} = p_{gas}$.reversible expansion	10
$p_{gas} = RT/(V-b) - a/V^2$	van der Waals equation of state from Eq 3	
$W = -\int (RT/(V-b))dV + a\int dV/V^2$.Using Eq 8,9,10 in and integrating between given	11
= - $RT ln{(V_f-b)/(V_i-b)} - a[V_f^{-1} - V_i^{-1}]$	initial and final conditions	12
$= - (0.0820578 \text{ L atm mol}^{-1} \text{ K}^{-1})$	Given b = 0.064 L mol ⁻¹ , a = 5.49 L ² atm mol ⁻²	
• 300 K In{(30.0-0.064)/(10.0-0.064)}		
+ 5.49 L^2 atm mol ⁻² [30 ⁻¹ – 10 ⁻¹]		
$W = -27.15 + 0.366 = -26.78 L atm mol^{-1}$		13
Answer		
$\Delta \mathbf{U} = \mathbf{q} + \mathbf{W}$.First Law of thermodynamics	14
q = ∆ U -W = 0.366 +26.78 = 27.15	.Applying Eq 4, 14 and 13	15
Answer		
$d\mathbf{H} = (\partial \mathbf{H} / \partial \mathbf{T})_{p} d\mathbf{T} + (\partial \mathbf{H} / \partial p)_{T} dp$. H = H (T,p)	
dT = 0	.Given	
$(\partial \mathbf{H}/\partial \mathbf{p})_T = -T(\partial V/\partial T)_p + V$	derived from first and second law see lecture	
	notes part 4 for derivation. We could use this	
	method but to get $(\partial V/\partial T)_p$ we will have to express	
	V in terms of p from the van der Waals equation of	
	state. This is too time consuming to do.	
$\Delta \mathbf{H} = \Delta \mathbf{U} + \Delta(\mathbf{pV})$	Instead we use $H = U + pV$, by definition	16
$p = RT/(V-b) - a/V^2$	Using the equation of state to find p _i and p _f from	
$p_i = (0.0820578 \text{ L atm mol}^{-1} \text{ K}^{-1})$	known T and V	
•300/(10-0.064) - 5.49/10 ² =2.42 atm		
$p_f = (0.0820578 \text{ L atm mol}^{-1} \text{ K}^{-1})$		
•300/(30-0.064) - 5.49/30 ² =0.816atm		
$\Delta \mathbf{H} = 0.366 + [0.816 \bullet 30.0 - 2.42 \bullet 10.0]$		
= 0.646 L atm mol ⁻¹ Answer		

Equation	Basis for the equation	Eq.
		#
$\delta W = -p_{op}dV$	General definition of work of compression-	1
	expansion	
$W = -p_{op} [dV = -10.0 \text{ atm} \cdot [V_{f} - V_{i}]$	Given, p₀p = constant = 10.0 atm	2
	Integrating Eq 1	
pV = nRT	Ideal gas equation of state	3
$V_f = RT_f / 10.0$ $V_i = R300 / 1.0$	Using given data and Eq 3	4
W = -10.0 atm• [RT _f /10.0 - R300/1.0]	From Eq 2 and 4	5
$d\mathbf{U} = (\partial \mathbf{U} / \partial \mathbf{T})_{V} d\mathbf{T} + (\partial \mathbf{U} / \partial \mathbf{V})_{T} d\mathbf{V}$	General, from $\mathbf{U} = \mathbf{U}(T,V)$	6
$d\mathbf{U} = C_V dT + (\partial \mathbf{U} / \partial V)_T dV$	General, using definition of C _V	7
$(\partial \mathbf{U}/\partial \mathbf{V})_{\mathrm{T}} = 0$	Property of an ideal gas	8
$d\mathbf{U} = \delta \mathbf{q} + \delta \mathbf{W}$	First law of thermodynamics	9
δq = 0, q = 0 Answer	For an adiabatic process, as in this problem	10
∆ U = W +0	From Eq 9 and 10	11
	Case I monatomic ideal gas, $C_V = (3/2)R$	
$\Delta \mathbf{U} = \int C_V dT = C_V [T_f - T_i] = (3/2) R[T_f - 300]$	from Eq 7 and C_V independent of temperature	12
, ,	and = $3/2$ R for monatomic ideal gas, given T _i =300	
(3/2)R[T _f -300] = -10.0 atm●	From Eq 12 and 11 and 5	13
[RT _f /10.0 - R300/1.0]		
T _f = 1380 K Answer	Solving Eq 13 for T _f	14
W = +13.469 kJ Answer	From substituting Eq 14 into Eq 5	15
∆ U = +13.469 kJ Answer	From Eq 11 and Eq 15	16
$d\mathbf{H} = (\partial \mathbf{H} / \partial \mathbf{T})_{\rm p} d\mathbf{T} + (\partial \mathbf{H} / \partial \mathbf{p})_{\rm T} d\mathbf{p}$. H = H (T,p)	17

