## **Solutions to Problem Set 3**

| <b>1.</b> 1 mole liquid, T, 1 atm $\rightarrow$                                                                                           | vapor, T, 1 atm                    |     |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----|
| Equation                                                                                                                                  | Basis for the equation             | Eq. |
|                                                                                                                                           |                                    | #   |
| $d\mathbf{U} = (\partial \mathbf{U} / \partial \mathbf{T})_{V} d\mathbf{T} + (\partial \mathbf{U} / \partial \mathbf{V})_{T} d\mathbf{V}$ | U = U(T, V)                        | 1   |
| $\mathbf{U}(T,V)=f(T)-a/V$                                                                                                                | Given                              | 2   |
| $V_{\text{liquid}} = 18 \times 10^{-3} \text{ L} \text{ mol}^{-1}$                                                                        |                                    |     |
| $V_{vapor} = 24 L \text{ mol}^{-1}$                                                                                                       |                                    |     |
| $a = 5.72 L^2 atm mol^{-1}$                                                                                                               |                                    |     |
| $U_{\text{liquid}} = f(T) - 5.72/18$                                                                                                      | substituting values of V into Eq 2 | 3   |
| $U_{vapor} = f(T) - 5.72/24$                                                                                                              |                                    |     |
| $\mathbf{U}_{vapor} - \mathbf{U}_{liquid} = -5.72/245.72/0.018$                                                                           |                                    | 4   |
| $= 317.54 \text{ L} \text{ atm mol}^{-1}$                                                                                                 |                                    | 5   |
| $= 7690 \text{ cal mol}^{-1}$                                                                                                             |                                    |     |
| $\mathbf{H}_{vapor} - \mathbf{H}_{liquid} = \mathbf{U}_{vapor} - \mathbf{U}_{liquid}$                                                     | H = U + pV Definition              |     |
| + $p(V_{vapo}r - V_{liquid})$                                                                                                             |                                    |     |
| = 317.54 + 1(24-0.018)                                                                                                                    | Using Eq 5 and values of V         |     |
| $= 341.5 \text{ L} \text{ atm mol}^{-1}$                                                                                                  |                                    |     |
| = 8270. cal mol <sup>-1</sup>                                                                                                             |                                    |     |
| Answer                                                                                                                                    |                                    |     |
| This is smaller than                                                                                                                      |                                    |     |
| $\Delta_{vap}H = 9820 \text{ cal mol}^{-1} \text{ expt}$                                                                                  |                                    |     |

**2.** 0.1 mol ideal monatomic gas  $T_1 \rightarrow T_2$  along path V = a•exp(bT)

| Equation                                                                                                            | Basis for the equation                                                    | Eq. |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----|
|                                                                                                                     |                                                                           | #   |
| p = 0.1RT/V                                                                                                         | Given ideal gas equation of state, 0.1 mol                                | 1   |
| W = -∫p <sub>op</sub> dV                                                                                            | Definition                                                                | 2   |
| $p_{op} = p_{gas}$                                                                                                  | given reversible                                                          | 3   |
| W = - ∫ 0.1RTdV/V                                                                                                   |                                                                           | 4   |
| V = a∙exp(bT)                                                                                                       | Given path                                                                | 5   |
| $dV = a \cdot exp(bT) \cdot bdT$                                                                                    | Taking the In                                                             | 6   |
| dV/V = bdT                                                                                                          |                                                                           | 7   |
| W = -∫0.1RbTdT                                                                                                      |                                                                           | 8   |
| $W = -0.1 \text{ Rb}(1/2)[T_2^2 - T_1^2]$                                                                           | Note the function for work depends on the path!                           | 9   |
| Answer                                                                                                              |                                                                           |     |
| $q = C (T_2 - T_1)$                                                                                                 | Note that C is neither C <sub>V</sub> nor C <sub>p</sub> because the path |     |
| However, given it is an ideal gas,                                                                                  | is neither constant volume nor constant pressure.                         |     |
| for which $(\partial \mathbf{U}/\partial V)_T = 0$                                                                  | property of an ideal gas                                                  | 10  |
| $d\mathbf{U} = (\partial \mathbf{U}/\partial \mathbf{T})_{V} d\mathbf{T} + (\partial \mathbf{U}/\partial V)_{T} dV$ | U = U(T, V)                                                               | 11  |
| $d\mathbf{U} = \mathbf{C}_{V} d\mathbf{T}$                                                                          |                                                                           | 12  |

| $\Delta \mathbf{U} = \mathbf{C}_{\mathbf{V}}[\mathbf{T}_2 - \mathbf{T}_1]$                  |                             | 13 |
|---------------------------------------------------------------------------------------------|-----------------------------|----|
| $\Delta \mathbf{U} = \mathbf{q} + \mathbf{W},  \mathbf{q} = \Delta \mathbf{U} - \mathbf{W}$ | First law of thermodynamics | 14 |
| $q = C_{V}[T_2 - T_1]$                                                                      |                             | 15 |
| + $(0.1 \text{Rb}/2) \cdot [\text{T}_2^2 - \text{T}_1^2]$                                   |                             |    |
| Answer                                                                                      |                             |    |
| $T_1 = 300 \text{ K}$ $T_2 = 400 \text{ K}$ $b = 0.01 \text{ K}^{-1}$                       | Given                       | 16 |
| $W = - (0.00831451/2)(400^2 - 300^2)$                                                       | Using Eq 9 and 0.1 mol      | 17 |
|                                                                                             |                             |    |
| W = - 291 J = -0.291 kJ <b>Answer</b>                                                       |                             | 18 |
| $\Delta \mathbf{U} = 1.5(8.31451)[400-300] = 1247 \text{ J}$                                |                             | 19 |
| = 1.247 kJ Answer                                                                           |                             | 20 |
| $q = \Delta U - W = 1.538 J$ Answer                                                         | Using Eq 14, 18 and 20      |    |

