Solutions to Problem Set 3

1. 1 mole liquid, $\mathrm{T}, 1 \mathrm{~atm} \quad \rightarrow \quad$ vapor, $\mathrm{T}, 1 \mathrm{~atm}$

Equation	Basis for the equation	Eq. \#
$\mathrm{d} \mathbf{U}=(\partial \mathbf{U} / \partial \mathrm{T})_{\mathrm{V}} \mathrm{dT}+(\partial \mathbf{U} / \partial \mathrm{V})_{\mathrm{T}} \mathrm{dV}$	$\mathbf{U}=\mathbf{U}(\mathrm{T}, \mathrm{V})$	1
$\begin{aligned} & \mathrm{U}(\mathrm{~T}, \mathrm{~V})=\mathrm{f}(\mathrm{~T})-\mathrm{a} / \mathrm{V} \\ & \mathrm{~V}_{\text {liquid }}=18 \times 10^{-3} \mathrm{~L} \mathrm{~mol}^{-1} \\ & V_{\text {vapor }}=24 \mathrm{~L} \mathrm{~mol}^{-1} \\ & \mathrm{a}=5.72 \mathrm{~L}^{2} \mathrm{~atm} \mathrm{~mol}^{-1} \end{aligned}$	Given	2
$\begin{aligned} & \mathbf{U}_{\text {liquid }}=f(T)-5.72 / 18 \\ & \mathbf{U}_{\text {vapor }}=f(T)-5.72 / 24 \\ & \begin{aligned} \mathbf{U}_{\text {vapor }}-\mathbf{U}_{\text {liquid }} & =-5.72 / 24--5.72 / 0.018 \\ & =317.54 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \\ & =7690 \mathrm{cal} \mathrm{~mol}^{-1} \end{aligned} \end{aligned}$	substituting values of V into Eq 2	$\begin{aligned} & 3 \\ & 4 \\ & 4 \\ & 5 \end{aligned}$
$\begin{aligned} \mathbf{H}_{\text {vapor }}-\mathbf{H}_{\text {liquid }}= & \mathbf{U}_{\text {vapor }}-\mathbf{U}_{\text {liquid }} \\ & +\mathrm{p}\left(\mathrm{~V}_{\text {vapo }} r-\mathrm{V}_{\text {liquid }}\right) \\ = & 317.54+1(24-0.018) \\ = & \left.341.5 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1}\right) \\ & =8270 . \mathrm{cal} \mathrm{~mol}^{-1} \end{aligned}$ Answer This is smaller than $\Delta_{\text {vap }} \mathrm{H}=9820 \mathrm{cal} \mathrm{mol}^{-1}$ expt	$\mathbf{H}=\mathbf{U}+\mathrm{pV}$ Definition Using Eq 5 and values of V	

2. 0.1 mol ideal monatomic gas $\mathrm{T}_{1} \quad \rightarrow \quad \mathrm{~T}_{2} \quad$ along path $\mathrm{V}=\operatorname{a} \bullet \exp (\mathrm{bT})$

Equation	Basis for the equation	Eq.
$p=0.1 R T / V$	Given ideal gas equation of state, 0.1 mol	1
$\mathrm{W}=-\int \mathrm{p}_{\mathrm{op}} \mathrm{dV}$	Definition	2
$\mathrm{p}_{\mathrm{op}}=\mathrm{p}_{\text {gas }}$	given reversible	3
$\mathrm{W}=-\int 0.1 \mathrm{RTdV} / \mathrm{V}$		4
$\begin{aligned} & \mathrm{V}=\mathrm{a} \cdot \exp (\mathrm{bT}) \\ & \mathrm{d} \mathrm{~V}=\mathrm{a} \cdot \exp (\mathrm{bT}) \cdot \mathrm{bdT} \\ & \mathrm{~d} \mathrm{~V} / \mathrm{V}=\mathrm{bdT} \\ & \mathrm{~W}=-\int 0.1 \mathrm{RbTdT} \\ & \mathrm{~W}=-0.1 \mathrm{Rb}(1 / 2)\left[\mathrm{T}_{2}{ }^{2}-\mathrm{T}_{1}{ }^{2}\right] \end{aligned}$ Answer	Given path Taking the In Note the function for work depends on the path!	$\begin{aligned} & \hline 5 \\ & 6 \\ & 7 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$
$\mathrm{q}=\mathrm{C}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)$ However, given it is an ideal gas, for which $(\partial \mathbf{U} / \partial \mathrm{V})_{T}=0$ $\mathrm{d} \mathbf{U}=(\partial \mathbf{U} / \partial \mathrm{T})_{\mathrm{V}} \mathrm{dT}+(\partial \mathbf{U} / \partial \mathrm{V})_{\mathrm{T}} \mathrm{dV}$ $d \mathbf{U}=\mathrm{C}_{\mathrm{V}} \mathrm{dT}$	Note that C is neither C_{V} nor C_{p} because the path is neither constant volume nor constant pressure. property of an ideal gas $\mathbf{U}=\mathbf{U}(\mathrm{T}, \mathrm{~V})$	10 11 12