$d\mathbf{H} = \mathbf{C}_{\mathbf{p}} dT + (\partial \mathbf{H} / \partial \mathbf{p})_{T} d\mathbf{p}$.Using Eq 17 and definition of C _p	18
$(\partial \mathbf{H}/\partial \mathbf{p})_{\mathrm{T}} d\mathbf{p} = 0$	Property of an ideal gas	19
$C_p = C_V + R = (5/2)R$	Property of an ideal gas which is monatomic	20
$\Delta \mathbf{H} = \int C_{p} dT = (5/2) R[T_{f} - T_{i}]$	Using Eq 18, 19, 20 and integrating	21
= (5/2)(8.31451 J mol ⁻¹ K ⁻¹) [1380-300	0]	
= + 20.782 kJ Answer		
Case II	diatomic ideal gas, $C_V = (5/2)R$	22
(5/2)R[T _f -300] = -10.0 atm∙	Using Eq 13 and 22 for a diatomic ideal gas	23
[RT _f /10.0 - R300/1.0	0]	
T _f = 1071.4 K Answer	Solving for T _f	24
W = +16.035 kJ Answer	Substituting T _f into Eq 5	25
$\Delta U = +16.035 \text{ kJ}$ Answer	Replacing C _V by (5/2)R and T _f into Eq 13	26
Δ H = +22.448 kJ Answer	Replacing Cp by $(7/2)R$ and T _f into Eq 23	27
IF n moles instead of n=1 mole		
T _f no change Answer	Multiply both sides of Eq 13 or 23 by n	
W = multiply by n Answer	Extensive property	
$\Delta \mathbf{U} = $ multiply by n Answer	Extensive property	
Δ H = multiply by n Answer	Extensive property	

4. For problems 4 and 6 which are for ideal gases undergoing a reversible adiabatic process, we will start from the general equations and apply these three very specific conditions (ideal gas, adiabatic process, reversible process) to it so that we may end up with equations that we can use for both Problem 4 and Problem 6.

Equation	Basis for the equation	Eq.
		#
d U = δq + δW	First law of thermodynamics	1
$\delta W = -p_{op}dV$	Definition of compression-expansion work	2
$d\mathbf{U} = (\partial \mathbf{U} / \partial \mathbf{T})_{V} d\mathbf{T} + (\partial \mathbf{U} / \partial V)_{T} d\mathbf{V}$	General, from $\mathbf{U} = \mathbf{U}(T,V)$	3
$d\mathbf{U} = C_{V}dT + (\partial \mathbf{U}/\partial V)_{T}dV$	Introduce definition of C _v into Eq 3	4
$\delta q - p_{op} dV = C_V dT + (\partial U / \partial V)_T dV$	From Eq 1, 2, and 4	5
$(\partial \mathbf{U}/\partial \mathbf{V})_{\mathrm{T}} = 0$	Property of an ideal gas	6
δq = 0	For an adiabatic process	7
$- p_{op}dV = C_V dT$	Substituting Eq 6 and 7 into Eq 5	8
$p_{op} = p_{gas}$	For a reversible process the opposing pressure	9
	must match p _{gas} at all times	
$p_{gas} V = nRT$	Equation of state for an ideal gas	10
$-RTdV/V = C_V dT$	Using Eq 9 and 10 in Eq 8 for one mole	11
$- dV/V = (C_V/R) dT/T$	Rearranging	12
$-\ln (V_f/V_i) = (C_V/R) dT/T$	Since C _V is independent of temperature and	13
	integrating	
$(T_f/T_i) = (V_i/V_f)^{(CV/R)}$	Using the definition of In	14
	This form relates initial and final T and V	