### 3.

#### В С

1 mole ideal gas  $p_1$ ,  $T_1$ ,  $V_1 \rightarrow p_2$ ,  $T_2$ ,  $V_2 \rightarrow p_3$ ,  $T_3$ ,  $V_3 \rightarrow p_4$ ,  $T_4$ ,  $V_4$  **A** reversible heating at constant p = 1 atm, from 298 to 373 K **B** reversible isothermal expansion to  $2V_2$ 

Α

C reversible adiabatic cooling to 308 K

 $C_{p} = (5/2)R$ 

| $G_p = (3/2) R$                                                                                               | Basis for the equation                                   | Ea  |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----|
| Equation                                                                                                      | Basis for the equation                                   | Eq. |
|                                                                                                               | Qia an                                                   | #   |
| $p_1 = 1 \text{ atm } T_1 = 298$                                                                              | Given                                                    | 1   |
| $V_1 = R298/1 \text{ atm} = 24.45 \text{ L}$                                                                  | ideal gas                                                | 2   |
| $p_2 = 1 \text{ atm } T_2 = 373$                                                                              |                                                          | 3   |
| $V_2 = R373/1$ atm = 30.61 L                                                                                  |                                                          | 4   |
| $T_3 =_{T_2} = 373 V_3 = 2V_2 = 61.22 L$                                                                      |                                                          | 5   |
| $p_3 = R373/61.22 = 0.50 atm$                                                                                 |                                                          | 6   |
| $T_4 = 308 \text{ K}$                                                                                         |                                                          | 7   |
| $p_4$ , $V_4$ can be calculated but we                                                                        |                                                          |     |
| actually do not need these                                                                                    |                                                          |     |
| $d\mathbf{U} = \mathbf{C}_{V} dT + (\partial \mathbf{U} / \partial V)_{T} dV$                                 | $\mathbf{U} = \mathbf{U}(T,V)$ and definition of $C_{V}$ | 8   |
| $(\partial \mathbf{U}/\partial \mathbf{V})_{\mathrm{T}} = 0$                                                  | property of an ideal gas                                 | 9   |
| $d\mathbf{U} = \mathbf{C}_{V} d\mathbf{T}$                                                                    |                                                          | 10  |
| $d\mathbf{H} = \mathbf{C}_{\mathbf{p}}d\mathbf{T} + (\partial \mathbf{H}/\partial \mathbf{p})_{T}d\mathbf{p}$ | $H = H(T,p)$ and definition of $C_p$                     | 11  |
| $(\partial \mathbf{H}/\partial \mathbf{p})_{\mathrm{T}} = 0$                                                  | property of an ideal gas                                 | 12  |
| $d\mathbf{H} = C_{p}dT$                                                                                       |                                                          | 13  |
| Step A                                                                                                        |                                                          |     |
| ∆ <b>U</b> = (3/2)R(373-298)= 935.4 J                                                                         | From Eq 10 and given $C_V = (3/2)R$                      | 14  |
| Answer                                                                                                        |                                                          |     |
| ∆ <b>H</b> = (5/2)R(373-298)= 1559.0 J                                                                        | From Eq 13 and given $C_p = C_V + R = (5/2)R$            | 15  |
| Answer                                                                                                        |                                                          |     |
| $W = -\int popdV = -1 \text{ atm } [V_2 - V_1]$                                                               | Definition and $p = constant = 1 atm$                    | 16  |
| = -1 [30.61 - 24.45] = - 6.16 L atm                                                                           |                                                          |     |
| = - 624.2 J <b>Answer</b>                                                                                     |                                                          | 17  |

| $\Delta \mathbf{U} = \mathbf{q} + \mathbf{W}$                                       | First law of thermodynamics                             | 18 |
|-------------------------------------------------------------------------------------|---------------------------------------------------------|----|
| $q = \Delta U - W = 935.4 + 624.2 = 1559.6 J$                                       |                                                         | 19 |
| Answer                                                                              |                                                         | 10 |
|                                                                                     |                                                         |    |
| Step B                                                                              |                                                         | 20 |
| $\Delta \mathbf{U} = 0 \text{ J} \qquad \text{Answer}$                              | dT = 0                                                  | 20 |
| $\Delta \mathbf{H} = 0 \mathbf{J}$ Answer                                           | dT = 0                                                  | 21 |
| $W = -\int p_{op}dV = -\int p_{ga}sdV$                                              | p <sub>op</sub> = p <sub>gas</sub> reversible expansion | 22 |
| $W = -\int RTdV/V = -R373 \ln(V_3/V_2)$                                             |                                                         | 23 |
| W = - R373 ln 2 = -2149 J <b>Answer</b>                                             |                                                         | 24 |
| $q = \Delta U - W$                                                                  | First law of thermodynamics                             | 25 |
| q = 0 + 2149 J <b>Answer</b>                                                        |                                                         | 26 |
| Step C                                                                              |                                                         |    |
| ∆ <b>U</b> = (3/2)R(308-373)= - 810.7 J                                             | From Eq 10 and given $_{CV} = (3/2)R$                   | 27 |
| Answer                                                                              |                                                         |    |
| ∆ <b>H</b> = (5/2)R(308-373)= - 1351.1 J                                            | From Eq 13 and given $C_p=C_V+R = (5/2)R$               |    |
| Answer                                                                              |                                                         |    |
| q = 0 Answer                                                                        | adiabatic                                               |    |
| $\Delta \mathbf{U} = \mathbf{q} + \mathbf{W} \qquad \mathbf{W} = \Delta \mathbf{U}$ | First law of thermodynamics                             |    |
| W = - 810.7 J <b>Answer</b>                                                         | From Eq 27                                              |    |
| Overall                                                                             |                                                         |    |
| ∆ <b>U</b> = 124.7 J                                                                |                                                         |    |
| ∆ <b>H</b> = 208.8 J                                                                |                                                         |    |
| W = -3583.9                                                                         |                                                         |    |
| q = 3708.6 J                                                                        |                                                         |    |
| Answer                                                                              |                                                         |    |

