Solutions to Problem Set 2

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{isothermal, reversible}

\hline 3 moles ideal gas 20.0 L, 300 K \& 60.0 L, 300 K \&

\hline Equation \& Basis for the equation \& Eq.

\hline $\mathrm{d} \mathbf{U}=(\partial \mathbf{U} / \partial \mathrm{T})_{\mathrm{V}} \mathrm{dT}+(\partial \mathbf{U} / \partial \mathrm{V})_{\mathrm{T}} \mathrm{d} V \mathrm{~V}$ \& . $\mathbf{U}=\mathbf{U}(\mathrm{T}, \mathrm{V}$) \& 1

\hline dT = 0 \& .Given \& 2

\hline $(\partial \mathrm{U} / \partial \mathrm{V})_{\mathrm{T}}=0$ \& .Given an ideal gas, property of an ideal gas \& 3

\hline $\Delta \mathbf{U}=\int \mathrm{d} \mathbf{U}=0 \quad$ Answer \& . \& 4

\hline $\mathrm{dH}=(\partial \mathbf{H} / \partial \mathrm{T})_{\mathrm{p}} \mathrm{dT}+(\partial \mathbf{H} / \partial \mathrm{p})_{T} \mathrm{dp}$ \& . $\mathbf{H}=\mathbf{H}(\mathrm{T}, \mathrm{p}$) \& 5

\hline dT $=0$ \& . Given \&

\hline $(\partial \mathbf{H} / \partial \mathrm{p})_{T}=0$ \& . property of an ideal gas \& 6

\hline $\Delta \mathbf{H}=\int \mathrm{dH}=0 \quad$ Answer \& . ${ }^{\text {dentintion }}$ \& 7

\hline $\delta \mathrm{W}=-\mathrm{p}_{\text {op }} \mathrm{dV}$ \& Definition \& 8

\hline $\mathrm{p}_{\text {op }}=\mathrm{p}_{\text {gas }}$ \& .reversible expansion \& 9

\hline $\mathrm{p}_{\text {gas }}=\mathrm{nRT} / \mathrm{V}$ \& .ideal gas equation of state \& 10

\hline $$
\begin{aligned}
& \mathrm{W}=-\int(\mathrm{nRT} / \mathrm{V}) \mathrm{dV} \\
& =-\mathrm{nRT} \ln \left(\mathrm{~V}_{f} / \mathrm{Vi}\right) \\
& =-3 \mathrm{~mol}\left(8.31451 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \\
& \quad \bullet 300 \mathrm{~K} \ln (60.0 / 20.0)
\end{aligned}
$$ \& Using Eq 8,9,10 in and integrating between given initial and final conditions \& 11
12

13

\hline Answer \& \&

\hline $\Delta \mathbf{U}=\mathrm{q}+\mathrm{W}$ \& .First Law of thermodynamics \& 14

\hline $q=-W=+8220 . J$ Answer \& .Applying Eq 4, 14 and 13 \&

\hline
\end{tabular}

2.

isothermal, reversible
1 mole van der Waals gas $10.0 \mathrm{~L}, 300 \mathrm{~K} \quad \rightarrow \quad 30.0 \mathrm{~L}, 300 \mathrm{~K}$

Equation	Basis for the equation	Eq. \#
$\mathrm{d} \mathbf{U}=(\partial \mathbf{U} / \partial \mathrm{T})_{\mathrm{V}} \mathrm{dT}+(\partial \mathbf{U} / \partial \mathrm{V})_{\mathrm{T}} \mathrm{dV}$. $\mathbf{U}=\mathbf{U}(\mathrm{T}, \mathrm{V})$	1
$\mathrm{dT}=0$.Given	2
$p=R T /(V-b)-a / V^{2}$	van der Waals Equation of state, V is molar volume	3
$(\partial U / \partial V)_{T}=T(\partial \mathrm{P} / \partial T)_{V}-p$	derived from first and second law, as we shall see derived later in lecture notes part 4	4
$(\partial \mathrm{p} / \partial \mathrm{T})_{\mathrm{V}}=(\partial / \partial \mathrm{T})_{\mathrm{v}}\left\{\mathrm{RT} /(\mathrm{V}-\mathrm{b})-\mathrm{a} / \mathrm{V}^{2}\right\}$	Apply to a van der Waals gas	5
$(\partial \mathrm{p} / \partial \mathrm{T})_{\mathrm{V}}=\mathrm{R} /(\mathrm{V}-\mathrm{b})$	Differentiating, provided a is not a function of T , as is the case in this problem	6
$\begin{aligned} (\partial \mathrm{U} / \partial \mathrm{V})_{\mathrm{T}} & =\mathrm{T}(\partial \mathrm{p} / \partial \mathrm{T})_{\mathrm{V}}-\mathrm{p} \\ & =\mathrm{RT} /(\mathrm{V}-\mathrm{b})-\left\{\mathrm{RT} /(\mathrm{V}-\mathrm{b})-\mathrm{a} / \mathrm{V}^{2}\right\} \\ & =\mathrm{a} / \mathrm{V}^{2} \end{aligned}$		7