$(T_f/T_i) = p_f V_f/p_i V_i$	There are several ways of rearranging Eq 14 into other forms, by using the ideal gas law	15
$p_{f}V_{f}/p_{i}V_{i} = (V_{i}/V_{f})^{(CV/R)}$ $p_{f}/p_{i} = (V_{f}/V_{i})^{-1}(V_{i}/V_{f})^{(CV/R)}$		
$p_f/p_i = (V_f/V_i)^{-1-R/CV} = (V_f/V_i)^{(-CV-R)/CV}$	and using $C_p = C_V + R$	
$p_f/p_i = (V_f/V_i)^{(CV/Cp)}$	This relates initial and final p and V	16
$V_{f}/V_{i} = [p_{f}/p_{i}]^{-(CV/Cp)}$		
$T_f/T_i = [p_f/p_i] \bullet [V_f/V_i]$	We find yet another form	17
$= [p_f/p_i] \bullet [p_f/p_i]^{-(CV/OP)}$ $= [p_f/p_i]^{-(CV/OP)}$		
$T_{f}/T_{i} = [p_{f}/p_{i}]^{R/Cp}$	This relates initial and final p and T	19
	These equations apply only to adiabatic reversible processes for an ideal gas	

We will need equation 19 for problems 4 and 6 which involve adiabatic reversible ideal gas, the assumptions we used in these derivations.

4. adiabatic,	, reversible	
<u>1 mole ideal gas</u> 1.0 atm, 300 K –	\rightarrow 10.0 atm, T _f	
Equation	Basis for the equation	Eq.
		#
$T_f/T_i = [p_f/p_i]^{R/Cp}$	use Eq 19 derived above	
$T_{f}/300 = [10, 0/1, 0]^{R/Cp}$		
$T_{1/300} = [10.0/1.0]^{2/5}$	For an ideal monatomic gas, $C_p = 5/2 R$	
$T_{\rm f}$ = 300 10 ^{2/5} = 754 K	Solve for T _f	1
q = 0 Answer	adiabatic	2
	We choose not to calculate W directly because it	
	is easier to get this value from ΔU	
$d\mathbf{U} = (\partial \mathbf{U} / \partial \mathbf{T})_{\mathbf{V}} d\mathbf{T} + (\partial \mathbf{U} / \partial \mathbf{V})_{\mathbf{T}} d\mathbf{V}$	General, from $\mathbf{U} = \mathbf{U}(T,V)$	3
$d\mathbf{U} = C_V dT + (\partial \mathbf{U} / \partial V)_T dV$	General, using definition of C_V	4
$(\partial \mathbf{U}/\partial \mathbf{V})_{\mathrm{T}} = 0$	Property of an ideal gas	5
$\Delta U = \int C_V dT = (3/2)R[T_f - T_i] =$		6
= 1.5(8.31451 J mol ⁻¹ K ⁻ 1)[754-300]		
$\Delta \mathbf{U} = 5662 \text{ J mol}^{-1} \qquad \text{Answer}$		7
d U = δq + δW	First law of thermodynamics	8
q = 0	For an adiabatic process, as in this problem	9
$\Delta \mathbf{U} = \mathbf{W}$		10
$W = 5662 \text{ J mol}^{-1} \qquad \text{Answer}$		11
$d\mathbf{H} = (\partial \mathbf{H} / \partial \mathbf{T})_{p} d\mathbf{T} + (\partial \mathbf{H} / \partial p)_{T} dp$	$.\mathbf{H} = \mathbf{H}(T,p)$	12
$d\mathbf{H} = \mathbf{C}_{\mathbf{p}} dT + (\partial \mathbf{H} / \partial \mathbf{p})_{T} d\mathbf{p}$.Using Eq 12 and definition of C _p	13
$(\partial \mathbf{H}/\partial \mathbf{p})_{\mathrm{T}} \mathbf{d} \mathbf{p} = 0$	Property of an ideal gas	14