В С 4. Α

1 mole ideal gas  $p_1,\,T_1,\,V_1\to p_2,\,T_2,\,V_2\to p_3,\,T_3,\,V_3\to p_4,\,T_4,\,V_4$  A reversible heating at constant V, from 298 to 373 K

**B** Joule expansion into a vacuum to  $2V_2$ 

C reversible cooling at constant p to 298 K

| Equation                                                         | Basis for the equation                                  | Eq.<br># |
|------------------------------------------------------------------|---------------------------------------------------------|----------|
| $p_1 = ? T_1 = 298 V_1 = ?$                                      | Given                                                   |          |
| $p_2 = ? T_2 = 373 V_2 = V_1$                                    |                                                         |          |
| $p_3 = ? T_3 = 373 V_3 = 2V_2$                                   | In a Joule expansion, there is no T change              |          |
| $p_4 = p_3$ $T_4 = 298$ K $V_4 = ?$                              |                                                         |          |
| Step A                                                           |                                                         |          |
| $q = C_V(373-298)$                                               |                                                         | 1        |
| $W = -\int p_0 p dV = 0$ since $dV = 0$                          |                                                         | 2        |
| $d\mathbf{U} = C_{V}dT + (\partial \mathbf{U}/\partial V)_{T}dV$ | $\mathbf{U} = \mathbf{U}(T, V)$ and definition of $C_V$ | 3        |
| $(\partial \mathbf{U}/\partial \mathbf{V})_{\mathrm{T}} = 0$     | property of an ideal gas                                | 4        |
| $\Delta U = C_{V}(373-298) = q + W$ indeed                       |                                                         | 5        |

| $d\mathbf{H} = \mathbf{C}_{p} \mathbf{dT} + (\partial \mathbf{H} / \partial \mathbf{p})_{T} \mathbf{dp}$ | $H = H(T,p)$ and definition of $C_p$               | 6  |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------|----|
| $(\partial \mathbf{H}/\partial \mathbf{p})_{\mathrm{T}} = 0$                                             | property of an ideal gas                           | 7  |
| $\Delta H = C_{p}(373-298)$                                                                              |                                                    | 8  |
| Another way,                                                                                             | $\mathbf{H} = \mathbf{U} + \mathbf{pV}$ definition | 9  |
| $\Delta \mathbf{H} = \Delta \mathbf{U} + \mathbf{p}_2 \mathbf{V}_2 - \mathbf{p}_1 \mathbf{V}_1$          |                                                    | 10 |
| = C <sub>V</sub> (373-298) + R373- R298                                                                  | Using ideal gas law                                | 11 |
| $= C_p(373-298)$ the same                                                                                | $C_p - C_V = R$ for an ideal gas                   |    |
| Step B                                                                                                   |                                                    |    |
| $W = -\int p_{op} dV$                                                                                    |                                                    | 12 |
| $p_{op} = 0$                                                                                             |                                                    | 13 |
| W = 0                                                                                                    |                                                    | 14 |
| $\Delta \mathbf{U} = \mathbf{C}_{\mathbf{V}} \mathbf{dT} = 0$                                            | dT = 0 in a Joule expansion                        | 15 |
| $\Delta \mathbf{U} = \mathbf{q} + \mathbf{W}$                                                            |                                                    | 16 |
| $q = \Delta U = 0$                                                                                       |                                                    | 17 |
| $\Delta \mathbf{H} = \mathbf{C}_{\mathbf{p}} \mathbf{dT} = 0$                                            |                                                    | 18 |
| Step C                                                                                                   | •                                                  |    |
| $q = C_p(298-373)$                                                                                       |                                                    | 19 |
| $\Delta \mathbf{U} = \mathbf{C}_{V}(298-373)$                                                            |                                                    | 20 |
| $\Delta \mathbf{U} = \mathbf{q} + \mathbf{W}$                                                            |                                                    | 21 |
| $W = C_V(298-373) - C_p(298-373)$                                                                        |                                                    | 22 |
| = - R(298 - 373)                                                                                         |                                                    | 23 |
| Another way: W = -∫ p <sub>op</sub> dV                                                                   |                                                    | 24 |
| reversible pop = $p_{qas}$                                                                               |                                                    |    |
| At constant pressure,                                                                                    |                                                    |    |
| $W = -p_3 \int dV = -p_3 (V_4 - V_3) = -R298 -$                                                          |                                                    |    |
| R373                                                                                                     |                                                    |    |
| the same as - R(298 – 373) found                                                                         |                                                    |    |
| from first law                                                                                           |                                                    |    |
| $\Delta \mathbf{H} = \mathbf{C}_{p} (298 - 373)$                                                         |                                                    |    |
| for the overall process                                                                                  |                                                    |    |
| $q = C_V(373-298) + 0 + C_p(298-373)$                                                                    |                                                    |    |
| $= (C_p - C_V)298 - (C_p - C_V)373$                                                                      | $C_p$ - $C_V$ = R for an ideal gas                 |    |
| q = R(298-373) = -0.624  kJ                                                                              |                                                    |    |
| Answer                                                                                                   |                                                    |    |
| W = 0+0 - R(298 - 373) = + 0.624 kJ                                                                      |                                                    |    |
| Answer                                                                                                   |                                                    |    |
| $\Delta \mathbf{U} = \mathbf{C}_{\mathbf{V}}(373-298) + 0$                                               |                                                    |    |
| + C <sub>V</sub> (298-373)                                                                               |                                                    |    |
| $\Delta \mathbf{U} = 0 \qquad \qquad \mathbf{Answer}$                                                    | Note answers do not require $C_p$ or $C_V$ values. |    |
| $\Delta \mathbf{H} = \mathbf{C}_{p}(373-298) + 0 + \mathbf{C}_{p}(298-373)$                              |                                                    |    |
| $\Delta \mathbf{H} = 0$ Answer                                                                           |                                                    |    |