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
\[
\begin{aligned}
\Delta \mathbf{U} \& =\int(\partial \mathbf{U} / \partial \mathrm{V})_{\mathrm{T}} \mathrm{dV}=\mathrm{a} \int \mathrm{dV} / \mathrm{V}^{2} \\
\& =-\mathrm{a}\left[\mathrm{~V}_{\mathrm{f}}^{-1}-\mathrm{V}_{i}^{-1}\right] \\
\& =-5.49 \mathrm{~L}^{2} \mathrm{~atm} \mathrm{~mol}^{-2}\left[30^{-1}-10^{-1}\right] \\
\& =+0.366 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}
\end{aligned}
\] \\
Answer
\end{tabular} \& .Substituting Eq 7 and Eq 2 into Eq 1 and integrating given \(\mathrm{a}=5.49 \mathrm{~L}^{2} \mathrm{~atm} \mathrm{~mol}{ }^{-2}\) \& 8 \\
\hline ठW \(=-\mathrm{p}_{\text {op }} \mathrm{dV}\) \& Definition \& 9 \\
\hline \(\mathrm{p}_{\mathrm{op}}=\mathrm{p}_{\mathrm{gas}}\) \& .reversible expansion \& 10 \\
\hline \(\mathrm{p}_{\text {gas }}=\mathrm{RT} /(\mathrm{V}-\mathrm{b})-\mathrm{a} / \mathrm{V}^{2}\) \& van der Waals equation of state from Eq 3 \& \\
\hline \[
\begin{gathered}
\mathrm{W}=-\int(\mathrm{RT} /(\mathrm{V}-\mathrm{b})) \mathrm{dV}+\mathrm{a} \int \mathrm{dV} / \mathrm{V}^{2} \\
=-\mathrm{RT} \ln \left\{\left(\mathrm{~V}_{\mathrm{f}}-\mathrm{b}\right) /\left(\mathrm{V}_{\mathrm{i}}-\mathrm{b}\right)\right\}-\mathrm{a}\left[\mathrm{~V}_{\mathrm{f}}^{-1}-\mathrm{V}_{\mathrm{i}}^{-1}\right] \\
=-\left(0.0820578 \mathrm{~L} \mathrm{~atm} \mathrm{~mol} \mathrm{I}^{-1} \mathrm{~K}^{-1}\right) \\
\bullet 300 \mathrm{~K} \ln \{(30.0-0.064) /(10.0-0.064)\} \\
+5.49 \mathrm{~L}^{2} \mathrm{~atm} \mathrm{~mol} \mathrm{~mol}^{-2}\left[30^{-1}-10^{-1}\right] \\
\mathrm{W}=-27.15+0.366=-26.78 \mathrm{~L} \text { atm mol }{ }^{-1} \\
\text { Answer }
\end{gathered}
\] \& Using Eq 8,9,10 in and integrating between given initial and final conditions Given \(b=0.064 \mathrm{~L} \mathrm{~mol}^{-1}, a=5.49 \mathrm{~L}^{2} \mathrm{~atm} \mathrm{~mol}{ }^{-2}\) \& 11
12

13

\hline $\Delta \mathbf{U}=\mathrm{q}+\mathrm{W}$ \& .First Law of thermodynamics \& 14

\hline $$
\begin{aligned}
& \mathrm{q}=\Delta \mathrm{U}-\mathrm{W}=0.366+26.78=27.15 \\
& \text { Answer }
\end{aligned}
$$ \& .Applying Eq 4, 14 and 13 \& 15

\hline $\mathrm{d} \mathbf{H}=(\partial \mathbf{H} / \partial \mathrm{T})_{p} \mathrm{dT}+(\partial \mathbf{H} / \partial \mathrm{p})_{T} \mathrm{dp}$ \& . $\mathbf{H}=\mathbf{H}(\mathrm{T}, \mathrm{p}$) \&

\hline $\mathrm{dT}=0$ \& . Given \&

\hline $(\partial H / \partial p)_{T}=-T(\partial V / \partial T)_{p}+V$ \& derived from first and second law see lecture notes part 4 for derivation. We could use this method but to get $(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{p}}$ we will have to express V in terms of p from the van der Waals equation of state. This is too time consuming to do. \&

\hline $\Delta \mathbf{H}=\Delta \mathbf{U}+\Delta(\mathrm{pV})$ \& Instead we use $\mathbf{H}=\mathbf{U}+\mathrm{pV}$, by definition \& 16

\hline $$
\begin{aligned}
& \mathrm{p}=\mathrm{RT} /(\mathrm{V}-\mathrm{b})-\mathrm{a} / \mathrm{V}^{2} \\
& \mathrm{p}_{\mathrm{i}}=\left(0.0820578 \mathrm{~L} \text { atm } \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right) \\
& \bullet 300 /(10-0.064)-5.49 / 10^{2}=2.42 \mathrm{~atm} \\
& \mathrm{p}_{\mathrm{f}}=\left(0.0820578 \mathrm{~L} \text { atm } \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right) \\
& \bullet 300 /(30-0.064)-5.49 / 30^{2}=0.816 \mathrm{~atm}
\end{aligned}
$$ \& Using the equation of state to find p_{i} and p_{f} from known T and V \&

\hline $$
\begin{aligned}
\Delta \mathbf{H} & =0.366+[0.816 \bullet 30.0-2.42 \bullet 10.0] \\
& =0.646 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \quad \text { Answer }
\end{aligned}
$$ \& \&

\hline
\end{tabular}

3.

Initial Final

$$
p_{o p}=10 \mathrm{~atm}
$$

adiabatic compression
monatomic ideal gas

$$
\begin{array}{ll}
\mathrm{n}=1 \mathrm{~mole} & \mathrm{n}=1 \mathrm{~mole} \\
\mathrm{p}_{i}=1 \mathrm{~atm} & \mathrm{p}_{f}=10 \mathrm{~atm} \\
\mathrm{~T}_{i}=27+273.15 & \mathrm{~T}_{f}= \\
\mathrm{V}_{i}=? & \mathrm{~V}_{f}=?
\end{array}
$$

Equation	Basis for the equation	Eq. \#
$\delta \mathrm{W}=-\mathrm{p}_{\text {op }} \mathrm{d} \mathrm{V}$	General definition of work of compressionexpansion	1
$\mathrm{W}=-\mathrm{p}_{\mathrm{op}}\left[\mathrm{d} \mathrm{V}=-10.0 \mathrm{~atm} \bullet\left[\mathrm{~V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}\right]\right.$	Given, $\mathrm{p}_{\mathrm{o}} \mathrm{p}=$ constant $=10.0 \mathrm{~atm}$ Integrating Eq 1	2
$\mathrm{pV}=\mathrm{nRT}$	Ideal gas equation of state	3
$\mathrm{V}_{\mathrm{f}}=\mathrm{R}_{\mathrm{f}} / 10.0 \quad \mathrm{~V}_{\mathrm{i}}=\mathrm{R} 300 / 1.0$	Using given data and Eq 3	4
$\mathrm{W}=-10.0 \mathrm{~atm} \bullet\left[\mathrm{R} \mathrm{T}_{\mathrm{f}} / 10.0-\mathrm{R} 300 / 1.0\right]$	From Eq 2 and 4	5
$\mathrm{d} \mathbf{U}=(\partial \mathbf{U} / \partial \mathrm{T})_{\mathrm{V}} \mathrm{dT}+(\partial \mathbf{U} / \partial \mathrm{V})_{\mathrm{T}} \mathrm{dV}$	General, from $\mathbf{U}=\mathbf{U}(\mathrm{T}, \mathrm{V})$	6
$\mathrm{d} \mathbf{U}=\mathrm{C}_{V} \mathrm{dT}+(\partial \mathbf{U} / \partial \mathrm{V})_{T} \mathrm{dV}$	General, using definition of C_{V}	7
$(\partial \mathbf{U} / \partial \mathrm{V})_{\mathrm{T}}=0$	Property of an ideal gas	8
$\mathrm{d} \mathbf{U}=\delta \mathrm{q}+\delta \mathrm{W}$	First law of thermodynamics	9
ठq = 0, q = 0 Answer	For an adiabatic process, as in this problem	10
$\Delta \mathbf{U}=\mathrm{W}+0$	From Eq 9 and 10	11
	Case I monatomic ideal gas, $\mathrm{C}_{V}=(3 / 2) R$	
$\Delta \mathbf{U}=\int \mathrm{C}_{V} d T=\mathrm{C}_{V}\left[\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right]=(3 / 2) R\left[\mathrm{~T}_{\mathrm{f}}-300\right]$	from Eq 7 and C_{V} independent of temperature and $=3 / 2 \mathrm{R}$ for monatomic ideal gas, given $\mathrm{T}_{\mathrm{i}}=300$	12
$\begin{aligned} (3 / 2) R\left[T_{f}-300\right]= & -10.0 \text { atm } \bullet \\ & {\left[R T_{f} / 10.0-R 300 / 1.0\right] } \end{aligned}$	From Eq 12 and 11 and 5	13
$\mathrm{T}_{\mathrm{f}}=1380 \mathrm{~K}$ Answer	Solving Eq 13 for T_{f}	14
$\mathrm{W}=+13.469 \mathrm{~kJ}$ Answer	From substituting Eq 14 into Eq 5	15
$\Delta \mathbf{U}=+13.469 \mathrm{~kJ} \quad$ Answer	From Eq 11 and Eq 15	16
$\mathrm{dH}=(\partial \mathbf{H} / \partial \mathrm{T})_{\mathrm{p}} \mathbf{d T}+(\partial \mathbf{H} / \partial \mathrm{p})_{T} \mathrm{dp}$. $\mathrm{H}=\mathrm{H}(\mathrm{T}, \mathrm{p}$)	17

