Solutions to Problem Set 4

1. (a) heat engine

Develop the equations you need:

Equation	Basis for the equation	Eq.
		#
$\varepsilon = -W_{cycle} / q_h$	Efficiency of any heat engine based on 2 thermal reservoirs is the ratio of the work produced in the surroundings to the quantity of heat transferred from the high temperature reservoir	1
$-W_{cycle} = R(T_h - T_c) \ln(V_B/V_A)$ $q_h = RT_h \ln(V_B/V_A)$	For the Carnot cycle operating reversibly using an ideal gas (see lecture notes Part 3)	2
ϵ rev cycle = (T _h - T _c) / T _h	efficiency is given by this equation.	
ε rev cycle = ε rev cycle'	For all engines based on 2 thermal reservoirs and operating reversibly using any gas, efficiency is the same. (See lecture notes Part 3.) This is the maximum possible efficiency.	3
$(T_h - T_c) / T_h = (125-25)/(125+273)$ = 0.251	Given t_c and t_h are 25 deg and 125 deg respectively	4
ϵ rev cycle = 0.251 Answer	Maximum possible efficiency for this problem	5

Maximum possible efficiency of heat engine is for ideal, reversible conditions, i.e., no frictional loss.

(b) Given T_c and T_h are 4 K and 20K respectively, efficiency of a reversible engine working between heat reservoirs at these temperatures is $(T_h - T_c) / T_h = (20-4)/(20)=0.80$

(c) Given efficiency = 0.80 and T_c = 300 K, (T_h - 300) / T_h = 0.80, therefore T_h = 1500K

2. Refrigerator:

Develop the equations you need:

Basis for the equation	Eq.
	#
Definition of coefficient of performance of a	1
refrigerator	
First Law of Thermodynamics	2
U is a state function	3
From Eq 2 and 3	4
For the Carnot cycle operating reversibly using an	5
ideal gas (see lecture notes Part 3,	
but change signs for reverse direction of cycle)	6
From Eq. 1 and 6	7
ideal coeff of performance is given by this equation.	
Given: not ideal, actual is 75% of ideal	8
Given, for 1 min	9
Given: t_c and t_h are -20 deg and 35 deg respectively	10
From Eq 8, 9,10	11
Solving Eq 10	12
	Basis for the equationDefinition of coefficient of performance of a refrigeratorFirst Law of ThermodynamicsU is a state functionFrom Eq 2 and 3For the Carnot cycle operating reversibly using an ideal gas (see lecture notes Part 3, but change signs for reverse direction of cycle)From Eq. 1 and 6 ideal coeff of performance is given by this equation.Given: not ideal, actual is 75% of idealGiven, for 1 min Given: t _c and t _h are -20 deg and 35 deg respectivelyFrom Eq. 10

The heat removed from the low temperature reservoir, if motor runs continuously, is 6.9138 kcal/min. Therefore, can tolerate a maximum heat leak into the box by an amount 6.9138 kcal/min.

3. 1 mole

	isothermal	
Ideal	expansion	25 °C
gas	against p _{op} = 0	0.5 atm
25 °C	-F	21/.
1 atm	isothermal	2 • 1
V ₁	reversible	
	compression	

(a)

First Law of Thermodynamics	#
First Law of Thermodynamics	4
	1
For an ideal gas, $\mathbf{U} = \mathbf{U}(T)$ only	2
Definition of pV work	3
Given	
	4
From Eq 1, 2 and 4	5
From Eq 5	6
Step 2 is reversible	7
ideal gas equation of state, 1 mole	8
	9
From Eq 1 and 9	10
From Eq 10	11
Evaluating Eq 11	12
From Eq 5 and 12	13
As it should be, according to Clausius inequality.	14
	For an ideal gas, U = U(1) only Definition of pV work Given From Eq 1, 2 and 4 From Eq 5 Step 2 is reversible ideal gas equation of state, 1 mole From Eq 1 and 9 From Eq 10 Evaluating Eq 11 From Eq 5 and 12 As it should be, according to Clausius inequality.