### 5. adiabatic process, ideal gases



| Equation                                                                  | Basis for the equation                                  | Eq.<br># |
|---------------------------------------------------------------------------|---------------------------------------------------------|----------|
| q=0                                                                       | Given adiabatic                                         | 1        |
| W = 0                                                                     | No work done to surroundings                            | 2        |
| $\Delta \mathbf{U} = \mathbf{q} + \mathbf{W} = 0$                         |                                                         | 3        |
| $d\mathbf{U} = \mathbf{C}_{V}dT + (\partial \mathbf{U}/\partial V)_{T}dV$ | $\mathbf{U} = \mathbf{U}(T, V)$ and Definition of $C_V$ | 4        |
| $(\partial \mathbf{U}/\partial \mathbf{V})_{\mathrm{T}} = 0$              | property of an ideal gas                                | 5        |
| $\Delta \mathbf{U} = \mathbf{C}_{V}(\mathbf{T}_{f} - \mathbf{T}_{i})$     |                                                         | 6        |
| $\Delta U_{\text{He}} = 0.5 (3/2) R(T_{\text{f}} - 373)$                  |                                                         | 7        |
| $\Delta U_{02} = (5/2)R(T_f - 273)$                                       |                                                         | 8        |
| $0 = \Delta \mathbf{U}_{\text{He}} + \Delta \mathbf{U}_{\text{O2}}$       | From Eq 3                                               | 9        |
| $0 = 0.5(3/2)R(T_f - 373)$                                                |                                                         |          |
| $+ (5/2)R(T_f - 273)$                                                     |                                                         |          |
| $T_{\rm f} = (3/4)373 + (5/2)273$                                         | Solving for T <sub>f</sub>                              |          |
| (3/4)+(5/2)                                                               |                                                         |          |
|                                                                           |                                                         |          |
| $T_f = 296 \text{ K}$ Answer                                              |                                                         |          |

6. 10 L tank, ideal gas vapor, negligible volume of liquid water



| Equation                                                                                                      | Basis for the equation                              | Eq.<br># |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------|
| q=0                                                                                                           | Given insulated, no q to or from surroundings       | 1        |
| W = 0                                                                                                         | vapor formed in evacuated volume                    | 2        |
| Final state: water vapor                                                                                      |                                                     |          |
| V = 10 L, T = 373, p = 1 atm                                                                                  |                                                     |          |
| in equilibrium with remaining liquid                                                                          |                                                     |          |
| pV = nRT                                                                                                      | ideal gas                                           | 3        |
| 1 atm (10 L)                                                                                                  |                                                     |          |
| = n 0.0820578 L atm mol <sup>-1</sup> K <sup>-1</sup> (373)                                                   |                                                     |          |
| n = 0.3267 mol                                                                                                |                                                     | 4        |
| $\Delta$ <b>H</b> = 9720 cal mol <sup>-1</sup> (0.3267 mol)                                                   | given $\Delta_{vap}H$ and using moles from Eq 4     |          |
| = 3175 cal Answer                                                                                             |                                                     | 5        |
| $\Delta \mathbf{U} = \mathbf{q} + \mathbf{W} + \mathbf{U}_{vap} - \mathbf{U}_{liq} = \Delta_{vap} \mathbf{U}$ | first law                                           | 6        |
| $\Delta \mathbf{H} = \Delta \mathbf{U} + (\mathbf{pV})_{vap} - (\mathbf{pV})_{liq}$                           | $\mathbf{H} = \mathbf{U} + \mathbf{pV}$ definition  | 7        |
| $\Delta \mathbf{H} = \Delta_{vap} \mathbf{U} + 1 \operatorname{atm}(10 \text{ L}) - (\sim 0)$                 | neglecting $V_{liq}$ remaining in final state and   | 8        |
|                                                                                                               | neglecting (pV) <sub>liq</sub> at the initial state |          |
| 3175 cal = $\Delta_{vap}$ <b>U</b>                                                                            | substituting value from Eq 5 into Eq 8              |          |
| + 1atm(10 L)(1.9872/.0820578)                                                                                 | converting to cal from L atm                        |          |
| Δ <sub>vap</sub> <b>U</b> = 3175 - 242.2 = 2933 cal                                                           |                                                     |          |
| Answer                                                                                                        |                                                     |          |