$\mathrm{d} \mathbf{H}=\mathrm{C}_{\mathrm{p}} \mathrm{dT}+(\partial \mathbf{H} / \partial \mathrm{p})_{T} \mathrm{dp}$. Using Eq 17 and definition of C_{p}	18
$(\partial \mathbf{H} / \partial \mathrm{p})_{\mathrm{T}} \mathrm{dp}=0$	Property of an ideal gas	19
$\mathrm{C}_{\mathrm{p}}=\mathrm{C}_{V}+\mathrm{R}=(5 / 2) \mathrm{R}$	Property of an ideal gas which is monatomic	20
$\begin{aligned} & \Delta \mathbf{H}=\int \mathrm{C}_{\mathrm{p}} \mathrm{dT}=(5 / 2) \mathrm{R}\left[\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right] \\ & =(5 / 2)\left(8.31451 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right][1380-300] \\ & =+20.782 \mathrm{~kJ} \text { Answer } \\ & =+2 \end{aligned}$	Using Eq 18, 19, 20 and integrating	21
Case II	diatomic ideal gas, $\mathrm{C}_{V}=(5 / 2) \mathrm{R}$	22
$\begin{aligned} (5 / 2) R\left[T_{+}-300\right]= & -10.0 \mathrm{~atm} \bullet \\ & {\left[R T_{f} / 10.0-R 300 / 1.0\right] } \end{aligned}$	Using Eq 13 and 22 for a diatomic ideal gas	23
$\mathrm{T}_{\mathrm{f}}=1071.4 \mathrm{~K}$ Answer	Solving for T_{f}	24
$\mathrm{W}=+16.035 \mathrm{~kJ}$ Answer	Substituting T_{f} into Eq 5	25
$\Delta \mathbf{U}=+16.035 \mathrm{~kJ} \quad$ Answer	Replacing C_{V} by (5/2)R and T_{f} into Eq 13	26
$\Delta \mathbf{H}=+22.448 \mathrm{~kJ}$ Answer	Replacing Cp by (7/2)R and T_{f} into Eq 23	27
IF n moles instead of $\mathrm{n}=1 \mathrm{~mole}$		
T_{f} no change \quad Answer	Multiply both sides of Eq 13 or 23 by n	
$\mathrm{W}=$ multiply by n Answer	Extensive property	
$\Delta \mathrm{U}=$ multiply by n Answer	Extensive property	
$\Delta \mathrm{H}=$ multiply by n Answer	Extensive property	

4. For problems 4 and 6 which are for ideal gases undergoing a reversible adiabatic process, we will start from the general equations and apply these three very specific conditions (ideal gas, adiabatic process, reversible process) to it so that we may end up with equations that we can use for both Problem 4 and Problem 6.

Equation	Basis for the equation	Eq.
$\mathrm{d} \mathbf{U}=\delta \mathrm{q}+\delta \mathrm{W}$	First law of thermodynamics	1
$\delta \mathrm{W}=-\mathrm{p}_{\text {op }} \mathrm{dV}$	Definition of compression-expansion work	2
$\mathrm{d} \mathbf{U}=(\partial \mathbf{U} / \partial \mathrm{T})_{\mathrm{V}} \mathrm{dT}+(\partial \mathbf{U} / \partial \mathrm{V})_{\mathrm{T}} \mathrm{dV}$	General, from $\mathbf{U}=\mathbf{U}(\mathrm{T}, \mathrm{V})$	3
$\mathrm{d} \mathbf{U}=\mathrm{C}_{\mathrm{V}} \mathrm{dT}+(\partial \mathrm{U} / \partial \mathrm{V})_{T} \mathrm{dV}$	Introduce definition of C_{v} into Eq 3	4
$\delta \mathrm{q}-\mathrm{p}_{\mathrm{op}} \mathrm{dV}=\mathrm{C}_{\mathrm{V}} \mathrm{dT}+(\partial \mathrm{U} / \partial \mathrm{V})_{\mathrm{T}} \mathrm{dV}$	From Eq 1, 2, and 4	5
$(\partial \mathbf{U} / 2 \mathrm{~V})_{T}=0$	Property of an ideal gas	6
ठq $=0$	For an adiabatic process	7
- $\mathrm{P}_{\text {op }} \mathrm{dV}=\mathrm{C}_{\mathrm{V}} \mathrm{dT}$	Substituting Eq 6 and 7 into Eq 5	8
$\mathrm{p}_{\text {op }}=\mathrm{p}_{\text {gas }}$	For a reversible process the opposing pressure must match $p_{\text {gas }}$ at all times	9
$\mathrm{p}_{\text {gas }} \mathrm{V}=\mathrm{nRT}$	Equation of state for an ideal gas	10
-RTdV/V = $\mathrm{C}_{V} \mathrm{dT}$	Using Eq 9 and 10 in Eq 8 for one mole	11
$-\mathrm{dV} / \mathrm{V}=\left(\mathrm{C}_{V} / R\right) \mathrm{dT} / \mathrm{T}$	Rearranging	12
- $\ln \left(\mathrm{V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{i}}\right)=\left(\mathrm{C}_{V} / \mathrm{R}\right) \mathrm{dT} / \mathrm{T}$	Since C_{v} is independent of temperature and integrating	13
$\left(\mathrm{T}_{\mathrm{f}} / \mathrm{T}_{\mathrm{i}}\right)=\left(\mathrm{V}_{\mathrm{i}} / \mathrm{V}_{\mathrm{f}}\right)^{(\mathrm{CV} / R)}$	Using the definition of In This form relates initial and final T and V	14