$\begin{aligned} & \Delta \mathbf{U}=\mathrm{C}_{\mathrm{V}}\left[\mathrm{~T}_{2}-\mathrm{T}_{1}\right] \\ & \Delta \mathbf{U}=\mathrm{q}+\mathrm{W}, \quad \mathrm{q}=\Delta \mathbf{U}-\mathrm{W} \\ & \mathrm{q}=\mathrm{C}_{\mathrm{V}}\left[\mathrm{~T}_{2}-\mathrm{T}_{1}\right] \\ & \\ & \quad+(0.1 \mathrm{Rb} / 2) \bullet\left[\mathrm{T}_{2}{ }^{2}-\mathrm{T}_{1}{ }^{2}\right] \end{aligned}$ Answer	First law of thermodynamics	13 14 15
$\mathrm{T}_{1}=300 \mathrm{~K} \quad \mathrm{~T}_{2}=400 \mathrm{~K} \quad \mathrm{~b}=0.01 \mathrm{~K}^{-1}$	Given	16
$\mathrm{W}=-(0.00831451 / 2)\left(400^{2}-300^{2}\right)$	Using Eq 9 and 0.1 mol	17
$\mathrm{W}=-291 \mathrm{~J}=-0.291 \mathrm{~kJ}$ Answer		18
$\begin{gathered} \Delta \mathbf{U}=1.5(8.31451)[400-300]=1247 \mathrm{~J} \\ =1.247 \mathrm{~kJ} \quad \text { Answer } \end{gathered}$		19
$q=\Delta \mathbf{U}-\mathrm{W}=1.538 \mathrm{~J} \quad$ Answer	Using Eq 14, 18 and 20	

3.

A B C
1 mole ideal gas $p_{1}, \mathrm{~T}_{1}, \mathrm{~V}_{1} \rightarrow \mathrm{p}_{2}, \mathrm{~T}_{2}, \mathrm{~V}_{2} \rightarrow \mathrm{p}_{3}, \mathrm{~T}_{3}, \mathrm{~V}_{3} \rightarrow \mathrm{p}_{4}, \mathrm{~T}_{4}, \mathrm{~V}_{4}$
A reversible heating at constant $p=1$ atm, from 298 to 373 K
B reversible isothermal expansion to $2 \mathrm{~V}_{2}$
C reversible adiabatic cooling to 308 K
$C_{p}=(5 / 2) R$

Equation	Basis for the equation	Eq. $\#$
$\begin{aligned} & \mathrm{p}_{1}=1 \mathrm{~atm} \quad \mathrm{~T}_{1}=298 \\ & \mathrm{~V}_{1}=\mathrm{R} 298 / 1 \mathrm{~atm}=24.45 \mathrm{~L} \end{aligned}$	Given ideal gas	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
$\begin{aligned} & \mathrm{p}_{2}=1 \mathrm{~atm} \quad \mathrm{~T}_{2}=373 \\ & \mathrm{~V}_{2}=\mathrm{R} 373 / 1 \mathrm{~atm}=30.61 \mathrm{~L} \end{aligned}$		$\begin{aligned} & \hline 3 \\ & 4 \end{aligned}$
$\begin{aligned} & \mathrm{T}_{3}=\mathrm{T}_{2}=373 \mathrm{~V}_{3}=2 \mathrm{~V}_{2}=61.22 \mathrm{~L} \\ & \mathrm{P}_{3}=\mathrm{R} 373 / 61.22=0.50 \mathrm{~atm} \end{aligned}$		$\begin{aligned} & 5 \\ & 6 \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{T}_{4}=308 \mathrm{~K} \\ & \mathrm{p}_{4}, \mathrm{~V}_{4} \text { can be calculated but we } \\ & \text { actually do not need these } \end{aligned}$		7
$\mathrm{dU}=\mathrm{C}_{\mathrm{V}} \mathrm{dT}+(\partial \mathrm{U} / \partial \mathrm{V})_{T} \mathrm{dV}$	$\mathbf{U}=\mathbf{U}(\mathrm{T}, \mathrm{V})$ and definition of C_{V}	8
$\begin{aligned} & (\partial \mathbf{U} / \partial \mathrm{V})_{T}=0 \\ & \mathrm{~d} \mathbf{U}=\mathrm{C}_{\mathrm{V}} \mathrm{dT} \end{aligned}$	property of an ideal gas	$\begin{aligned} & 9 \\ & 10 \end{aligned}$
$\mathrm{dH}=\mathrm{C}_{\mathrm{p}} \mathrm{dT}+(\partial \mathrm{H} / \partial \mathrm{p})_{T} \mathrm{dp}$	$\mathbf{H}=\mathbf{H}(\mathrm{T}, \mathrm{p})$ and definition of C_{p}	11
$\begin{aligned} & (\partial \mathrm{H} / \partial \mathrm{p})_{T}=0 \\ & \mathrm{dH}=\mathrm{C}_{\mathrm{p}} \mathrm{dT} \end{aligned}$	property of an ideal gas	$\begin{aligned} & 12 \\ & 13 \end{aligned}$
Step A $\Delta \mathbf{U}=(3 / 2) R(373-298)=935.4 \mathrm{~J}$ Answer	From Eq 10 and given $\mathrm{C}_{V}=(3 / 2) \mathrm{R}$	14
$\begin{array}{r} \Delta \mathbf{H}=(5 / 2) \mathrm{R}(373-298)=1559.0 \mathrm{~J} \\ \text { Answer } \end{array}$	From Eq 13 and given $\mathrm{C}_{\mathrm{p}}=\mathrm{C}_{\mathrm{V}}+\mathrm{R}=(5 / 2) \mathrm{R}$	15
$\begin{aligned} \mathrm{W} & =-\int \text { popd } \mathrm{V}=-1 \mathrm{~atm}\left[\mathrm{~V}_{2}-\mathrm{V}_{1}\right] \\ & =-1[30.61-24.45]=-6.16 \mathrm{~L} \text { atm } \\ & =-624.2 \mathrm{~J} \quad \text { Answer } \end{aligned}$	Definition and $\mathrm{p}=$ constant $=1$ atm	$\begin{aligned} & 16 \\ & 17 \\ & \hline \end{aligned}$