|  | <b>7. (a)</b> 10 | g ice(263 K) | + 25 g liq water | (288 K) <b>→ ?</b> | adiabatic process |
|--|------------------|--------------|------------------|--------------------|-------------------|
|--|------------------|--------------|------------------|--------------------|-------------------|

| Equation                                                                                                                                                                                                                                                                                                                                                                                                      | Basis for the equation                                                                                                                                                                                                                                                                                                                                                                                                          | Eq.<br># |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| $      \begin{array}{l} (i) \ 10 \ g \ ice(263 \ K) \rightarrow 10 \ g \ ice \ (273 \ K) \\ (ii) \ 10 \ g \ ice(273 \ K) \rightarrow 10 \ g \ liq \ (273 \ K) \\ (iiii) \ 10 \ g \ liq(273 \ K) \rightarrow 10 \ g \ liq \ (T_f \ K) \\ (iv) \ 25 \ g \ liq \ (288 \ K) \rightarrow 25 \ g \ liq \ (T_f \ K) \\      \end{array} $                                                                            | One possibility is that all ice melts and final state<br>is all liq water at $T_f \ge 273$ . Another possibility is<br>that only some of the ice melts and final state is<br>some ice, some liquid water, all at 273 K The<br>largest contribution comes from the q associated<br>with melting of ice, so the second possibility is<br>more likely. Nevertheless, let us try the first<br>possibility and see what we find out. |          |
| $\begin{array}{l} q = 0 = q_i + q_{ii} + q_{iii} + q_{iv} \\ q_i = 10g \bullet 0.5 \ cal \ K^{-1}g^{-1} \bullet (273 \cdot 263) K \\ q_{ii} = 10 \ g \bullet 80 \ cal \ g^{-1} \\ q_{iii} = 10 \ g \bullet 1.0 \ cal \ K^{-1}g^{-1} \bullet (T_f \cdot 273) K \\ q_{iv} = 25 \ g \bullet 1.0 \ cal \ K^{-1}g^{-1} \bullet (T_f \cdot 288) K \\ 0 = 50 + 800 + 10T_f \cdot 2730 + 25T_f \\ - 7200 \end{array}$ | q contributions must sum to zero because it is an adiabatic process.<br>q = $\int CdT$ , and C is independent of temperature                                                                                                                                                                                                                                                                                                    |          |
| Solving for $T_f$<br>$T_f = 259.5$ K this answer is <u><b>absurd</b></u> .                                                                                                                                                                                                                                                                                                                                    | because it is lower than the freezing point of water. Therefore it is not possible that all ice melts                                                                                                                                                                                                                                                                                                                           |          |

| $ \begin{array}{l} (i) \ 10 \ g \ ice(263 \ \text{K}) \rightarrow 10 \ g \ ice(273 \ \text{K}) \\ (ii) \ x \ g \ ice(273 \ \text{K}) \rightarrow x \ g \ liq(273 \ \text{K}) \\ (iiii) \ 25 \ g \ liq(288 \ \text{K}) \rightarrow 25 \ g \ liq(273 \ \text{K}) \\ q = 0 = q_i + q_{ii} + q_{iii} \\ q_i = 10g \bullet 0.5 \ cal \ \text{K}^{-1}g^{-1} \bullet (273 - 263) \text{K} \\ q_{iii} = x \ g \bullet 80 \ cal \ g^{-1} \\ q_{iii} = 25 \ g \bullet 1.0 \ cal \ \text{K}^{-1}g^{-1} \bullet (273 - 288) \text{K} \\ \end{array} $ | Assume only some of the ice melts and the final<br>state is some ice some liquid all at 273 K<br>q contributions must sum to zero because it is an<br>adiabatic process |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\begin{array}{l} 0 = 50 + 80x - 375 \\ x = 4.06 \text{ g of ice melted} \\ \hline \text{Final state is 5.94 g ice 29.06 g liq} \\ \text{water all at 273 K} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                              | solve for x                                                                                                                                                             |  |

**7.** (b) 10 g ice(263 K) + 100 g liq water (288 K)  $\rightarrow$  ? adiabatic process

| Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Basis for the equation                                                                                                                                                                                                                                                                                    | Eq.<br>#                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| (i) 10 g ice(263 K) $\rightarrow$ 10 g ice (273 K)<br>(ii) 10 g ice(273 K) $\rightarrow$ 10 g liq (273 K)<br>(iii) 10 g liq(273 K) $\rightarrow$ 10 g liq (T <sub>f</sub> K)<br>(iv) 100 g liq (288 K) $\rightarrow$ 100 g liq (T <sub>f</sub> K)<br>q = 0 =q_i+q_{ii}+q_{iii}+q_{iv}<br>q <sub>i</sub> = 10g•0.5 cal K <sup>-1</sup> g <sup>-1</sup> •(273-263)K<br>q <sub>ii</sub> = 10 g•80 cal g <sup>-1</sup><br>q <sub>iii</sub> = 10 g•1.0 cal K <sup>-1</sup> g <sup>-1</sup> •(T <sub>f</sub> -273)K | One possibility is that all ice melts and final state<br>is all liq water at $T_f \ge 273$ . Another possibility is<br>that only some of the ice melts and final state is<br>some ice, some liquid water, all at 273 K Let us<br>try the first possibility and see what we find out.<br>Adiabatic process | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 |
| $\begin{array}{l} q_{iv} = 100 \ g\bullet 1.0 \ cal \ K^{-1}g^{-1}\bullet(T_f\text{-}288)K \\ 0 = 50 + 800 + 10T_f\text{-}2730 \\ & + 100T_f\text{-}28800 \\ \text{Solving for } T_f \\ T_f = \ 278.9 \ K \\ \text{The final state is } 110 \ g \ \text{liquid water at} \\ 278.9 \ K \\ \end{array}$                                                                                                                                                                                                         | Substituting each term into Eq 5                                                                                                                                                                                                                                                                          | 10                                        |