(b)

Equation	Basis for the equation	Eq.
		#
∆ S = ∫δq _{REV} /T	Second Law of Thermodynamics	15
Δ S ₂ = ∫δq ₂ /T = - Rln(2)	Step 2 is reversible and Eq 12	16
$= - (1 \text{ mol}) 8.314 \text{ J mol}^{-1}\text{K}^{-1} (0.693)$		
= - 5.76 J K ⁻¹ Answer		

(c)		
Equation	Basis for the equation	Eq.
		#
$\Delta \mathbf{S}_{\text{cycle}} = 0$	S is a state function	17
$\Delta \mathbf{S}_{\text{cycle}} = \Delta \mathbf{S}_{1+} \Delta \mathbf{S}_{2}$	S is a state function	18

0 = ∆ S ₁ - 5.76 J K ⁻¹	Use Eq 16	19
$\Delta S_1 = + 5.76 \text{ J K}^{-1}$ Answer	Solving Eq 19	20

(d)

\ \ \			
Equation		Basis for the equation	Eq.
			#
$q_1 = 0, q_1 / T = 0$		From Eq 5	21
∆ S ₁ = + 5.76 J K ⁻¹ ≠ 0	Answer	As it should be;	21
		since step 1 is not reversible, $\Delta S_1 \neq q_1 / T$	

4. Given T_1 = 10 K, T_2 = 300 K for one mol of an ideal gas, C_V = (3/2)R

Equation	Basis for the equation	Eq.
		#
(a) dV = 0	Given	1
$d\mathbf{S} = (\partial \mathbf{S} / \partial T)_V dT + (\partial \mathbf{S} / \partial V)_T dV$	S = S(T,V)	2
$(\partial \mathbf{S}/\partial T)_V = C_V/T$	Derived (see lecture notes Part 4) starting from	3
	$d\boldsymbol{U} = \delta q_{rev} - p dV = T d\boldsymbol{S} - p dV$	
$(\partial \mathbf{S}/\partial V)_T = (1/T)\{p + (\partial \mathbf{U}/\partial V)_T\} = (\partial p/\partial T)_V$		4
$d\mathbf{S} = (C_V/T)dT$	From Eq 1, 2 and 3	
∆ S = ∫ (3/2)RdT/T		5
Δ S = (1 mol)(3/2)(8.314 J mol ⁻¹ K ⁻¹)	Integrating Eq 5	6
• In(300/10) = 42.4 J K ⁻¹ Answer		
(b) dp = 0	Given	7
$d\mathbf{S} = (\partial \mathbf{S} / \partial T)_{p} dT + (\partial \mathbf{S} / \partial p)_{T} dp$	S = S (T,p)	8
$(\partial \mathbf{S}/\partial T)_p = C_p/T$	Derived (see lecture notes Part 4) starting from	9
$(\partial \mathbf{S}/\partial p)_T = -(\partial V/\partial T)_p$	$d\boldsymbol{U} = \delta q_{rev} - p dV = T d\boldsymbol{S} - p dV$	10
	and use of cross derivatives	
$C_p-C_V = R$	For an ideal gas	11
$d\mathbf{S} = (C_p/T)dT$	From Eq 7, 8 and 9	12
∆ S = ∫ (5/2)RdT/T	From Eq 11 and 12	13
Δ S = (1 mol)(5/2)(8.314 J mol ⁻¹ K ⁻¹)	Integrating Eq 13	14
• ln(300/10) = 70.7 J K ⁻¹ Answer		
(c) 3 moles	Given	15
ΔS = multiplied by factor of 3	Substituting 3 mol for 1 mol in Eq 6 and 14	16
Answer		

5. (a) Given 1 mol liquid water $T_1 = 0+273$ K, $T_2 = 100+273$ K, constant pressure, $C_p = 18.0$ cal deg⁻¹ mol⁻¹.