$\begin{aligned} & \Delta \mathbf{U}=\mathrm{q}+\mathrm{W} \\ & \mathrm{q}=\Delta \mathbf{U}-\mathrm{W}=935.4+624.2=1559.6 \mathrm{~J} \\ & \text { Answer } \end{aligned}$	First law of thermodynamics	$\begin{aligned} & 18 \\ & 19 \end{aligned}$
Step B $\Delta \mathbf{U}=0 \mathrm{~J}$ Answer	$\mathrm{dT}=0$	20
$\Delta \mathbf{H}=0 \mathrm{~J}$ Answer	$\mathrm{dT}=0$	21
$\begin{aligned} & \hline W=-\int p_{\mathrm{op}} \mathrm{dV}=-\int \mathrm{p}_{\mathrm{ga}} s \mathrm{dV} \\ & \mathrm{~W}=-\int \mathrm{RTdV} / \mathrm{V}=-\mathrm{R} 373 \ln \left(\mathrm{~V}_{3} / V_{2}\right) \\ & \mathrm{W}=-\mathrm{R} 373 \ln 2=-2149 \mathrm{~J} \text { Answer } \end{aligned}$	$\mathrm{p}_{\text {op }}=\mathrm{p}_{\text {gas }}$ reversible expansion	$\begin{aligned} & 22 \\ & 23 \\ & 24 \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{q}=\Delta \mathbf{U}-\mathrm{W} \\ & \mathrm{q}=0+2149 \mathrm{~J} \end{aligned}$ Answer	First law of thermodynamics	$\begin{aligned} & 25 \\ & 26 \end{aligned}$
$\begin{aligned} & \text { Step C } \\ & \Delta \mathbf{U}=(3 / 2) R(308-373)=-810.7 \mathrm{~J} \\ & \text { Answer } \end{aligned}$	From Eq 10 and given $\mathrm{cv}=(3 / 2) \mathrm{R}$	27
$\begin{array}{r} \Delta \mathbf{H}=(5 / 2) R(308-373)=-1351.1 \mathrm{~J} \\ \text { Answer } \end{array}$	From Eq 13 and given $\mathrm{C}_{\mathrm{p}}=\mathrm{C}_{\mathrm{V}}+\mathrm{R}=(5 / 2) \mathrm{R}$	
$\mathrm{q}=0 \quad$ Answer	adiabatic	
$\begin{aligned} & \Delta \mathbf{U}=q+W \quad W=\Delta \mathbf{U} \\ & W=-810.7 \mathrm{~J} \end{aligned}$	First law of thermodynamics From Eq 27	
$\begin{aligned} & \text { Overall } \\ & \Delta \mathbf{U}=124.7 \mathrm{~J} \\ & \Delta \mathbf{H}=208.8 \mathrm{~J} \\ & \mathrm{~W}=-3583.9 \\ & \mathrm{q}=3708.6 \mathrm{~J} \end{aligned}$ Answer		

4.

A
B
C

1 mole ideal gas $p_{1}, \mathrm{~T}_{1}, \mathrm{~V}_{1} \rightarrow \mathrm{p}_{2}, \mathrm{~T}_{2}, \mathrm{~V}_{2} \rightarrow \mathrm{p}_{3}, \mathrm{~T}_{3}, \mathrm{~V}_{3} \rightarrow \mathrm{p}_{4}, \mathrm{~T}_{4}, \mathrm{~V}_{4}$
A reversible heating at constant V , from 298 to 373 K
B Joule expansion into a vacuum to $2 \mathrm{~V}_{2}$
C reversible cooling at constant p to 298 K

Equation	Basis for the equation	Eq. $\#$
$\mathrm{p}_{1}=? \quad \mathrm{~T}_{1}=298 \quad \mathrm{~V}_{1}=?$	Given	
$\mathrm{p}_{2}=? \quad \mathrm{~T}_{2}=373 \quad \mathrm{~V}_{2}=\mathrm{V}_{1}$		
$\mathrm{p}_{3}=? \quad \mathrm{~T}_{3}=373 \quad \mathrm{~V}_{3}=2 \mathrm{~V}_{2}$	In a Joule expansion, there is no T change	
$\mathrm{p}_{4}=\mathrm{p}_{3} \quad \mathrm{~T}_{4}=298 \mathrm{~K} \quad \mathrm{~V}_{4}=?$		
Step A $\mathrm{q}=\mathrm{C}_{\mathrm{V}}(373-298)$ $\mathrm{W}=-\int \mathrm{p}_{0} \mathrm{pdV}=0$ since $\mathrm{dV}=0$		1
$\mathrm{dU}=\mathrm{C}_{\mathrm{V}} \mathrm{dT}+(\partial \mathbf{U} / \partial \mathrm{V})_{\mathrm{T}} \mathrm{dV}$		2
$(\partial \mathbf{U} / \partial \mathrm{V})_{T}=0$	$\mathbf{U}=\mathbf{U}(\mathrm{T}, \mathrm{V})$ and definition of C_{V}	3
$\Delta \mathbf{U}=\mathrm{C}_{\mathrm{V}}(373-298)=\mathrm{q}+\mathrm{W}$ indeed	property of an ideal gas	4