| 8. | $C + H_2O(g) \rightarrow CO(g) + H_2(g)$       | rxn (1) |
|----|------------------------------------------------|---------|
|    | $CO(g) + H_2O(g) \rightarrow CO_2(g) + H_2(g)$ | rxn (2) |

| Equation                                                                                       | Basis for the equation                                         | Eq. |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----|
|                                                                                                |                                                                | #   |
| (a) Final products are equimolar                                                               | Assuming only rxn (1) occurs                                   | 1   |
| $CO(g) + H_2(g)$                                                                               |                                                                |     |
| Combustion at 298 K, 1 atm:                                                                    | Given                                                          |     |
| $CO(g) + H_2(g) + O2 \rightarrow CO_2(g) + H_2O(g)$                                            | Assuming all combustion products are vapor                     | 2   |
| $\Delta_{rxn}\mathbf{H} = \Delta_{form}\mathbf{H}[CO_2(g)] + \Delta_{form}\mathbf{H}[H_2O(g)]$ | By definition, $\Delta_{form} \mathbf{H}[\mathbf{H}_2(g)] = 0$ | 3   |
| - ∆ <sub>form</sub> H[CO(g)]                                                                   | $\Delta_{form} \mathbf{H}[O_2(g)] = 0$                         |     |

| $\Delta_{rxn}$ <b>H</b> = -393.51 -241.82 –(-110.53)                                                                     | Look up $\Delta_{form}$ <b>H</b> for CO <sub>2</sub> (g) , H <sub>2</sub> O(g) and CO(g) in | 4  |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----|
| = -524.8 kJ mol <sup>-1</sup>                                                                                            | textbook at 1 atm, 298 K in kJ mol <sup>-1</sup>                                            |    |
| For 1 L of water gas                                                                                                     | Assume ideal behavior                                                                       | 5  |
| pV = nRT                                                                                                                 | Ideal gas law                                                                               | 6  |
| n =1 atm•1 L                                                                                                             |                                                                                             |    |
| $/(0.0820578L \text{ atm mol}^{-1} \text{ K}^{-1} \bullet 298)$                                                          |                                                                                             |    |
| n = 0.0409 mol = 0.02045 mol CO                                                                                          | Solve for total number of moles in 1 L of gas                                               | 7  |
| + 0.02045 mol H <sub>2</sub>                                                                                             |                                                                                             | -  |
| $\Delta_{\text{comb}}$ <b>H</b> of 1 L of water gas                                                                      |                                                                                             | 8  |
| $= 0.02045 \text{ mol} \cdot (-524.8 \text{ kJ mol}^{-1})$                                                               | for this number of moles                                                                    |    |
| = -10.73 kJ <b>Answer</b>                                                                                                |                                                                                             |    |
| (b) Final products of water gas                                                                                          | 95% of C appears as CO from rxn (1) and and 5%                                              |    |
| reaction are                                                                                                             | as CO <sub>2</sub> from rxn (2)                                                             |    |
| $0.95 \text{ CO}(g) + 0.05 \text{ CO}_2(g) + 1.05 \text{ H}_2(g)$                                                        |                                                                                             | 9  |
| For 1 L of water gas, $n = 0.0409$ mol                                                                                   | but now consists of                                                                         |    |
| as before,                                                                                                               | (0.95/2.05)(0.0409) mol CO                                                                  | 10 |
| $= 0.01895 \text{ mol CO} + 0.0010 \text{ mol CO}_2$                                                                     | + $(0.05/2.05)(0.0409)$ mol CO <sub>2</sub>                                                 | 10 |
| + 0.02095 mol H <sub>2</sub>                                                                                             | + (1.05/2.05)(0.0409) mol H <sub>2</sub>                                                    |    |
| 20(x) + 1(0) = 00(x)                                                                                                     | Do $\Delta_{rxn}$ <b>H</b> separately because no longer 1:1 in CO                           |    |
| $CO(g) + \frac{1}{2}O_2 \rightarrow CO_2(g)$                                                                             | and H <sub>2</sub>                                                                          | 11 |
| $\Delta_{\rm rxn} \mathbf{H} = \Delta_{\rm form} \mathbf{H} [\rm CO_2(g)] - \Delta_{\rm form} \mathbf{H} [\rm CO(g)]$    | Using $\Delta_{form}$ <b>H</b> for CO <sub>2</sub> (g) and CO(g)                            | 11 |
| = -393.51–(-110.53)<br>= -282.98 kJ mol <sup>-1</sup>                                                                    |                                                                                             |    |
|                                                                                                                          |                                                                                             |    |
| $H_2(g) + (1/2)O_2 \rightarrow H_2O(g)$                                                                                  | $H_{\text{sing}} \wedge H_{\text{for}} + O(a)$                                              | 12 |
| $\Delta_{rxn}\mathbf{H} = \Delta_{form}\mathbf{H}[\mathbf{H}_2\mathbf{O}(\mathbf{g})]$<br>= -241.82 kJ mol <sup>-1</sup> | Using $\Delta_{form}$ <b>H</b> for H <sub>2</sub> O(g)                                      | 12 |
|                                                                                                                          |                                                                                             |    |
| $\Delta_{\text{comb}}$ <b>H</b> of 1 L of water gas                                                                      | Using the number of moles found in Eq 10                                                    |    |
| $= 0.01895 \text{ mol} \cdot -282.98 \text{ kJ mol}^{-1}$                                                                |                                                                                             |    |
| + 0.02095 mol • -241.82 kJ mol <sup>-1</sup>                                                                             | Enthalpy of combustion of 1 L of water gas                                                  |    |
| = -10.42 kJ <b>Answer</b>                                                                                                |                                                                                             |    |