$C_p = C_V + R = (5/2)R$	Property of an ideal gas which is monatomic	15
$\Delta \mathbf{H} = \int C_{p} dT = (5/2) R[T_{f} - T_{i}]$	Using Eq 13, 14, 15 and integrating	16
$= (5/2)(8.31451 \text{ J mol}^{-1} \text{ K}^{-1}) [754-300]$		
= + 9437 J mol ⁻¹ Answer		

E	
Э	

5. adiabatic, constant p_{op} = 1.0 atm 1 mole ideal gas 10 atm, 300 K \rightarrow 1.0 atm, T_f This is very similar to Problem 3

Equation	Basis for the equation	Eq. #
$\delta W = -p_{en}dV$	General definition of work of compression-	1
	expansion	
$W = -p_{op}[dV] = -1.0 \text{ atm} \cdot [V_f - V_i]$	Given, p_{op} = constant = 1.0 atm	2
	Integrating Eq 1	
pV = nRT	Ideal gas equation of state	3
$V_{\rm f} = RT_{\rm f}/1.0$ $V_{\rm i} = R300/10.0$	Using given data and Eq 3	4
W = -1.0 atm• [RT _f /1.0 - R300/10.0]	From Eq 2 and 4	5
$d\mathbf{U} = (\partial \mathbf{U} / \partial \mathbf{T})_{V} d\mathbf{T} + (\partial \mathbf{U} / \partial V)_{T} d\mathbf{V}$	General, from $\mathbf{U} = \mathbf{U}(T,V)$	6
$d\mathbf{U} = C_V dT + (\partial \mathbf{U} / \partial V)_T dV$	General, using definition of C_V	7
$(\partial \mathbf{U}/\partial \mathbf{V})_{\mathrm{T}} = 0$	Property of an ideal gas	8
d U = δq + δW	First law of thermodynamics	9
$\delta q = 0, q = 0$ Answer	For an adiabatic process, as in this problem	10
∆ U = W +0	From Eq 9 and 10	11
	Case I monatomic ideal gas, $C_V = (3/2)R$	
$\Delta \mathbf{U} = \int C_V dT = C_V [T_f - T_i] = (3/2) R[T_f - 300]$	from Eq 7 and C_V independent of temperature	12
	and = $3/2$ R for monatomic ideal gas, given	
	$T_i=300$	
(3/2)R[1 _f -300]	From Eq 12 and 11 and 5	13
$= -1.0 \text{ atm} \cdot [RI_{f}/1.0 - R300/10.0]$		
$I_f = 192 \text{ K}$ Answer	Solving Eq 13 for 1 _f	14
W = -1347 J Answer	From substituting Eq 14 into Eq 5	15
$\Delta \mathbf{U} = -1347 \mathbf{J} \qquad \text{Answer}$		16
$d\mathbf{H} = (\partial \mathbf{H} / \partial \mathbf{I})_{p} d\mathbf{I} + (\partial \mathbf{H} / \partial p)_{T} dp$	H = H(1,p)	17
$d\mathbf{H} = \mathbf{C}_{\mathbf{p}} dT + (\partial \mathbf{H} / \partial \mathbf{p})_{T} d\mathbf{p}$	Using Eq 17 and definition of C _p	18
$(\partial \mathbf{H}/\partial \mathbf{p})_{T} d\mathbf{p} = 0$	Property of an ideal gas	19
$C_p = C_V + R = (5/2)R$	Property of an ideal gas which is monatomic	20
$\Delta \mathbf{H} = \mathbf{J} \mathbf{C}_{p} d\mathbf{T} = (5/2) \mathbf{R} [\mathbf{T}_{f} - \mathbf{T}_{i}]$	Using Eq 18, 19, 20 and integrating	21
$= (5/2)(8.31451 \text{ J mol}^{-1} \text{ K}^{-1}) [192-300]$		
= - 2244.8 J Answer		
	$U_V = (5/2)R$ as in a diatomic ideal gas	22
$(5/2)R[1_{f}-300] = -1.0 \text{ atm} \bullet$	Using Eq.13 and 22 for a diatomic ideal gas	23
$[RI_{f}/1.0 - R300/10.0]$	Calving for T	24
$I_f = 222.9 \text{ K}$ Answer	SOIVING TOF If	24
vv = -1603.5 J Answer	Substituting If Into Eq 5	25