	There are several ways of rearranging Eq 14 into other forms, by using the ideal gas law and using $\mathrm{C}_{\mathrm{p}}=\mathrm{C}_{\mathrm{V}}+\mathrm{R}$ This relates initial and final p and V	15 16
$\begin{aligned} & T_{f} / T_{i}=\left[p_{f} / p_{i}\right]\left[V_{f} / V_{i}\right] \\ & =\left[p_{f} / p_{i}\right] \bullet\left[p_{f} / p_{i}\right]^{-(C V / C p)} \\ & =\left[\left[p_{f} / p_{i}\right]^{(C p-C V) / / p}\right. \\ & \left.T_{f} / T_{i}=\left[p_{f} / p_{i}\right]\right]^{R / C p} \end{aligned}$	We find yet another form This relates initial and final p and T These equations apply only to adiabatic reversible processes for an ideal gas	17 19

We will need equation 19 for problems 4 and 6 which involve adiabatic reversible ideal gas, the assumptions we used in these derivations.

4.

adiabatic, reversible
1 mole ideal gas $1.0 \mathrm{~atm}, 300 \mathrm{~K} \quad \rightarrow \quad 10.0 \mathrm{~atm}, \mathrm{~T}_{\mathrm{f}}$

Equation	Basis for the equation	Eq. $\#$
$\begin{aligned} & \mathrm{T}_{f} / \mathrm{T}_{\mathrm{i}}=\left[\mathrm{p}_{\mathrm{f}} / \mathrm{p}_{\mathrm{i}}\right]^{\mathrm{R} / \mathrm{Cp}} \\ & \mathrm{~T}_{\mathrm{f}} / 300=[10.0 / 1.0]^{\mathrm{R} / C \mathrm{Cp}} \\ & \mathrm{~T}_{\mathrm{f}} / 300=[10.0 / 1.0]^{2 / 5} \\ & \mathrm{~T}_{\mathrm{f}}=30010^{2 / 5}=754 \mathrm{~K} \end{aligned}$	use Eq 19 derived above For an ideal monatomic gas, $C_{p}=5 / 2 R$ Solve for T_{f}	1
$\mathrm{q}=0 \quad$ Answer	adiabatic	2
	We choose not to calculate W directly because it is easier to get this value from ΔU	
$\mathrm{d} \mathbf{U}=(\partial \mathbf{U} / \partial \mathrm{T})_{\mathrm{V}} \mathrm{dT}+(\partial \mathbf{U} / \partial \mathrm{V})_{T} \mathrm{~d} \mathrm{~V}$	General, from U = U(T,V)	3
$\mathrm{d} \mathbf{U}=\mathrm{C}_{V} \mathrm{dT}+(\partial \mathrm{U} / \partial \mathrm{V})_{T} \mathrm{dV}$	General, using definition of C_{V}	4
$(\partial \mathbf{U} / \partial \mathrm{V})_{\mathrm{T}}=0$	Property of an ideal gas	5
$\begin{aligned} \Delta \mathbf{U} & =\int \mathrm{C}_{\mathrm{V}} \mathrm{dT}=(3 / 2) \mathrm{R}\left[\mathrm{~T}_{\mathrm{f}} \mathrm{~T}_{\mathrm{i}}\right]= \\ & =1.5\left(8.31451 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} 1\right)[754-300] \\ \Delta \mathbf{U} & =5662 \mathrm{~J} \mathrm{~mol}^{-1} \end{aligned} \text { Answer }$		6 7
$\begin{aligned} & \mathrm{dU}=\delta q+\delta \mathrm{W} \\ & q=0 \\ & \Delta \mathbf{U}=\mathrm{W} \\ & \mathrm{~W}=5662 \mathrm{~J} \mathrm{~mol}^{-1} \end{aligned}$ Answer	First law of thermodynamics For an adiabatic process, as in this problem	$\begin{aligned} & 8 \\ & 9 \\ & 10 \\ & 11 \end{aligned}$
$\mathrm{d} \mathbf{H}=(\partial \mathbf{H} / \partial \mathrm{T})_{\mathrm{p}} \mathbf{d T}+(\partial \mathbf{H} / \partial \mathrm{p})_{T} \mathrm{dp}$. $\mathbf{H}=\mathbf{H}(\mathrm{T}, \mathrm{p}$)	12
$\mathrm{dH}=\mathrm{C}_{\mathrm{p}} \mathrm{dT}+(\partial \mathbf{H} / \partial \mathrm{p})_{T} \mathrm{dp}$. Using Eq 12 and definition of C_{p}	13
$(\partial \mathbf{H} / \partial \mathrm{p})_{T} \mathrm{dp}=0$	Property of an ideal gas	14

$\mathrm{C}_{\mathrm{p}}=\mathrm{C}_{V}+\mathrm{R}=(5 / 2) \mathrm{R}$	Property of an ideal gas which is monatomic	15
$\begin{aligned} & \Delta \mathbf{H}=\int \mathrm{C}_{\mathrm{p}} \mathrm{dT}=(5 / 2) \mathrm{R}\left[\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{j}}\right] \\ & =(5 / 2)\left(8.31451 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \text { [754-300] } \\ & =+9437 \mathrm{Jmol}^{-1} \\ & \text { Answer } \end{aligned}$	Using Eq 13, 14, 15 and integrating	16