| <b>9.</b> $C + \frac{1}{2}O_2(g) \rightarrow CO(g)$             | rxn (1)                                         |     |
|-----------------------------------------------------------------|-------------------------------------------------|-----|
| $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$                 | rxn (2)                                         |     |
| Equation                                                        | Basis for the equation                          | Eq. |
|                                                                 |                                                 | #   |
| Final products are 0.95 mol CO + 0.05                           | 95% of $O_2$ appears in CO from rxn (1) and and |     |
| mol $CO_2$ for every 0.5 mol $O_2$ used up,                     | 5% in CO <sub>2</sub> from rxn (2)              |     |
| which is accompanied by 2.0 mol $N_2$ in                        |                                                 |     |
| the dry air used to produce the gas                             |                                                 |     |
| consider 1 L producer gas at 1 atm                              |                                                 |     |
| pV = nRT                                                        | Ideal gas law                                   | 1   |
| n =1 atm●1 L                                                    |                                                 |     |
| $/(0.0820578L \text{ atm mol}^{-1} \text{ K}^{-1} \bullet 298)$ |                                                 |     |
| n = 0.0409 mol                                                  |                                                 | 2   |
| $= (0.95/3.0)(0.0409) \mod CO + .$                              |                                                 | 3   |

| (0.05/3.0)(0.0409 mol CO <sub>2</sub> +<br>(2.0/3.0)(0.0409) mol N <sub>2</sub>              | Of the components only CO can contribute to                                                                          |   |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---|
| or 0.01295 mol CO                                                                            | heating value                                                                                                        |   |
| Combustion of CO in air                                                                      |                                                                                                                      |   |
| $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$                                              | By definition, $\Delta_{form} \mathbf{H}[O_2(g)] = 0$                                                                | 4 |
| $\Delta_{rxn}\mathbf{H} = \Delta_{form}\mathbf{H}[CO_2(g)] - \Delta_{form}\mathbf{H}[CO(g)]$ | using $\Delta_{form}$ <b>H</b> for CO <sub>2</sub> (g) and CO(g) in textbook at 1 atm, 298 K in kJ mol <sup>-1</sup> | 5 |
| = -393.51-(-110.53)                                                                          | atm, 298 K in kJ mol <sup>-1</sup>                                                                                   | 6 |
| = -282.98 kJ mol <sup>-1</sup>                                                               |                                                                                                                      |   |
| $\Delta_{comb}H$                                                                             | For 1 L producer gas containing 0.01295 mol CO                                                                       | 7 |
| = 0.01295 mol ● -282.98 kJ mol <sup>-1</sup>                                                 |                                                                                                                      |   |
| = 3.66 kJ per L of producer gas                                                              |                                                                                                                      |   |
| Answer                                                                                       |                                                                                                                      |   |