∆ U = -1603.5 J	Answer	Replacing C_V by (5/2)R and T_f into Eq 13	26
∆ H = -2244.8 J	Answer	Replacing C_p by (7/2)R and T_f into Eq 23	27

C	
ο.	

adiabatic, reversible

1 mole ideal gas 10.0 atm, 300 K \rightarrow Similar to problem 4 1.0 atm, T_f

Equation	Basis for the equation	Eq.
		#
$T_f/T_i = [p_f/p_i]^{R/Cp}$	use Eq derived previously for prob 4	
$T_{f}/300 = [1.0/10.0]^{R/Cp}$		
$T_{f}/300 = [1.0/10.0]^{2/5}$	For an ideal monatomic gas, $C_p = 5/2 R$	
T _f = 300 (0.1) ^{2/5} = 119.4 K	Solve for 1 _f	1
q = 0 Answer	adiabatic	2
	We choose not to calculate W directly because it	
	is easier to get this value from ΔU	
$d\mathbf{U} = (\partial \mathbf{U} / \partial T)_V dT + (\partial \mathbf{U} / \partial V)_T dV$	General, from $\mathbf{U} = \mathbf{U}(T,V)$	3
$d\mathbf{U} = C_V dT + (\partial \mathbf{U} / \partial V)_T dV$	General, using definition of C_V	4
$(\partial \mathbf{U}/\partial \mathbf{V})_{\mathrm{T}} = 0$	Property of an ideal gas	5
$\Delta \mathbf{U} = \int C_V dT = (3/2) R[T_f - T_i] =$		6
= 1.5(8.31451 J mol ⁻¹ K ⁻ 1)		
•[119.4-300]		7
$\Delta \mathbf{U} = -2252 \text{ J mol}^{-1} \qquad \text{Answer}$		
d U = δq + δW	First law of thermodynamics	8
q = 0	For an adiabatic process, as in this problem	9
$\Delta \mathbf{U} = \mathbf{W}$		10
W = -2252 J mol ⁻¹ Answer		11
$d\mathbf{H} = (\partial \mathbf{H} / \partial \mathbf{T})_{p} d\mathbf{T} + (\partial \mathbf{H} / \partial p)_{T} dp$. H = H (T,p)	12
$d\mathbf{H} = \mathbf{C}_{\mathbf{p}} dT + (\partial \mathbf{H} / \partial \mathbf{p})_{T} d\mathbf{p}$.Using Eq 12 and definition of C _p	13
(∂ H /∂p) _T dp = 0	Property of an ideal gas	14
$C_p = C_V + R = (5/2)R$	Property of an ideal gas which is monatomic	15
$\Delta \mathbf{H} = \int C_{p} dT = (5/2) R[T_{f} - T_{j}]$	Using Eq 13, 14, 15 and integrating	16
= (5/2)(8.31451 J mol ⁻¹ K ⁻¹)		
• [119.4-300]		
$\Delta H = = -3754 \text{ J mol}^{-1}$ Answer		

7. p = constant = 1 atm; warm the air in the house from T_1 to T_2 , air being expelled through keyholes etc as the air expands.

Equation	Basis for the equation	Eq.
		#
$\delta q = nC_p dT$	relation between heat and heat capacity at	1
	constant pressure	
q =∫nC _p dT	Assume that air has a C _p independent of	2
= C _p ∫ndT	temperature.	3
n = pV/RT	What is unusual about this problem is that n is	4
$q = C_p \int (pV/RT) dT$	varying during the heating of the air. Assume that	5
$= C_{p} (pV/R) \int dT/T$	air behaves ideally, and the volume of the house	
$q = C_p (pV/R) \ln T_2/T_1$ Q.E.D.	is V.	6
$q = (7/2)R (1.0 \text{ atm})(2000 \times 10^{3} \text{L})/R$	$10^3 \text{ L} = 1 \text{ m}^3 \text{ given } C_V = (5/2) \text{R}; C_p = (7/2) \text{R}$	7
• In(293/288)		
$= (7/2) 2 \times 10^6 \ln (293/288) \text{ L atm}$		
g = 120477 L atm = 12207 kJ		
Answer		