$\begin{aligned} & \mathrm{dH}=\mathrm{C}_{\mathrm{p}} \mathrm{dT}+(\partial \mathbf{H} / \partial \mathrm{p})_{T} \mathrm{dp} \\ & (\partial \mathbf{H} / \partial \mathrm{p})_{T}=0 \\ & \Delta \mathbf{H}=\mathrm{C}_{p}(373-298) \end{aligned}$ Another way, $\begin{aligned} \Delta \mathbf{H} & =\Delta \mathbf{U}+\mathrm{p}_{2} \mathrm{~V}_{2}-p_{1} \mathrm{~V}_{1} \\ & =\mathrm{C}_{\mathrm{V}}(373-298)+\mathrm{R} 373-\mathrm{R} 298 \\ & =\mathrm{C}_{\mathrm{p}}(373-298) \text { the same } \end{aligned}$	$\mathbf{H}=\mathbf{H}(\mathrm{T}, \mathrm{p})$ and definition of C_{p} property of an ideal gas $\mathbf{H}=\mathbf{U}+\mathrm{pV}$ definition Using ideal gas law $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{V}}=\mathrm{R}$ for an ideal gas	$\begin{aligned} & \hline 6 \\ & 7 \\ & 8 \\ & 9 \\ & 10 \\ & 11 \end{aligned}$
$\begin{aligned} & \text { Step B } \\ & \mathrm{W}=-\int \mathrm{p}_{\mathrm{op}} \mathrm{dV} \\ & \mathrm{p}_{\mathrm{op}}=0 \\ & \mathrm{~W}=0 \\ & \Delta \mathbf{U}=\mathrm{C}_{\mathrm{v}} \mathrm{dT}=0 \\ & \Delta \mathbf{U}=\mathrm{q}+\mathrm{W} \\ & \mathrm{q}=\Delta \mathbf{U}=0 \\ & \Delta \mathbf{H}=\mathrm{C}_{\mathrm{p}} \mathrm{dT}=0 \end{aligned}$	$\mathrm{dT}=0$ in a Joule expansion	$\begin{aligned} & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \end{aligned}$
Step C $\begin{aligned} & \mathrm{q}=\mathrm{C}_{\mathrm{p}}(298-373) \\ & \Delta \mathbf{U}=\mathrm{C}_{\mathrm{V}}(298-373) \\ & \Delta \mathbf{U}=\mathrm{q}+\mathrm{W} \\ & \mathrm{~W}=\mathrm{C}_{\mathrm{V}}(298-373)-\mathrm{C}_{\mathrm{p}}(298-373) \\ & \quad=-\mathrm{R}(298-373) \end{aligned}$ Another way: $W=-\int p_{o p} d V$ reversible pop $=p_{\text {gas }}$ At constant pressure, $W=-p_{3} \int d V=-p_{3}\left(V_{4}-V_{3}\right)=-R 298-$ R373 the same as - $R(298-373)$ found from first law $\Delta \mathbf{H}=\mathrm{C}_{\mathrm{p}}(298-373)$		$\begin{aligned} & 19 \\ & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$
for the overall process $\begin{aligned} \mathrm{q} & =\mathrm{C}_{\mathrm{V}}(373-298)+0+\mathrm{C}_{\mathrm{p}}(298-373) \\ & =\left(\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{V}}\right) 298-\left(\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{V}}\right) 373 \\ \mathrm{q} & =\mathrm{R}(298-373)=-0.624 \mathrm{~kJ} \end{aligned}$ Answer $\mathrm{W}=0+0-\mathrm{R}(298-373)=+\begin{gathered} 0.624 \mathrm{~kJ} \\ \text { Answer } \end{gathered}$ $\Delta \mathbf{U}=\mathrm{C}_{\mathrm{V}}(373-298)+0$ $+\mathrm{C}_{\mathrm{V}}(298-373)$	$\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{V}}=\mathrm{R}$ for an ideal gas Note answers do not require C_{p} or C_{V} values.	

5. adiabatic process, ideal gases

Equation	Basis for the equation	Eq. $\#$
$\mathrm{q}=0$	Given adiabatic	1
W = 0	No work done to surroundings	2
$\Delta \mathbf{U}=\mathrm{q}+\mathrm{W}=0$		3
$\begin{aligned} & \mathrm{d} \mathbf{U}=\mathrm{C}_{\mathrm{V}} \mathrm{dT}+(\partial \mathbf{U} / \partial \mathrm{V})_{\mathrm{T}} \mathrm{dV} \\ & (\partial \mathbf{U} / \partial \mathrm{V})_{\mathrm{T}}=0 \\ & \Delta \mathbf{U}=\mathrm{C}_{\mathrm{V}}\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right) \\ & \Delta \mathbf{U}_{\mathrm{He}}=0.5(3 / 2) \mathrm{R}\left(\mathrm{~T}_{\mathrm{f}}-373\right) \\ & \Delta \mathbf{U}_{\mathrm{O} 2}=(5 / 2) \mathrm{R}\left(\mathrm{~T}_{\mathrm{f}}-273\right) \end{aligned}$	$\mathbf{U}=\mathbf{U}(T, V)$ and Definition of C_{V} property of an ideal gas	$\begin{aligned} & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$
$\begin{aligned} & 0=\Delta \mathbf{U}_{\mathrm{He}}+\Delta \mathbf{U}_{\mathrm{O} 2} \\ & 0=0.5(3 / 2) \mathrm{R}\left(\mathrm{~T}_{\mathrm{f}}-373\right) \\ & \quad+(5 / 2) R\left(\mathrm{~T}_{\mathrm{f}}-273\right) \\ & \mathrm{T}_{\mathrm{f}}=\frac{(3 / 4) 373+(5 / 2) 273}{(3 / 4)+(5 / 2)} \end{aligned}$	From Eq 3 Solving for T_{f}	9
$\mathrm{T}_{\mathrm{f}}=296 \mathrm{~K}$ Answer		