Equation	Basis for the equation	Eq.
		#
dp = 0	Given	1
$d\mathbf{S} = (\partial \mathbf{S} / \partial T)_{p} dT + (\partial \mathbf{S} / \partial p)_{T} dp$	$\mathbf{S} = \mathbf{S}(T,p)$	2
$(\partial \mathbf{S}/\partial T)_{p} = C_{p}/T$	Derived (see lecture notes Part 4) starting from	3
$(\partial \mathbf{S}/\partial p)_T = -(\partial V/\partial T)_p$	$d\boldsymbol{U} = \delta q_{rev} - \rho dV = T d\boldsymbol{S} - \rho dV$	4
	and use of cross derivatives	
$C_p = 18.0 \text{ cal } \deg^{-1} \text{ mol}^{-1}.$	Given	5
$d\mathbf{S} = (C_p/T)dT$	From Eq 1, 2 and 3	6
$\Delta S = (1 \text{ mol})(18.0 \text{ cal mol}^{-1}\text{K}^{-1}) \bullet$	Integrating Eq 6 and using Eq 5	7
In(373/273) = 5.62 cal K ⁻¹		
Answer		

(b) ice (0°C, 1 atm) \rightarrow steam (100°C, 1 atm). $\Delta S = ?$

Devise reversible steps which lead from same initial state to same final state, to calculate any state function change for the given process.

ice (0°C, 1 atm) \rightarrow liq water (0°C, 1 atm)	step (1)	ΔS_1
liq water (0°C, 1 atm) \rightarrow liq water (100°C, 1 atm)	step (2)	ΔS_2
liq water (100°C, 1 atm) \rightarrow steam (100°C, 1 atm)	step (3)	ΔS_3
$\Delta \mathbf{S} = \Delta \mathbf{S}_1 + \Delta \mathbf{S}_2 + \Delta \mathbf{S}_3$		

Equation	Basis for the equation	Eq.
		#
dp = 0	Given	1
$d\mathbf{S} = (\partial \mathbf{S} / \partial T)_{p} dT + (\partial \mathbf{S} / \partial p)_{T} dp$	S = S (T,p)	2
$(\partial \mathbf{S} / \partial \mathbf{T})_{p} = \mathbf{C}_{p} / \mathbf{T}$	Derived (see lecture notes Part 4) starting from	3
$(\partial \mathbf{S}/\partial \mathbf{\hat{p}})_{T} = -(\partial V/\partial T)_{p}$	$d\boldsymbol{U} = \delta q_{rev} - \rho dV = T d\boldsymbol{S} - \rho dV$	4
	and use of cross derivatives	
$C_{p} = 18.0 \text{ cal } deg^{-1} \text{ mol}^{-1}.$	Given	5
$q_p = 1.4363 \text{ kcal mol}^{-1} \text{ at } (0^{\circ}\text{C}, 1 \text{ atm})$	Given. This is q _{REV, fusion} at these conditions	6
$q_p = 9.7171 \text{ kcal mol}^{-1} \text{ at } (100^{\circ}\text{C}, 1 \text{ atm})$	Given. This is q _{REV, vaporizn} at these conditions	7
$C_p = 18.0 \text{ cal } deg^{-1} \text{ mol}^{-1}.$	Given	8
$d\mathbf{S} = (\delta q_{\text{REV}}/T)$	Second Law of thermodynamics	9
$\Delta S = q_{REV}/T$ for constant T		10
step (1):		
$\Delta S_1 = q_{REV}/T$	Eq 10 and using Eq 6	11

= (1 mol)(1436.3 cal mol ⁻¹) /273		
$\Delta S_1 = 5.26 \text{ cal } \text{K}^{-1}$	Evaluating Eq 11	
step (2):		
$d\mathbf{S} = (C_p/T)dT$	Eq 1, 2, 3	12
$\Delta S_2 = (1 \text{ mol})(18.0 \text{ cal deg}^{-1} \text{ mol}^{-1}) \bullet$	Integrating Eq 12 and using Eq 8	13
In(373/273) =5.62 cal K ⁻¹	Already done in part (a) of this problem	
step (3):		
∆ S _{3.} = q _{REV} /T = (1 mol)(9717.1 cal	Eq 10 and using Eq 7	14
mol ⁻¹) /373		
$\Delta S_3 = 26.05 \text{ cal } \text{K}^{-1}$	Evaluating Eq 14	
$\Delta \mathbf{S} = \Delta \mathbf{S}_1 + \Delta \mathbf{S}_2 + \Delta \mathbf{S}_3$	S is a state function	15
= 5.26 + 5.62 + 26.05		
= 36.93 cal K ⁻¹ Answer		

6. (a) sulfur(s, rhombic) \rightarrow sulfur(s, monoclinic)

 T_{trans} = 95.4+273 K, $q_{REV,trans}$ = 0.09 kcal mol⁻¹ Δ S_a =?