8. p = constant = 1 atm ; cool the air in the house from T_1 to T_2 , air leaking in from outside as the temperature goes down

Equation	Basis for the equation	Eq.
		#
$n_1 = pV/RT_1$	n_{in} moles of air inside the house, originally at T_1 ,	1
$n = n_1 + n_{out}$	n _{out} moles of air coming in from the outside	2
	originally at T_0 ; all have to be cooled down to	
	temperature T ₂ .	
pV/RT = n	n is changing with T, as air is coming in during the	3
	cooling process	
$n_{out} = n - n_1 = pV/RT - pV/RT_1$		4
$\delta q = nC_p dT$		5
$q = \int nC_p dT = C_p \int ndT$	Definition; C_p is independent of T	6
$q = q_1 + q_2$		7
	total heat extracted = heat from original air (q_1)	
	and heat from outside air (q ₂)	
$q_1 = C_p \int_{T_1}^{T_2} n_1 dT = C_p (pV/RT_1) \int_{T_1}^{T_1} dT$	Substituting Eq 1 into Eq 6	8
$= C_{p}(pV/RT_{1})[T_{2}-T_{1}]$		9
$q_2 = C_p \int_{T0}^{T2} (n - n_1) dT$		10
$= C_p \int_{T0}^{T2} (n - n_1) dT$		
$= C_p \int_{T_0}^{T_2} \{ (pV/RT) - pV/RT_1 \} dT$	Substituting Eq 4 into Eq 6	11
$= C_p (pV/R)$		
• { $\int_{T0}^{T2} dT/T - (1/T_1) \int_{T0}^{T2} dT$ }		
$= C_p (pV/R)$		10
• $\{\ln(T_2/T_0) - [T_2-T_0]/T_1\}$		12

$q = q_1 + q_2 = C_p (pV/R)$	Sum	
•{ $(T_2-T_1)/T_1$)+ ln (T_2/T_0) – [T_2-T_0]/ T_1 }		
$q = C_p(pV/R) \bullet \{ -1 + \ln(T_2/T_0) + (T_0/T_1) \}$		
Q.E.D.		
Different from Prob 7 because the		
number of moles of air are different		
q = (7/2)R((1.0 atm)(2000×10 ³ L)/R)	Substituting $T_1 = 298$, $T_2 = 293$, $T_0 = 308$ K and	
•{ -1 + ln(293/308) + (308/298)}	p=1 atm, V = 2000 m ³	
$q = 3.5(2 \times 10^6)$		
•{ -1 + ln(293/308) + (308/298)} L atm		
q = -114610 L atm = -11613 kJ		
Answer		

9. Friction in the piston is equivalent to a pressure contribution p_f isothermal expansion

one mole ideal gas p ₁ -	$\rightarrow p_2$	
Equation	Basis for the equation	Eq.
		#
W = $-\int p_{op} dV$ without friction	Definition	1
$W = -\int (p_{op} + p_f) dV$ with friction	Gas expands against a greater opposing pressure	2
	because piston sticks a bit	
$d\mathbf{U} = C_V dT + (\partial \mathbf{U} / \partial V)_T dV$	$\mathbf{U} = \mathbf{U}(\mathbf{V}, \mathbf{T})$	3
$(\partial \mathbf{U}/\partial \mathbf{V})_{\mathrm{T}} = 0$	For an ideal gas	4
dT = 0	isothermal	5
$\Delta \mathbf{U} = 0$		6
$\Delta \mathbf{U} = \mathbf{q} + \mathbf{W}$	First law of thermodynamics	7
q = - W	Using Eq 6 and 7	8
$= + \int (p_{op} + p_f) dV$		9
Compression, on the other hand		
W = $-\int p_{op} dV$ without friction	pressure being applied appears less as far as gas	
W = - $\int (p_{op} - p_f) dV$ with friction	is concerned	10
$q = -W = +\int (p_{op} - p_f)dV$		
Problem statement not particularly		
clear about what p _{op} was. Assume		
expanding against a constant		
pressure of p_2 from initially p_1 to final		
pressure of p ₂ ,		
$W = -\int (p_{op} + p_f) dV = (p_2 + p_f) [V_2 - V_1]$		
Isothermal : $V_1 = RT/p_1 = R298/1$ atm		
= (0.0820578)298/1= 24.45 L		
V ₂ = R298/0.5 = 48.90 L		
W = - (0.5+0.1)[24.45-48.90]		
= +14.67 L atm		
q = -14.67 L atm gas had to do extra		
work to overcome friction in piston		

10.