5.	adiabatic, constant $\mathrm{p}_{\mathrm{op}}=1.0 \mathrm{~atm}$
1 mole	

This is very similar to Problem 3

Equation	Basis for the equation	$\begin{aligned} & \text { Eq. } \\ & \text { \# } \end{aligned}$
$\delta \mathrm{W}=-\mathrm{pop}_{\text {op }} \mathrm{dV}$	General definition of work of compressionexpansion	1
$\mathrm{W}=-\mathrm{pop}_{\text {or }}\left[\mathrm{dV}\right.$ = -1.0 atm $\bullet\left[\mathrm{V}_{\mathrm{r}}-\mathrm{V}_{\mathrm{i}}\right]$	Given, $\mathrm{p}_{\mathrm{op}}=$ constant $=1.0 \mathrm{~atm}$ Integrating Eq 1	2
$\mathrm{pV}=\mathrm{nRT}$	Ideal gas equation of state	3
$\mathrm{V}_{\mathrm{f}}=\mathrm{RT}_{\mathrm{f}} / 1.0 \quad \mathrm{~V}_{\mathrm{i}}=\mathrm{R} 300 / 10.0$	Using given data and Eq 3	4
$\mathrm{W}=-1.0 \mathrm{~atm} \bullet\left[\mathrm{RT} \mathrm{f}_{f} / 1.0-\mathrm{R} 300 / 10.0\right]$	From Eq 2 and 4	5
$\mathrm{d} \mathbf{U}=(\partial \mathrm{U} / \partial \mathrm{T})_{\mathrm{V}} \mathrm{dT}+(\partial \mathbf{U} / \partial \mathrm{V})_{\mathrm{T}} \mathrm{d} \mathrm{V}$	General, from $\mathbf{U}=\mathbf{U}(\mathrm{T}, \mathrm{V})$	6
$\mathrm{d} \mathbf{U}=\mathrm{C}_{\mathrm{V}} \mathrm{dT}+(\partial \mathbf{U} / \partial \mathrm{V})_{\mathrm{T}} \mathrm{d} \mathrm{V}$	General, using definition of C_{V}	7
$(\partial \mathbf{U} / \partial \mathrm{V})_{T}=0$	Property of an ideal gas	8
$\mathrm{d} \mathbf{U}=\delta \mathrm{q}+\delta \mathrm{W}$	First law of thermodynamics	9
$\delta q=0, q=0 \quad$ Answer	For an adiabatic process, as in this problem	10
$\Delta \mathbf{U}=\mathrm{W}+0$	From Eq 9 and 10	11
	Case I monatomic ideal gas, $\mathrm{C}_{V}=(3 / 2) \mathrm{R}$	
$\Delta \mathbf{U}=\int_{C_{V} d T}=\mathrm{C}_{V}\left[T_{f}-\mathrm{T}_{\mathrm{i}}\right]=(3 / 2) R\left[T_{f} 300\right]$	from Eq 7 and C_{v} independent of temperature and $=3 / 2 \mathrm{R}$ for monatomic ideal gas, given $\mathrm{T}_{\mathrm{i}}=300$	12
$\begin{aligned} & (3 / 2) R\left[T_{f}-300\right] \\ & \quad=-1.0 \mathrm{~atm} \bullet\left[R T_{f} / 1.0-R 300 / 10.0\right] \end{aligned}$	From Eq 12 and 11 and 5	13
$\mathrm{T}_{\mathrm{f}}=192 \mathrm{~K}$ Answer	Solving Eq 13 for T_{f}	14
W = -1347 J Answer	From substituting Eq 14 into Eq 5	15
$\Delta \mathbf{U}=-1347 \mathrm{~J} \quad$ Answer	From Eq 11 and Eq 15	16
$\mathrm{d} \mathbf{H}=(\partial \mathbf{H} / \partial \mathrm{T})_{p} \mathrm{dT}+(\partial \mathbf{H} / \partial \mathrm{p})_{T} \mathrm{dp}$	$. \mathrm{H}=\mathbf{H}(\mathrm{T}, \mathrm{p})$	17
$\mathrm{dH}=\mathrm{C}_{\mathrm{p}} \mathrm{dT}+(\partial \mathrm{H} / \partial \mathrm{p})_{\mathrm{T}} \mathrm{dp}$	Using Eq 17 and definition of C_{p}	18
$(\partial \mathrm{H} / \partial \mathrm{p})_{\text {T }} \mathrm{dp}=0$	Property of an ideal gas	19
$\mathrm{C}_{\mathrm{p}}=\mathrm{C}_{V}+\mathrm{R}=(5 / 2) \mathrm{R}$	Property of an ideal gas which is monatomic	20
$\begin{aligned} & \Delta \mathbf{H}=\int \mathrm{C}_{\mathrm{p}} \mathrm{dT}=(5 / 2) \mathrm{R}\left[\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{i}\right] \\ & =(5 / 2)(8.31451 \mathrm{~J} \mathrm{~mol} \\ & =-2244.8 \mathrm{~J} \quad \text { Answer } \end{aligned}$	Using Eq 18, 19, 20 and integrating	21
Case II	$C_{V}=(5 / 2) R$ as in a diatomic ideal gas	22
$\begin{aligned} (5 / 2) R\left[T_{+}-300\right]= & -1.0 \mathrm{~atm} \bullet \\ & {\left[R T_{\star} / 1.0-R 300 / 10.0\right] } \end{aligned}$	Using Eq 13 and 22 for a diatomic ideal gas	23
$\mathrm{T}_{\mathrm{f}}=222.9 \mathrm{~K} \quad$ Answer	Solving for T_{f}	24
$\mathrm{W}=-1603.5 \mathrm{~J} \quad$ Answer	Substituting T_{f} into Eq 5	25

$\Delta \mathbf{U}=-1603.5 \mathrm{~J}$	Answer	Replacing C_{V} by (5/2)R and T_{f} into Eq 13	26
$\Delta \mathbf{H}=-2244.8 \mathrm{~J}$	Answer	Replacing C_{p} by $(7 / 2) \mathrm{R}$ and T_{f} into Eq 23	27

6.

adiabatic, reversible
1 mole ideal gas $10.0 \mathrm{~atm}, 300 \mathrm{~K} \quad \rightarrow \quad 1.0 \mathrm{~atm}, \mathrm{~T}_{\mathrm{f}}$
Similar to problem 4