(b) sulfur(s, monoclinic) \rightarrow sulfur(liquid)

 T_{trans} = 119+273 K, $q_{REV,trans}$ = 0.293 kcal mol⁻¹ Δ **S**_b=?

Equation	Basis for the equation	
		#
dp = 0	Given (understood, 1 atm)	1
q _p = q _{REV,trans} = 0.09 kcal mol ⁻¹ at	Given. This is q _{REV, trans} at these conditions, for 1 mol	2
(95.4°C, 1 atm)	= 32 g	
$q_p = q_{REV, fusion} = 0.293 \text{ kcal mol}^{-1}$	Given. This is $q_{REV, fusion}$ at these conditions, for 1 mol	3
at (119°C, 1 atm)	= 32 g	
$d\mathbf{S} = (\delta q_{\text{REV}}/T)$	Second Law of thermodynamics	4
$\Delta S = q_{REV}/T$ for constant T		5
step (a):		
$\Delta S_a = q_{REV} / T = (90 \text{ cal } K^{-1} \text{ mol}^{-1})$	Eq 5 and using Eq 2	6
/(273+95.4)		
$\Delta S_a = 0.244 \text{ cal } \text{K}^{-1} \text{ mol}^{-1}$ Answer	Evaluating Eq. 6	
step (b):		
$\Delta S_{b} = q_{REV} / T = (293 \text{ cal } K^{-1} \text{ mol}^{-1})$	Eq 5 and using Eq 3	7
/(273+119)		
$\Delta S_{b} = 0.747 \text{ cal } \text{K}^{-1} \text{ mol}^{-1}$ Answer	Evaluating Eq. 7	
$\Delta S_a = q_{REV} / T = (8x90 \text{ cal } K^{-1} \text{ mol}^{-1})$	If unit is not S atom but S_8 molecule, then I mole =	_
/(273+95.4)	32x8 g not 32 g, making	7
$\Delta S_{b} = q_{REV}/T = (8x293cal K^{-1} mol^{-1})$	$q_{\text{REV,trans}} = 8x0.09 \text{ kcal mol}^{-1}$	
/(273+119)	$q_{\text{REV, fusion}} = 8x0.293 \text{ kcal mol}^{+}$	
$\Delta \mathbf{S}_{a} = 1.95 \text{ cal } \mathbf{K}^{-1} \text{ mol}^{-1}$	routon's rule applies to vaporization, not these	
$\Delta \mathbf{S}_{b} = 5.98 \text{ cal } \mathrm{K}^{-1} \text{ mol}^{-1} \text{ Answer}$	types of transitions.	

7.

	(a) isothermal	
ideal	reversible expansion	25 °C
gas	OR	401
25 °C		n 10 L
20 L	(b) isothermal	P2
p ₁	irreversible	
	expansion	
	against p _{op} = 0	