В

С

1 mole ideal gas p_1 , T_1 , $V_1 \rightarrow p_2$, T_2 , $V_2 \rightarrow p_3$, T_3 , $V_3 \rightarrow p_4$, T_4 , V_4 A reversible heating at constant p = 1 atm, from 298 to 373 K

Α

B reversible isothermal expansion to $2V_2$

C reversible adiabatic cooling to 308 K

 $C_{p} = (5/2)R$

Equation	Basis for the equation	Eq.
		#
$p_1 = 1 \text{ atm } T_1 = 298$	Given	1
V ₁ = R298/1 atm = 24.45 L	ideal gas	2
$p_2 = 1 \text{ atm } T_2 = 373$		3
V ₂ = R373/1 atm = 30.61 L		4
$T_3 = T_2 = 373 V_3 = 2V2 = 61.22 L$		5
$p_3 = R373/61.22 = 0.50 atm$		6
T ₄ = 308 K		7
p_4 , V_4 can be calculated but we		
actually do not need these		-
$d\mathbf{U} = C_V dT + (\partial \mathbf{U} / \partial V)_T dV$	$\mathbf{U} = \mathbf{U}(T,V)$ and definition of C_{V}	8
$(\partial \mathbf{U}/\partial \mathbf{V})_{\mathrm{T}} = 0$	property of an ideal gas	9
$d\mathbf{U} = C_V dT$		10
$d\mathbf{H} = C_{p}dT + (\partial \mathbf{H}/\partial p)_{T}dp$	$H = H(T,p)$ and definition of C_p	11
(∂ H /∂p) _T = 0	property of an ideal gas	12
$d\mathbf{H} = C_{p}dT$		13
Step A		
∆ U = (3/2)R(373-298)= 935.4 J	From Eq 10 and given $C_V = (3/2)R$	14
Answer		
∆ H = (5/2)R(373-298)= 1559.0 J	From Eq 13 and given $C_p=C_V+R = (5/2)R$	15
Answer		
$W = -\int p_{op} dV = -1 \text{ atm } [V_2 - V_1]$	Definition and p = constant = 1 atm	16
= -1 [30.61 - 24.45] = - 6.16 L atm		
= - 624.2 J Answer		17
$\Delta \mathbf{U} = \mathbf{q} + \mathbf{W}$	First law of thermodynamics	18
q = ∆ U – W = 935.4 +624.2 =1559.6 J		19
Answer		
Step B		
$\Delta \mathbf{U} = 0 \text{ J}$ Answer	dT = 0	20
$\Delta H = 0 J$ Answer	dT = 0	21
$W = -\int p_{op} dV = -\int p_{gas} dV$	$p_{op} = p_{gas}$ reversible expansion	22
$W = -\int RTdV/V = -R373 \ln(V_3/V_2)$		23
W = - R373 ln 2 = -2149 J Answer		24
$q = \Delta U - W$	First law of thermodynamics	25
q = 0 + 2149 J Answer		26
Step C		
∆ U = (3/2)R(308-373)= - 810.7 J	From Eq 10 and given $C_V = (3/2)R$	27
Answer		

∆ H = (5/2)R(308-373)= - 2	I351.1 J	From Eq 13 and given $C_p = C_V + R = (5/2)R$	
	Answer		
q = 0	Answer	adiabatic	
$\Delta \mathbf{U} = \mathbf{q} + \mathbf{W} \mathbf{W} = \Delta \mathbf{U}$		First law of thermodynamics	
W = - 810.7 J	Answer	From Eq 27	
Overall			
∆ U = 124.7 J			
∆ H = 208.8 J			
W = -3583.9			
q = 3708.6 J			
	Answer		