6. 10 L tank, ideal gas vapor, negligible volume of liquid water

Equation	Basis for the equation	Eq.
$\mathrm{q}=0$	Given insulated, no q to or from surroundings	1
W = 0	vapor formed in evacuated volume	2
Final state: water vapor $\mathrm{V}=10 \mathrm{~L}, \mathrm{~T}=373, \mathrm{p}=1 \mathrm{~atm}$ in equilibrium with remaining liquid		
$\begin{aligned} & \mathrm{pV}=\mathrm{nRT} \\ & 1 \mathrm{~atm}(10 \mathrm{~L}) \\ & =\mathrm{n} 0.0820578{\mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}(373)}_{\mathrm{n}}^{\mathrm{n}}=0.3267 \mathrm{~mol} \end{aligned}$	ideal gas	3 4
$\begin{gathered} \Delta \mathbf{H}=9720 \mathrm{cal} \mathrm{~mol}^{-1}(0.3267 \mathrm{~mol}) \\ =3175 \mathrm{cal} \quad \text { Answer } \\ \Delta \mathbf{U}=\mathrm{q}+\mathrm{W}+\mathbf{U}_{\text {vap }}-\mathbf{U}_{\text {liq }}=\Delta_{\text {vap }} \mathbf{U} \\ \Delta \mathbf{H}=\Delta \mathbf{U}+(\mathrm{pV})_{\text {vap }}-(\mathrm{pV})_{\text {liq }} \\ \Delta \mathbf{H}=\Delta_{\text {vap }} \mathbf{U}+1 \mathrm{~atm}(10 \mathrm{~L})-(\sim 0) \\ \\ 3175 \mathrm{cal}=\Delta_{\text {vap }} \mathbf{U} \\ +1 \mathrm{~atm}^{2}(10 \mathrm{~L})(1.9872 / .0820578) \\ \Delta_{\text {vap }} \mathbf{U}=3175-242.2=2933 \mathrm{cal} \\ \text { Answer } \end{gathered}$	given $\Delta_{\mathrm{vap}} \mathrm{H}$ and using moles from Eq 4 first law $\mathbf{H}=\mathbf{U}+\mathrm{pV}$ definition neglecting $\mathrm{V}_{\text {liq }}$ remaining in final state and neglecting $(\mathrm{p} V)_{\text {liq }}$ at the initial state substituting value from Eq 5 into Eq 8 converting to cal from L atm	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$

7. (a) 10 g ice $(263 \mathrm{~K})+25 \mathrm{~g}$ liq water $(288 \mathrm{~K}) \rightarrow$? adiabatic process

Equation	Basis for the equation	Eq. $\#$
(i) 10 g ice $(263 \mathrm{~K}) \rightarrow 10 \mathrm{~g}$ ice $(273 \mathrm{~K})$ (ii) 10 g ice $(273 \mathrm{~K}) \rightarrow 10 \mathrm{~g}$ liq $(273 \mathrm{~K})$ (iiii) $10 \mathrm{~g} \mathrm{liq}(273 \mathrm{~K}) \rightarrow 10 \mathrm{~g} \operatorname{liq}\left(\mathrm{~T}_{\mathrm{f}} \mathrm{K}\right)$ (iv) 25 g liq $(288 \mathrm{~K}) \rightarrow 25 \mathrm{~g} \operatorname{liq}\left(\mathrm{~T}_{\mathrm{f}} \mathrm{K}\right)$ $\begin{aligned} & q^{q}=0=q_{i}+q_{i i}+q_{i i i}+q_{i v} \\ & \mathrm{q}_{\mathrm{i}}=10 \mathrm{~g} \bullet 0.5 \mathrm{cal} \mathrm{~K}^{-1} \mathrm{~g}^{-1} \bullet(273-263) \mathrm{K} \\ & \mathrm{q}_{\mathrm{ii}}=10 \mathrm{~g} \bullet 80 \mathrm{cal} \mathrm{~g}^{-1} \\ & \mathrm{q}_{\mathrm{iii}}=10 \mathrm{~g} \bullet 1.0 \mathrm{cal} \mathrm{~K}^{-1} \mathrm{~g}^{-1} \bullet\left(\mathrm{~T}_{\mathrm{f}}-273\right) \mathrm{K} \\ & \mathrm{q}_{\mathrm{iv}}=25 \mathrm{~g} \bullet 1.0 \mathrm{cal} \mathrm{~K}^{-1} \mathrm{~g}^{-1} \bullet\left(\mathrm{~T}_{\mathrm{f}}-288\right) \mathrm{K} \\ & 0=50+800+10 \mathrm{~T}_{\mathrm{f}}-2730+25 \mathrm{~T}_{\mathrm{f}} \\ & -7200 \end{aligned}$ Solving for T_{f} $\mathrm{T}_{\mathrm{f}}=259.5 \mathrm{~K}$ this answer is absurd.	One possibility is that all ice melts and final state is all liq water at $T_{f} \geq 273$. Another possibility is that only some of the ice melts and final state is some ice, some liquid water, all at 273 K The largest contribution comes from the q associated with melting of ice, so the second possibility is more likely. Nevertheless, let us try the first possibility and see what we find out. q contributions must sum to zero because it is an adiabatic process. $\mathrm{q}=\int \mathrm{CdT}$, and C is independent of temperature because it is lower than the freezing point of water. Therefore it is not possible that all ice melts	