Equation	Basis for the equation	Eq. $\#$
$\begin{aligned} & \mathrm{T}_{\mathrm{f}} / \mathrm{T}_{\mathrm{i}}=\left[\mathrm{p}_{\mathrm{f}} / \mathrm{p}_{\mathrm{i}}\right]^{\mathrm{R} / C p} \\ & \mathrm{~T}_{\mathrm{f}} / 300=[1.0 / 10.0]^{\mathrm{R} / C_{p}} \\ & \mathrm{~T}_{\mathrm{f}} / 300=[1.0 / 10.0]^{2 / 5} \\ & \mathrm{~T}_{\mathrm{f}}=300(0.1)^{2 / 5}=119.4 \mathrm{~K} \end{aligned}$	use Eq derived previously for prob 4 For an ideal monatomic gas, $C_{p}=5 / 2 R$ Solve for T_{f}	1
$\mathrm{q}=0 \quad$ Answer	adiabatic	2
	We choose not to calculate W directly because it is easier to get this value from $\Delta \mathbf{U}$	
$\mathrm{d} \mathbf{U}=(\partial \mathbf{U} / \partial \mathrm{T})_{\mathrm{V}} \mathrm{dT}+(\partial \mathbf{U} / \partial \mathrm{V})_{T} \mathrm{dV}$	General, from U = U(T,V)	3
$\mathrm{d} \mathbf{U}=\mathrm{C}_{\mathrm{V}} \mathrm{dT}+(\partial \mathrm{U} / \partial \mathrm{V})_{T} \mathrm{dV}$	General, using definition of C_{V}	4
$(\partial \mathrm{U} / \partial \mathrm{V})_{T}=0$	Property of an ideal gas	5
$\begin{aligned} & \Delta \mathbf{U}=\int \mathrm{C}_{\mathrm{V}} \mathrm{dT}=(3 / 2) \mathrm{R}\left[\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right]= \\ &=1.5\left(8.31451 \mathrm{~J} \mathrm{~mol}{ }^{-1} \mathrm{~K}^{-} 1\right) \\ & \bullet[119.4-300] \\ & \Delta \mathbf{U}=-2252 \mathrm{~J} \mathrm{~mol}^{-1} \quad \text { Answer } \end{aligned}$		6 7
$\begin{aligned} & d \mathbf{d}=\delta q+\delta W \\ & q=0 \\ & \Delta \mathbf{U}=W \\ & W=-2252 \mathrm{~J} \mathrm{~mol}^{-1} \end{aligned}$ Answer	First law of thermodynamics For an adiabatic process, as in this problem	$\begin{aligned} & \hline 8 \\ & 9 \\ & 10 \\ & 11 \end{aligned}$
$\mathrm{d} \mathbf{H}=(\partial \mathbf{H} / \partial \mathrm{T})_{\mathrm{p}} \mathrm{d} \mathbf{T}+(\partial \mathbf{H} / \partial \mathrm{p})_{T} \mathrm{dp}$	$. \mathbf{H}=\mathbf{H}(\mathrm{T}, \mathrm{p})$	12
$\mathrm{dH}=\mathrm{C}_{\mathrm{p}} \mathrm{dT}+(\partial \mathrm{H} / \partial \mathrm{p})_{T} \mathrm{dp}$. Using Eq 12 and definition of C_{p}	13
$(\partial \mathbf{H} / \partial \mathrm{p})_{T} \mathrm{dp}=0$	Property of an ideal gas	14
$\mathrm{C}_{\mathrm{p}}=\mathrm{C}_{V}+\mathrm{R}=(5 / 2) \mathrm{R}$	Property of an ideal gas which is monatomic	15
$\begin{aligned} \Delta \mathbf{H} & =\int \mathrm{C}_{\mathrm{p}} \mathrm{dT}=(5 / 2) \mathrm{R}\left[\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right] \\ & =(5 / 2)\left(8.31451 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \\ \Delta \mathbf{H} & =-3754 \mathrm{~J} \mathrm{~mol}^{-1} \quad \bullet \text { Answer } \end{aligned}$	Using Eq 13, 14, 15 and integrating	16

7. $\mathrm{p}=$ constant $=1 \mathrm{~atm}$; warm the air in the house from T_{1} to T_{2}, air being expelled through keyholes etc as the air expands.

Equation	Basis for the equation	Eq. $\#$ \#
$\delta \mathrm{q}=\mathrm{nC}_{\mathrm{p}} \mathrm{dT}$	relation between heat and heat capacity at constant pressure	1
$\begin{aligned} \mathrm{q} & =\int \mathrm{n} \mathrm{C}_{\mathrm{p}} \mathrm{dT} \\ & =C_{p} \int n d T \\ n & =p V / R T \\ q & =C_{p} \int(p V / R T) d T \\ & =C_{p}(p V / R) \int d / T \\ q & =C_{p}(p V / R) \ln T_{2} / T_{1} \quad \text { Q.E.D. } \end{aligned}$	Assume that air has a C_{p} independent of temperature. What is unusual about this problem is that n is varying during the heating of the air. Assume that air behaves ideally, and the volume of the house is V.	$\begin{aligned} & \hline 2 \\ & 3 \\ & 4 \\ & 5 \\ & \hline 6 \end{aligned}$
$\begin{gathered} \mathrm{q}=(7 / 2) \mathrm{R}(1.0 \mathrm{~atm})\left(2000 \times 10^{3} \mathrm{~L}\right) / \mathrm{R} \\ \bullet \ln (293 / 288) \\ =(7 / 2) 2 \times 10^{6} \ln (293 / 288) \mathrm{L} \text { atm } \\ \mathrm{q}=120477 \mathrm{Latm}=12207 \mathrm{~kJ} \\ \text { Answer } \end{gathered}$	$10^{3} \mathrm{~L}=1 \mathrm{~m}^{3}$ given $\mathrm{C}_{\mathrm{V}}=(5 / 2) \mathrm{R} ; \mathrm{C}_{\mathrm{p}}=(7 / 2) \mathrm{R}$	7

8. $p=$ constant $=1 \mathrm{~atm}$; cool the air in the house from T_{1} to T_{2}, air leaking in from outside as the temperature goes down