Equation	Basis for the equation	Eq.
		#
$d\mathbf{U} = \delta q + \delta W$	First Law of Thermodynamics	1
$\Delta \mathbf{U} = 0$ for both (a) and (b) Answer	For an ideal gas, $\mathbf{U} = \mathbf{U}(T)$ only	2
$\delta W = -p_{op}dV$	Definition of pV work	3
(a) $p_{op} = p_{gas}$	Expansion (a) is reversible	4
$p_{gas} = (1)RT/V$	Ideal gas equation of state, 1 mole	5
$\delta W_a = - RTdV/V$		6
$W_a = - (8.314 \text{ J mol}^{-1}\text{K}^{-1})(298)$	Integrating Eq 6	7
$\ln(40/20) = -1717 \text{ J mol}^{-1}$ Answer		
$\delta q_{a,REV} = - \delta W_a = RTdV/V$	From Eq 1, 2 and 6	8
$q_a = 1717 \text{ J mol}^{-1}$ Answer	From Eq 7	9
∆ S _a = ∫δq _{a,REV} /T	Second law of thermodynamics	10
∆ S _a = ∫RdV/V = RIn(40/20)	From Eq 8 and 10	11
$\Delta \mathbf{S}_{a} = (8.314 \text{ J mol}^{-1}\text{K}^{-1}) \bullet \ln(2)$	Evaluating Eq 11	12
$= 5.76 \text{ J mol}^{-1} \text{K}^{-1}$ Answer		
(b) $p_{op} = 0$	Given	13
$\delta W_{b} = 0$	From Eq 3	14
W _b = 0 Answer		15
$\delta q_b = 0$	From Eq 1 and 2	16
q _b = 0 Answer	From Eq 14	17
$\Delta S_{b} = \Delta S_{a}$	S is a state function (same initial &final states)	18
$\Delta \mathbf{S}_{b} = 5.76 \text{ J mol}^{-1} \text{K}^{-1}$ Answer	From Eq 12	
$\Delta S_a = q_{a,REV}/T$ while		
$\Delta \mathbf{S}_{b} \neq \mathbf{q}_{b,IRREV}/T$ Answer		

Equation	Basis for the equation	Eq.
		#
$d\mathbf{U} = \delta q + \delta W$	First Law of Thermodynamics	1
q = 0 for both (a) and (b) Answer	Definition of adiabatic	
$d\mathbf{U} = \delta W$	From Eq 1 and 2	3
$\Delta \mathbf{U} = \mathbf{W}$ for both (a) and (b)		
$\delta W = -p_{op}dV$	Definition of pV work	4
$part(a) p_{op} = p_{gas}$	Expansion (a) is reversible	5
$p_{gas} = (1)RT/V$	Ideal gas equation of state, 1 mole	6
$V_1 = (1 \text{ mol})(0.08205 \text{ L atm mol}^{-1})$		
•(300)/(1 atm) = 24.61 L		
$\delta W_a = - RTdV/V$	Integrating Eq 6	7
$d\mathbf{U} = C_V dT + (\partial U / \partial V)_T dV$	$\mathbf{U} = \mathbf{U}(T,V)$	8
$d\mathbf{U} = C_{V}dT$	For an ideal gas, (∂U/∂V)⊤ = 0	9
$C_V dT = - RT dV/V$	From Eq 3, 7 and 9	10
$\int C_V dT/T = -R \int dV/V$	Integrating Eq 10	11
$Cv \ln(T_2/T_1) = -R \ln (V_2/V_1)$		
$Cv \ln(T_2/T_1) = -R \ln (T_2p_1/T_1p_2)$	Using Eq 6	12
$(C_V+R) \ln(T_2/T_1) = R \ln(p_2/p_1)$	Rearranging Eq 12	13
$(1.5R+R) \ln(T_2/300) = R \ln (0.5/1)$	Substituting given values into Eq 13	14
T ₂ = 227 K	Solving Eq 14 for the unknown T_2	15
$V_2 = (1 \text{ mol})(0.08205 \text{ L atm mol}^{-1})$	Solving Eq 6 for the unknown V_{2} , using the value of	15
•(227)/(0.5 atm) = 37.25 L	T ₂	
∆ U _a = 1.5(8.314 J mol ⁻¹ K ⁻¹)•	Integrating Eq 9 and substituting values	16
$(227-300) = 910.4 \text{ J mol}^{-1}$ Answer		
$W_a = \Delta U_a = 910.4 \text{ J mol}^{-1}$ Answer	From Eq 3	17
$\Delta \mathbf{S}_{a} = \int \delta q_{a,REV} / T$	Second law of thermodynamics	18
= 0 Answer	Since $\delta q_{a,REV} = 0$ (adiabatic)	19
<i>part (b)</i> $p_{op} = 0.5$	Given	20
$W_{b} = -\int p_{op} dV = -0.5 atm(V_{2}-V_{1})$	From Eq 4 and 20, integrating	21
(b)		
$\Delta \mathbf{U}_{\rm b} = \int \overline{\mathbf{C}_{\rm V} dT} = 1.5 \mathbf{R}(T_2 - T_1)$	Integrating Eq 9	22