# **10. (a)** $CH_4(g) + 2O_2(g)/air \text{ at } 293 \text{ K} \rightarrow CO_2(g) + 2H_2O(g) \text{ at } 373 \text{ K}$

| Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Basis for the equation                                                                                                                                                             | Eq.<br>#                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 1 mol CH <sub>4</sub><br>4 mol O <sub>2</sub><br>16 mol N <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | given<br>Twice the minimum amount of air is used for<br>combustion                                                                                                                 |                                 |
| At 293 K<br>$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$<br>$\Delta_{comb}\mathbf{H} = -212.91 \text{ kcal mol}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Definition of $\Delta_{comb}$ <b>H</b> is that products of combustion are CO <sub>2</sub> (g) and H <sub>2</sub> O(I) Given                                                        | 1<br>2                          |
| $\begin{array}{c} \text{CO}_2(g) \ 293 \ \text{K} \to \text{CO}_2(g) \ 373 \ \text{K} \qquad (1) \\ 2\text{H2O} \ (l) \ 293 \ \text{K} \to 2\text{H2O} \ (l) \ 373 \ \text{K} \qquad (2) \\ 2\text{H2O} \ (l) \ 373 \ \text{K} \to 2\text{H2O} \ (g) \ 373 \ \text{K} \qquad (3) \\ 16\text{N}_2(g) \ 293 \ \text{K} \to 2\text{H2O} \ (g) \ 373 \ \text{K} \qquad (3) \\ \underline{2\text{O}_2(g) \ 293 \ \text{K} \to 2\text{O}_2(g) \ 373 \ \text{K} \qquad (4) \\ \underline{2\text{O}_2(g) \ 293 \ \text{K} \to 2\text{O}_2(g) \ 373 \ \text{K} \qquad (5) \\ \text{CH}_4(g) \ + \ 4\text{O}_2(g) \ +16\text{N2}(g) \ \text{at} \ 293 \ \text{K} \\ \to \text{CO}_2(g) \ +2\text{H}_2\text{O}(g) \ +2\text{O}_2 \ +16\text{N}_2 \\ & \text{at} \ 373 \ \text{K} \end{array}$ | The CO2 product has to be heated to 373 K the liquid water has to be heated to 373 K and vaporized The $N_2$ and the unused $O_2$ have to be heated to 373 K Adding up the changes | 3<br>4<br>5<br>6<br>7<br>8      |
| $\Delta \mathbf{H} = \Delta_{\text{comb}} \mathbf{H} + \Delta \mathbf{H}(1) + \Delta \mathbf{H}(2) + \Delta \mathbf{H}(3) + \Delta \mathbf{H}(4) + \Delta \mathbf{H}(5) \Delta \mathbf{H}(1) = 1 \cdot 8.87 \text{ cal mol}^{-1} \text{ K}^{-1} (373-293) \Delta \mathbf{H}(2) = 2 \cdot 18 \text{ cal mol}^{-1} \text{ K}^{-1} (373-293) \Delta \mathbf{H}(3) = 2 \cdot 9720 \text{ cal mol}^{-1} \\\Delta \mathbf{H}(4) = 16 \cdot 6.96 \text{ cal mol}^{-1} \text{ K}^{-1} \cdot (373-293) \Delta \mathbf{H}(5) = 2 \cdot 7.02 \text{ cal mol}^{-1} \text{ K}^{-1} (373-293) \Box \mathbf{H}(5) = 2 \cdot 7.02 \text{ cal mol}^{-1} \text{ K}^{-1} (373-293) \Box \mathbf{H}(5) = 2 \cdot 7.02 \text{ cal mol}^{-1} \text{ K}^{-1} (373-293) $                                  | Using d <b>H</b> = C <sub>p</sub> dT at dp =0<br>Using $\Delta_{vap}$ <b>H</b> =9720 cal mol <sup>-1</sup> for water                                                               | 9<br>10<br>11<br>12<br>13<br>14 |
| $\Delta \mathbf{H} = -212.91 \times 10^{3} + 709.6 + 2880$<br>+19440 + 8909 + 1123<br>= -179848 cal <b>Answer</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Summing up terms in Eq 9 from Eq 10-14<br>heat liberated for 1 mol of CH <sub>4</sub> gas burned                                                                                   |                                 |

| Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Basis for the equation                                                                                                                                                                   | Eq.<br>#                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1 mol CH <sub>4</sub><br>4 mol O <sub>2</sub><br>16 mol N <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | given<br>Twice the minimum amount of air is used for<br>combustion                                                                                                                       |                                  |
| final state of stack gases: T such that<br>saturated with water vapor but no<br>condensation<br>Composition of stack gases:<br>$2 \mod O_2 + 16 \mod N_2 + 1 \mod CO_2$<br>$+ 2 \mod H_2O = 21 \mod X_{H2O} = 2/21 = 0.095$<br>0.095 atm is the partial pressure of<br>water at 1 atm total pressure                                                                                                                                                                                                                                                                                                                                                                                              | given find the mole fraction of water in the stack gases                                                                                                                                 | 2                                |
| or 72 mm Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | using plot of vapor pressure of water, 72 mm Hg corresponds to 40°C or 313 K                                                                                                             | 3                                |
| same steps Eq 3-8 as in 10.(a) have<br>to be added up except T is 313 not<br>373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Everything is the same as in <b>10.</b> (a) except that<br>the temperature of the stack gases is 313 K<br>instead of 373 K and we need to get $H_2O(g)$ from<br>373 K back down to 313 K |                                  |
| $\Delta \mathbf{H} = \Delta_{\text{comb}} \mathbf{H} + \Delta \mathbf{H}(1) + \Delta \mathbf{H}(2) + \Delta \mathbf{H}(3) + \Delta \mathbf{H}(2a) + \Delta \mathbf{H}(4) + \Delta \mathbf{H}(5) \Delta \mathbf{H}(1) = 1 \bullet 8.87 \text{ cal mol}^{-1} \text{ K}^{-1} (313-293) \Delta \mathbf{H}(2) = 2 \bullet 18 \text{ cal mol}^{-1} \text{ K}^{-1} (373-293) \Delta \mathbf{H}(3) = 2 \bullet 9720 \text{ cal mol}^{-1} \Delta \mathbf{H}(2a) = 2 \bullet 8.03 \text{ cal mol}^{-1} \text{ K}^{-1} (313-373) \Delta \mathbf{H}(4) = 16 \bullet 6.96 \text{ cal mol}^{-1} \text{ K}^{-1} • (313-293) \Delta \mathbf{H}(5) = 2 \bullet 7.02 \text{ cal mol}^{-1} \text{ K}^{-1} (313-293)$ | Using d <b>H</b> = C <sub>p</sub> dT at dp =0<br>Using $\Delta_{vap}$ <b>H</b> =9720 cal mol <sup>-1</sup> for water at 373 K                                                            | 4<br>5<br>6<br>7<br>8<br>9<br>10 |
| $\Delta \mathbf{H} = -212.91 \times 10^{3} + 177 + 2880$<br>+19440 -321 +2227 + 280<br>= -188227 cal <b>Answer</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Summing up Eq 5-10 into Eq 4<br>heat liberated for 1 mol of CH <sub>4</sub> gas burned to<br>stack gases at 313 K where water in saturated<br>vapor just fails to condense               |                                  |