\begin{tabular}{|c|c|c|}
\hline Equation \& Basis for the equation \& Eq. \\
\hline \[
\begin{aligned}
\& n_{1}=\mathrm{pV} / \mathrm{RT}_{1} \\
\& \mathrm{n}=\mathrm{n}_{1}+\mathrm{n}_{\text {out }} \\
\& \mathrm{pV} / \mathrm{RT}=\mathrm{n} \\
\& \mathrm{n}_{\text {out }}=\mathrm{n}-\mathrm{n}_{1}=\mathrm{pV} / \mathrm{RT}-\mathrm{pV} / \mathrm{RT}_{1}
\end{aligned}
\] \& \begin{tabular}{l}
\(\mathrm{n}_{\text {in }}\) moles of air inside the house, originally at \(\mathrm{T}_{1}\), \(\mathrm{n}_{\text {out }}\) moles of air coming in from the outside originally at \(\mathrm{T}_{0}\); all have to be cooled down to temperature \(\mathrm{T}_{2}\). \\
\(n\) is changing with \(T\), as air is coming in during the cooling process
\end{tabular} \& 2
3 \\
\hline \(\delta q=\mathrm{nC}_{\mathrm{p}} \mathrm{dT}\) \& \& 5 \\
\hline \[
\begin{aligned}
\& \mathrm{q}=\int \mathrm{nC} C_{p} d T \quad=C_{p} \int n d T \\
\& q=q_{1}+q_{2}
\end{aligned}
\] \& \begin{tabular}{l}
Definition; \(C_{p}\) is independent of \(T\) \\
total heat extracted \(=\) heat from original air \(\left(\mathrm{q}_{1}\right)\) and heat from outside air (\(\mathrm{q}_{2}\))
\end{tabular} \& \[
7
\] \\
\hline \[
\begin{aligned}
\mathrm{q}_{1} \& =\mathrm{C}_{\mathrm{p}} \int_{T_{1}{ }^{T} 2} \mathrm{n}_{1} \mathrm{dT}=\mathrm{C}_{\mathrm{p}}\left(\mathrm{pV} / R T_{1}\right) \int_{T 1}{ }^{\top} \mathrm{dT} \\
\& =\mathrm{C}_{\mathrm{p}}\left(\mathrm{pV} \mathrm{~V} / R T_{1}\right)\left[T_{2}-T_{1}\right]
\end{aligned}
\] \& Substituting Eq 1 into Eq 6 \& \[
\begin{aligned}
\& 8 \\
\& 9
\end{aligned}
\] \\
\hline \& Substituting Eq 4 into Eq 6 \& 10
11

12

\hline
\end{tabular}

$\begin{gathered} q=q_{1}+q_{2}=C_{p}(p V / R) \\ \bullet\left\{\left(T_{2}-T_{1}\right) / T_{1}\right)+\ln \left(T_{2} / T_{0}\right)-\left[T_{2}-T_{0} / / T_{1}\right\} \\ q=C_{p}(p V / R) \bullet\left\{-1+\ln \left(T_{2} / T_{0}\right)+\left(T_{0} / T_{1}\right)\right\} \\ \text { Q.E.D. } \end{gathered}$ Different from Prob 7 because the number of moles of air are different	Sum
$\begin{gathered} \mathrm{q}=(7 / 2) \mathrm{R}\left((1.0 \mathrm{~atm})\left(2000 \times 10^{3} \mathrm{~L}\right) / \mathrm{R}\right) \\ \bullet\{-1+\ln (293 / 308)+(308 / 298)\} \\ \mathrm{q}=3.5\left(2 \times 10^{6}\right) \\ \bullet\{-1+\ln (293 / 308)+(308 / 298)\} \mathrm{L} \text { atm } \\ \mathrm{q}=-114610 \mathrm{~L} \text { atm }=-11613 \mathrm{~kJ} \\ \text { Answer } \\ \hline \end{gathered}$	Substituting $\mathrm{T}_{1}=298, \mathrm{~T}_{2}=293, \mathrm{~T}_{0}=308 \mathrm{~K}$ and $\mathrm{p}=1 \mathrm{~atm}, \mathrm{~V}=2000 \mathrm{~m}^{3}$

9. Friction in the piston is equivalent to a pressure contribution p_{f} isothermal expansion

$\mathrm{p}_{1} \rightarrow \mathrm{p}_{2}$		
Equation	Basis for the equation	Eq. $\#$
$\begin{aligned} & W=-\int p_{o p} d V \text { without friction } \\ & W=-\int\left(p_{o p}+p_{f}\right) d V \text { with friction } \end{aligned}$	Definition Gas expands against a greater opposing pressure because piston sticks a bit	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
$\begin{aligned} & \mathrm{dU}=\mathrm{C}_{\mathrm{V}} \mathrm{dT}+(\partial \mathbf{U} / \partial \mathrm{V})_{\mathrm{T}} \mathrm{dV} \\ & (\partial \mathrm{U} / \partial \mathrm{V})_{\mathrm{T}}=0 \\ & \mathrm{dT}=0 \\ & \Delta \mathbf{U}=0 \end{aligned}$	$\mathbf{U}=\mathbf{U}(\mathrm{V}, \mathrm{~T})$ For an ideal gas isothermal	$\begin{aligned} & \hline 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$
$\Delta \mathbf{U}=\mathrm{q}+\mathrm{W}$	First law of thermodynamics	7
$\begin{aligned} \mathrm{q} & =-\mathrm{W} \\ & =+\int\left(\mathrm{p}_{\mathrm{op}}+\mathrm{p}_{\mathrm{f}}\right) \mathrm{dV} \end{aligned}$	Using Eq 6 and 7	$\begin{aligned} & \hline 8 \\ & 9 \end{aligned}$
Compression, on the other hand		
$\mathrm{W}=-\int \mathrm{p}_{\mathrm{op}} \mathrm{dV}$ without friction $W=-\int\left(p_{o p}-p_{f}\right) d V$ with friction	pressure being applied appears less as far as gas is concerned	10
$\mathrm{q}=-\mathrm{W}=+\int\left(\mathrm{p}_{\mathrm{op}}-\mathrm{p}_{\mathrm{f}}\right) \mathrm{dV}$		
Problem statement not particularly clear about what $p_{o p}$ was. Assume expanding against a constant pressure of p_{2} from initially p_{1} to final pressure of p_{2}, $W=-\int\left(p_{o p}+p_{f}\right) d V=\left(p_{2}+p f\right)\left[V_{2}-V_{1}\right]$ Isothermal : $\mathrm{V}_{1}=\mathrm{RT} / \mathrm{p}_{1}=\mathrm{R} 298 / 1 \mathrm{~atm}$ $\begin{aligned} & =(0.0820578) 298 / 1=24.45 \mathrm{~L} \\ & V_{2}=R 298 / 0.5=48.90 \mathrm{~L} \\ & \mathrm{~W}=-(0.5+0.1)[24.45-48.90] \\ & =+14.67 \mathrm{~L} \mathrm{~atm} \end{aligned}$		
$q=-14.67 \mathrm{~L}$ atm gas had to do extra work to overcome friction in piston		

10.