$\Delta U_{\rm b} = 1.5[(0.5 \text{ atm})V_2 - (1 \text{ atm})V_1]$	Substituting ideal gas equation of state	23
$W_{b} = \Delta U_{b}$	From Eq 3	3
$-0.5 \text{ atm}(V_2 - V_1) = 1.5 [(0.5 \text{ atm})V_2]$	Substituting Eq 21 and 23 into Eq 3	25
– (1 atm)V ₁]		
$-0.5 (V_2 - 24.61) = 1.5 [0.5V_2 - 24.61]$	From Eq 6, $V_1 = 24.61 L$	26
V ₂ = 39.38 L	Solving Eq 26 for V ₂	27
W _b = - 0.5 atm(39.38-24.61)	Substituting V_2 into Eq 21	
= -7.385 L atm		
•(8.314 J/0.08205 L atm)		
= - 748.3J Answer		
$\Delta U_{\rm b} = -748.3 {\rm J}$ Answer	From Eq 3	28
$d\mathbf{C} = (\mathbf{C} + \mathbf{C}) \mathbf{T} + d\mathbf{T} + (\mathbf{C} + \mathbf{C}) \mathbf{C}$	$\mathbf{S} = \mathbf{S}(\mathbf{T} \mathbf{p})$	20
$as = (as/a)_{p}a + (as/ap)_{T}ap$	3 - 3 (1,p)	23
$\frac{d\mathbf{S} = (\partial \mathbf{S}/\partial T)_p dT + (\partial \mathbf{S}/\partial p)_T dp}{(\partial \mathbf{S}/\partial T)_p = C_p/T}$	Derived (see lecture notes Part 4) starting from	30
$\begin{aligned} \mathbf{dS} &= (\partial \mathbf{S}/\partial \mathbf{T})_{p} \mathbf{dT} + (\partial \mathbf{S}/\partial \mathbf{p})_{T} \mathbf{dp} \\ (\partial \mathbf{S}/\partial \mathbf{T})_{p} &= \mathbf{C}_{p}/\mathbf{T} \\ (\partial \mathbf{S}/\partial \mathbf{p})_{T} &= -(\partial \mathbf{V}/\partial \mathbf{T})_{p} \end{aligned}$	Derived (see lecture notes Part 4) starting from $d\boldsymbol{U} = \delta q_{rev} - p dV = T d\boldsymbol{S} - p dV$	30 31
$ (\partial \mathbf{S} / \partial \mathbf{\Gamma})_{p} = C_{p} / \mathbf{T} (\partial \mathbf{S} / \partial \mathbf{\rho})_{T} = -(\partial \mathbf{V} / \partial \mathbf{T})_{p} $	Derived (see lecture notes Part 4) starting from $d\boldsymbol{U} = \delta q_{rev} - p dV = T d\boldsymbol{S} - p dV$ and use of cross derivatives	30 31
$\begin{aligned} \mathbf{dS} &= (\partial \mathbf{S}/\partial \mathbf{T})_{p} \mathbf{dT} + (\partial \mathbf{S}/\partial \mathbf{p})_{T} \mathbf{dp} \\ (\partial \mathbf{S}/\partial \mathbf{T})_{p} &= \mathbf{C}_{p}/\mathbf{T} \\ (\partial \mathbf{S}/\partial \mathbf{p})_{T} &= -(\partial \mathbf{V}/\partial \mathbf{T})_{p} \\ - (\partial \mathbf{V}/\partial \mathbf{T})_{p} &= -\mathbf{R}/p \end{aligned}$	Derived (see lecture notes Part 4) starting from $dU = \delta q_{rev} - pdV = TdS - pdV$ and use of cross derivatives Differentiating ideal gas equation of state	30 31 32
$d\mathbf{S} = (\partial \mathbf{S}/\partial T)_{p}dT + (\partial \mathbf{S}/\partial p)_{T}dp$ $(\partial \mathbf{S}/\partial T)_{p} = C_{p}/T$ $(\partial \mathbf{S}/\partial p)_{T} = -(\partial V/\partial T)_{p}$ $- (\partial V/\partial T)_{p} = - R/p$ $d\mathbf{S} = C_{p} dT/T - Rdp/p$	Derived (see lecture notes Part 4) starting from $dU = \delta q_{rev} - pdV = TdS - pdV$ and use of cross derivatives Differentiating ideal gas equation of state Substitution of Eq 30 & 32 into Eq. 29	30 31 32 33