7. (b) 10 g ice $(263 \mathrm{~K})+100 \mathrm{~g}$ liq water $(288 \mathrm{~K}) \rightarrow$? adiabatic process

Equation	Basis for the equation	Eq.
(i) 10 g ice $(263 \mathrm{~K}) \rightarrow 10 \mathrm{~g}$ ice $(273 \mathrm{~K})$ (ii) 10 g ice $(273 \mathrm{~K}) \rightarrow 10 \mathrm{~g}$ liq $(273 \mathrm{~K})$ (iiii) 10 g liq $(273 \mathrm{~K}) \rightarrow 10 \mathrm{~g} \operatorname{liq}\left(\mathrm{~T}_{\mathrm{f}} \mathrm{K}\right)$ (iv) 100 g liq $(288 \mathrm{~K}) \rightarrow 100 \mathrm{~g}$ liq $\left(\mathrm{T}_{\mathrm{f}} \mathrm{K}\right)$ Solving for T_{f} $\mathrm{T}_{\mathrm{f}}=278.9 \mathrm{~K}$ The final state is 110 g liquid water at 278.9 K Answer	One possibility is that all ice melts and final state is all liq water at $T_{f} \geq 273$. Another possibility is that only some of the ice melts and final state is some ice, some liquid water, all at 273 K Let us try the first possibility and see what we find out. Adiabatic process Substituting each term into Eq 5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \\ & 5 \\ & 6 \\ & 7 \\ & 7 \\ & 8 \\ & 9 \\ & 10 \end{aligned}$

8. $\mathrm{C}+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
rxn (1)
rxn (2)

Equation	Basis for the equation	Eq. \#
(a) Final products are equimolar $\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$	Assuming only rxn (1) occurs	1
Combustion at $298 \mathrm{~K}, 1 \mathrm{~atm}$:	Given	
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O} 2 \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	Assuming all combustion products are vapor	2
$\begin{aligned} \Delta_{\mathrm{rxn}} \mathbf{H}= & \Delta_{\text {form }} \mathbf{H}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]+\Delta_{\text {form }} \mathbf{H}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right] \\ & -\Delta_{\text {form }} \mathbf{H}[\mathrm{CO}(\mathrm{~g})] \end{aligned}$	By definition, $\begin{aligned} & \Delta_{\text {form }} \mathbf{H}\left[\mathrm{H}_{2}(\mathrm{~g})\right]=0 \\ & \Delta_{\text {form }} \mathbf{H}\left[\mathrm{O}_{2}(\mathrm{~g})\right]=0 \end{aligned}$	3