A
B
C
1 mole ideal gas $p_{1}, \mathrm{~T}_{1}, \mathrm{~V}_{1} \rightarrow \mathrm{p}_{2}, \mathrm{~T}_{2}, \mathrm{~V}_{2} \rightarrow \mathrm{p}_{3}, \mathrm{~T}_{3}, \mathrm{~V}_{3} \rightarrow \mathrm{p}_{4}, \mathrm{~T}_{4}, \mathrm{~V}_{4}$
A reversible heating at constant $p=1$ atm, from 298 to 373 K
B reversible isothermal expansion to $2 \mathrm{~V}_{2}$
C reversible adiabatic cooling to 308 K
$C_{p}=(5 / 2) R$

Equation	Basis for the equation	Eq. $\#$
$\begin{aligned} & \mathrm{p}_{1}=1 \mathrm{~atm} \quad \mathrm{~T}_{1}=298 \\ & \mathrm{~V}_{1}=\mathrm{R} 298 / 1 \mathrm{~atm}=24.45 \mathrm{~L} \end{aligned}$	Given ideal gas	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
$\begin{aligned} & \mathrm{p}_{2}=1 \mathrm{~atm} \mathrm{~T}_{2}=373 \\ & \mathrm{~V}_{2}=\mathrm{R} 373 / 1 \mathrm{~atm}=30.61 \mathrm{~L} \end{aligned}$		$\begin{array}{\|l\|} \hline 3 \\ 4 \\ \hline \end{array}$
$\begin{aligned} & \mathrm{T}_{3}=\mathrm{T}_{2}=373 \mathrm{~V}_{3}=2 \mathrm{~V} 2=61.22 \mathrm{~L} \\ & \mathrm{p}_{3}=\mathrm{R} 373 / 61.22=0.50 \mathrm{~atm} \end{aligned}$		$\begin{aligned} & \hline 5 \\ & \hline 6 \end{aligned}$
$\begin{aligned} & \hline \mathrm{T}_{4}=308 \mathrm{~K} \\ & \mathrm{p}_{4}, \mathrm{~V}_{4} \text { can be calculated but we } \\ & \text { actually do not need these } \\ & \hline \end{aligned}$		7
$\mathrm{d} \mathbf{U}=\mathrm{C}_{\mathrm{V}} \mathrm{dT}+(\partial \mathbf{U} / \partial \mathrm{V})_{\mathrm{T}} \mathrm{dV}$	$\mathbf{U}=\mathbf{U}(\mathrm{T}, \mathrm{V})$ and definition of C_{V}	8
$\begin{aligned} & (\partial \mathbf{U} / \partial \mathrm{V})_{T}=0 \\ & \mathrm{~d} \mathbf{U}=\mathrm{C}_{\mathrm{V}} \mathrm{dT} \end{aligned}$	property of an ideal gas	$\begin{aligned} & \hline 9 \\ & 10 \end{aligned}$
$\mathrm{d} \mathbf{H}=\mathrm{C}_{\mathrm{p}} \mathrm{d} \mathrm{T}+(\partial \mathbf{H} / \partial \mathrm{p})_{T} \mathrm{dp}$	$\mathbf{H}=\mathbf{H}(\mathrm{T}, \mathrm{p})$ and definition of C_{p}	11
$\begin{aligned} & (\partial \mathbf{H} / \partial \mathrm{p})_{T}=0 \\ & \mathrm{dH}=\mathrm{C}_{\mathrm{p}} \mathrm{dT} \end{aligned}$	property of an ideal gas	$\begin{aligned} & 12 \\ & 13 \end{aligned}$
Step A $\Delta \mathbf{U}=(3 / 2) R(373-298)=935.4 \mathrm{~J}$ Answer	From Eq 10 and given $\mathrm{C}_{V}=(3 / 2) \mathrm{R}$	14
$\Delta \mathbf{H}=(5 / 2) R(373-298)=1559.0 \mathrm{~J}$ Answer	From Eq 13 and given $\mathrm{C}_{p}=\mathrm{C}_{V}+\mathrm{R}=(5 / 2) \mathrm{R}$	15
$\begin{aligned} & \mathrm{W}=-\int \mathrm{p}_{\mathrm{op}} \mathrm{dV}=-1 \mathrm{~atm}\left[\mathrm{~V}_{2}-\mathrm{V}_{1}\right] \\ &=-1[30.61-24.45]=-6.16 \mathrm{~L} \text { atm } \\ &=-624.2 \mathrm{~J} \\ & \end{aligned}$	Definition and $\mathrm{p}=$ constant $=1 \mathrm{~atm}$	$\begin{aligned} & \hline 16 \\ & 17 \\ & \hline \end{aligned}$
$\begin{aligned} & \Delta \mathbf{U}=\mathrm{q}+\mathrm{W} \\ & q=\Delta \mathbf{U}-\mathrm{W}=935.4+624.2=1559.6 \mathrm{~J} \\ & \text { Answer } \end{aligned}$	First law of thermodynamics	$\begin{aligned} & 18 \\ & 19 \end{aligned}$
Step B $\Delta \mathbf{U}=0 \mathrm{~J}$ Answer	$\mathrm{dT}=0$	20
$\Delta \mathbf{H}=0 \mathrm{~J}$ Answer	$\mathrm{dT}=0$	21
$\begin{array}{\|l\|} \hline W=-\int p_{\mathrm{op}} d V=-\int p_{\mathrm{gas}} d V \\ W=-\int R T d V / V=-R 373 \ln \left(V_{3} / V_{2}\right) \\ W=-R 373 \ln 2=-2149 J \text { Answer } \\ \hline \end{array}$	$\mathrm{p}_{\text {op }}=\mathrm{p}_{\text {gas }}$ reversible expansion	22 23 24
$\begin{aligned} & \mathrm{q}=\Delta \mathbf{U}-\mathrm{W} \\ & \mathrm{q}=0+2149 \mathrm{~J} \end{aligned}$ Answer	First law of thermodynamics	$\begin{aligned} & 25 \\ & 26 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { Step C } \\ & \Delta \mathbf{U}=(3 / 2) R(308-373)=-810.7 \mathrm{~J} \end{aligned}$ Answer	From Eq 10 and given $\mathrm{C}_{V}=(3 / 2) R$	27

$\begin{array}{r} \Delta \mathbf{H}=(5 / 2) R(308-373)=-1351.1 \mathrm{~J} \\ \text { Answer } \end{array}$	From Eq 13 and given $\mathrm{C}_{\mathrm{p}}=\mathrm{C}_{V}+\mathrm{R}=(5 / 2) \mathrm{R}$
$\mathrm{q}=0 \quad$ Answer	adiabatic
$\begin{aligned} & \Delta \mathbf{U}=q+W \quad W=\Delta \mathbf{U} \\ & W=-810.7 \mathrm{~J} \end{aligned}$ Answer	First law of thermodynamics From Eq 27
$\begin{aligned} & \text { Overall } \\ & \Delta \mathbf{U}=124.7 \mathrm{~J} \\ & \Delta \mathbf{H}=208.8 \mathrm{~J} \\ & \mathrm{~W}=-3583.9 \\ & q=3708.6 \mathrm{~J} \end{aligned}$	