\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
\Delta_{\mathrm{rxn}} \mathrm{H} \& =-393.51-241.82-(-110.53) \\
\& =-524.8 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
\] \& Look up \(\Delta_{\text {form }} \mathrm{H}\) for \(\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(\mathrm{g})\) and \(\mathrm{CO}(\mathrm{g})\) in textbook at \(1 \mathrm{~atm}, 298 \mathrm{~K}^{2}\) in kJ mol\({ }^{-1}\) \& 4 \\
\hline \[
\begin{aligned}
\& \text { For } 1 \mathrm{~L} \text { of water gas } \\
\& \mathrm{pV}=\mathrm{nRT}
\end{aligned} \begin{aligned}
\& \mathrm{n}=1 \mathrm{~atm} \bullet 1 \mathrm{~L} \\
\& \quad /\left(0.0820578 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \bullet 298\right) \\
\& \mathrm{n}=0.0409 \mathrm{~mol}=0.02045 \mathrm{~mol} \mathrm{CO}^{2} \\
\& \quad+0.02045 \mathrm{~mol} \mathrm{H}_{2} \\
\& \begin{aligned}
\& \Delta_{\text {comb }} \mathrm{H} \text { of } 1 \mathrm{~L} \text { of water gas } \\
\&=0.02045 \text { moll }\left(-524.8 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\
\&=-10.73 \mathrm{~kJ} \quad \text { Answer }
\end{aligned}
\end{aligned}
\] \& \begin{tabular}{l}
Assume ideal behavior Ideal gas law \\
Solve for total number of moles in 1 L of gas \\
for this number of moles
\end{tabular} \& 5
6
7
7
8 \\
\hline \begin{tabular}{l}
(b) Final products of water gas reaction are
\[
0.95 \mathrm{CO}(\mathrm{~g})+0.05 \mathrm{CO}_{2}(\mathrm{~g})+1.05 \mathrm{H}_{2}(\mathrm{~g})
\] \\
For 1 L of water gas, \(\mathrm{n}=0.0409 \mathrm{~mol}\) as before,
\end{tabular} \& \begin{tabular}{l}
95\% of C appears as CO from rxn (1) and and 5\% as \(\mathrm{CO}_{2}\) from rxn (2) \\
but now consists of (0.95/2.05)(0.0409) mol CO
\[
+(0.05 / 2.05)(0.0409) \mathrm{mol} \mathrm{CO}_{2}
\]
\[
+(1.05 / 2.05)(0.0409) \mathrm{mol} \mathrm{H}_{2}
\] \\
Do \(\Delta_{\mathrm{rxn}} \mathrm{H}\) separately because no longer 1:1 in CO and \(\mathrm{H}_{2}\) \\
Using \(\Delta_{\text {form }} \mathrm{H}\) for \(\mathrm{CO}_{2}(\mathrm{~g})\) and \(\mathrm{CO}(\mathrm{g})\) \\
Using \(\Delta_{\text {form }} \mathbf{H}\) for \(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\) \\
Using the number of moles found in Eq 10 \\
Enthalpy of combustion of 1 L of water gas
\end{tabular} \& 9
10
11
12 \\
\hline \begin{tabular}{l}
9. \(\mathrm{C}+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \mathrm{CO}(\mathrm{g})\) \\
\(\mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \mathrm{CO}_{2}(\mathrm{~g})\)
\end{tabular} \& \[
\begin{aligned}
\& \text { rxn (1) } \\
\& \text { rxn (2) } \\
\& \hline
\end{aligned}
\] \& \\
\hline Equation \& Basis for the equation \& Eq.
\(\#\) \\
\hline Final products are \(0.95 \mathrm{~mol} \mathrm{CO}+0.05\) mol CO 2 for every \(0.5 \mathrm{~mol} \mathrm{O}_{2}\) used up, which is accompanied by \(2.0 \mathrm{~mol} \mathrm{~N}_{2}\) in the dry air used to produce the gas \& 95\% of \(\mathrm{O}_{2}\) appears in CO from rxn (1) and and \(5 \%\) in \(\mathrm{CO}_{2}\) from rxn (2) \& \\
\hline \[
\begin{aligned}
\& \text { consider } 1 \mathrm{~L} \text { producer gas at } 1 \mathrm{~atm} \\
\& \mathrm{pV}=\mathrm{nRT} \\
\& \mathrm{n}=1 \mathrm{~atm} \bullet 1 \mathrm{~L} \\
\& \quad /\left(0.0820578 \mathrm{~L} \text { atm } \mathrm{mol}^{-1} \mathrm{~K}^{-1} \bullet 298\right) \\
\& \mathrm{n}=0.0409 \mathrm{~mol} \\
\& =(0.95 / 3.0)(0.0409) \mathrm{mol} \mathrm{CO}+.
\end{aligned}
\] \& Ideal gas law \& 1

2
3

\hline
\end{tabular}

$\begin{aligned} & (0.05 / 3.0)\left(0.0409 \mathrm{~mol} \mathrm{CO}_{2}+\right. \\ & (2.0 / 3.0)(0.0409) \mathrm{mol} \mathrm{~N}_{2} \\ & \text { or } 0.01295 \mathrm{~mol} \mathrm{CO} \end{aligned}$	Of the components only CO can contribute to heating value	
$\begin{aligned} & \text { Combustion of } \mathrm{CO} \text { in air } \\ & \mathrm{CO}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \\ & \left.\Delta_{\text {rx }} \mathrm{H}=\Delta_{\text {form }} \mathrm{H}^{[\mathrm{CO}} \mathrm{CO}_{2}(\mathrm{~g})\right]-\Delta_{\text {form }} \mathrm{H}[\mathrm{CO}(\mathrm{~g})] \\ & =-393.51-(-110.53) \\ & \left.=-282.98 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$	By definition, $\quad \Delta_{\text {form }} \mathrm{H}\left[\mathrm{O}_{2}(\mathrm{~g})\right]=0$ using $\Delta_{\text {form }} \mathbf{H}$ for $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{CO}(\mathrm{g})$ in textbook at 1 atm, $298 \mathrm{~K} \mathrm{in} \mathrm{kJ} \mathrm{mol}^{-1}$	5 6
	For 1 L producer gas containing 0.01295 mol CO	7

10. (a) $\quad \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) /$ air at $293 \mathrm{~K} \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at 373 K

Equation	Basis for the equation	Eq. $\#$
$\begin{aligned} & \hline 1 \mathrm{~mol} \mathrm{CH}_{4} \\ & 4 \mathrm{~mol} \mathrm{O}_{2} \\ & 16 \mathrm{~mol} \mathrm{~N}_{2} \end{aligned}$	given Twice the minimum amount of air is used for combustion	
$\begin{aligned} & \text { At } 293 \mathrm{~K} \\ & \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\ & \Delta_{\mathrm{comb}} \mathrm{H}=-212.91 \mathrm{kcal} \mathrm{~mol}^{-1} \end{aligned}$	Definition of $\Delta_{\text {comb }} \mathbf{H}$ is that products of combustion are $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ Given	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$
$\mathrm{CO}_{2}(\mathrm{~g}) 293 \mathrm{~K} \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) 373 \mathrm{~K}$ (1) $2 \mathrm{H}_{2}(\mathrm{I}) 293 \mathrm{~K} \rightarrow 2 \mathrm{H} 2 \mathrm{O}(\mathrm{l}) 373 \mathrm{~K}$ (2) $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) 373 \mathrm{~K} \rightarrow 2 \mathrm{H} 2 \mathrm{O}(\mathrm{g}) 373 \mathrm{~K}$ (3) $16 \mathrm{~N}_{2}(\mathrm{~g}) 293 \mathrm{~K} \rightarrow 16 \mathrm{~N}_{2}(\mathrm{~g}) 373 \mathrm{~K}$ (4) $2 \mathrm{O}_{2}(\mathrm{~g}) 293 \mathrm{~K} \rightarrow 2 \mathrm{O}_{2}(\mathrm{~g}) 373 \mathrm{~K}$ (5) $\mathrm{CH}_{4}(\mathrm{~g})+4 \mathrm{O}_{2}(\mathrm{~g})+16 \mathrm{~N} 2(\mathrm{~g})$ at 293 K $\rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{O}_{2}+16 \mathrm{~N}_{2}$ at 373 K	The CO2 product has to be heated to 373 K the liquid water has to be heated to 373 K and vaporized The N_{2} and the unused O_{2} have to be heated to 373 K Adding up the changes	$\begin{aligned} & 4 \\ & 5 \end{aligned}$
$\Delta \mathbf{H}=$ $\Delta_{\text {comb }} \mathbf{H}+\Delta \mathbf{H}(1)+\Delta \mathbf{H}(2)+\Delta \mathbf{H}(3)$ $+\Delta \mathbf{H}(4)+\Delta \mathbf{H}(5)$ $\Delta \mathbf{H}(1)=$ $1 \bullet 8.87 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}(373-293)$ $\Delta \mathbf{H}(2)=$ $2 \bullet 18 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}(373-293)$ $\Delta \mathbf{H}(3)=2 \bullet 9720 \mathrm{cal} \mathrm{mol}^{-1}$ $\Delta \mathbf{H}(4)=$ $16 \bullet 6.96 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ $\Delta \mathbf{H}(5)=2 \bullet 7.02 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}(373-293)$	Using $\mathrm{dH}=\mathrm{C}_{\mathrm{p}} \mathrm{dT}$ at $\mathrm{dp}=0$ Using $\Delta_{\mathrm{vap}} \mathbf{H}=9720 \mathrm{cal} \mathrm{mol}^{-1}$ for water	$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \end{array}$
$\begin{aligned} \Delta \mathrm{H} & =-212.91 \times 10^{3}+709.6+2880 \\ & +19440+8909+1123 \\ & =-179848 \mathrm{cal} \quad \text { Answer } \end{aligned}$	Summing up terms in Eq 9 from Eq 10-14 heat liberated for $1 \mathrm{~mol}^{\text {of }} \mathrm{CH}_{4}$ gas burned	

10. (b) $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) /$ air at $293 \mathrm{~K} \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at T K

Equation	Basis for the equation	Eq. $\#$
$\begin{aligned} & 1 \mathrm{~mol} \mathrm{CH}_{4} \\ & 4 \mathrm{~mol} \mathrm{O}_{2} \\ & 16 \mathrm{~mol} \mathrm{~N}_{2} \end{aligned}$	given Twice the minimum amount of air is used for combustion	
final state of stack gases: T such that saturated with water vapor but no condensation Composition of stack gases: $2 \mathrm{~mol} \mathrm{O}_{2}+16 \mathrm{~mol} \mathrm{~N}_{2}+1 \mathrm{~mol} \mathrm{CO}_{2}$ $+2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}=21 \mathrm{~mol}$ $x_{\mathrm{H} 2 \mathrm{O}}=2 / 21=0.095$ 0.095 atm is the partial pressure of water at 1 atm total pressure or 72 mm Hg	given find the mole fraction of water in the stack gases using plot of vapor pressure of water, 72 mm Hg corresponds to $40^{\circ} \mathrm{C}$ or 313 K	2 3
same steps Eq 3-8 as in 10.(a) have to be added up except T is 313 not 373	Everything is the same as in 10. (a) except that the temperature of the stack gases is 313 K instead of 373 K and we need to get $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ from 373 K back down to 313 K	
$\begin{array}{r} \Delta \mathbf{H}=\Delta_{\text {comb }} \mathbf{H}+\Delta \mathbf{H}(1)+\Delta \mathbf{H}(2)+\Delta \mathbf{H}(3) \\ +\Delta \mathbf{H}(2 \mathrm{a})+\Delta \mathbf{H}(4)+\Delta \mathbf{H}(5) \\ \Delta \mathbf{H}(1)=1 \bullet 8.87 \mathrm{cal} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}(313-293) \\ \Delta \mathbf{H}(2)=2 \bullet 18 \mathrm{cal} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}(373-293) \\ \Delta \mathbf{H}(3)=2 \bullet 9720 \mathrm{cal} \mathrm{~mol}^{-1}(3) \\ \Delta \mathbf{H}(2 \mathrm{a})=2 \bullet 8.03 \mathrm{cal} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}(313-373) \\ \Delta \mathbf{H}(4)=16 \bullet 6.96 \mathrm{cal} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ \bullet(313-293) \\ \Delta \mathbf{H}(5)=2 \bullet 7.02 \mathrm{cal} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}(313-293) \end{array}$	Using $d H=C_{p} d T$ at $d p=0$ Using $\Delta_{\text {vap }} \mathbf{H}=9720 \mathrm{cal} \mathrm{mol}^{-1}$ for water at 373 K	4 5 6 7 8 9 10
$\begin{aligned} \Delta \mathrm{H}= & -212.91 \times 10^{3}+177+2880 \\ & +19440-321+2227+280 \\ = & -188227 \mathrm{cal} \quad \text { Answer } \end{aligned}$	Summing up Eq 5-10 into Eq 4 heat liberated for 1 mol of CH_{4} gas burned to stack gases at 313 K where water in saturated vapor just fails to condense	