$d\mathbf{S} = (\partial \mathbf{S}/\partial T)_{p}dT + (\partial \mathbf{S}/\partial p)_{T}dp$ $(\partial \mathbf{S}/\partial T)_{p} = C_{p}/T$ $(\partial \mathbf{S}/\partial p)_{T} = -(\partial V/\partial T)_{p}$ $- (\partial V/\partial T)_{p} = -R/p$ $d\mathbf{S} = C_{p} dT/T - Rdp/p$ $\Delta \mathbf{S}_{b} = 2.5R \ln(T_{2}/T_{1}) - R \ln(p_{2}/p_{1})$	Derived (see lecture notes Part 4) starting from $dU = \delta q_{rev} - pdV = TdS - pdV$ and use of cross derivatives Differentiating ideal gas equation of state Substitution of Eq 30 & 32 into Eq. 29 Integrating Eq 33	30 31 32 33 34
$d\mathbf{S} = (\partial \mathbf{S}/\partial \mathbf{T})_{p} d\mathbf{T} + (\partial \mathbf{S}/\partial \mathbf{p})_{T} d\mathbf{p}$ $(\partial \mathbf{S}/\partial \mathbf{T})_{p} = C_{p}/T$ $(\partial \mathbf{S}/\partial \mathbf{p})_{T} = -(\partial V/\partial T)_{p}$ $- (\partial V/\partial T)_{p} = - R/p$ $d\mathbf{S} = C_{p} dT/T - Rdp/p$ $\Delta \mathbf{S}_{b} = 2.5R \ln(T_{2}/T_{1}) - R \ln(p_{2}/p_{1})$ $\Delta \mathbf{S}_{b} = 2.5R \ln[0.5 \bullet 39.38/(1 \bullet 24.61)]$	Derived (see lecture notes Part 4) starting from $dU = \delta q_{rev} - pdV = TdS - pdV$ and use of cross derivatives Differentiating ideal gas equation of state Substitution of Eq 30 & 32 into Eq. 29 Integrating Eq 33 Substitution of known values into Eq 34 and	30 31 32 33 34
$d\mathbf{S} = (\partial \mathbf{S}/\partial \mathbf{T})_{p} d\mathbf{T} + (\partial \mathbf{S}/\partial \mathbf{p})_{T} d\mathbf{p}$ $(\partial \mathbf{S}/\partial \mathbf{T})_{p} = C_{p}/T$ $(\partial \mathbf{S}/\partial \mathbf{p})_{T} = -(\partial V/\partial T)_{p}$ $- (\partial V/\partial \mathbf{T})_{p} = -R/p$ $d\mathbf{S} = C_{p} dT/T - Rdp/p$ $\Delta \mathbf{S}_{b} = 2.5R \ln(T_{2}/T_{1}) - R \ln (p_{2}/p_{1})$ $\Delta \mathbf{S}_{b} = 2.5R \ln[0.5 \bullet 39.38/(1 \bullet 24.61)]$ $- R \ln (0.5/1) = (8.314 \text{ J mol}^{-1}\text{K}^{-1}) \bullet$	Derived (see lecture notes Part 4) starting from $dU = \delta q_{rev} - pdV = TdS - pdV$ and use of cross derivatives Differentiating ideal gas equation of state Substitution of Eq 30 & 32 into Eq. 29 Integrating Eq 33 Substitution of known values into Eq 34 and evaluating	30 31 32 33 34
$\begin{aligned} d\mathbf{S} &= (\partial \mathbf{S}/\partial \Gamma)_{p} d\Gamma + (\partial \mathbf{S}/\partial p)_{T} dp \\ (\partial \mathbf{S}/\partial \Gamma)_{p} &= C_{p}/T \\ (\partial \mathbf{S}/\partial p)_{T} &= -(\partial V/\partial T)_{p} \\ \hline - (\partial V/\partial T)_{p} &= -R/p \\ d\mathbf{S} &= C_{p} dT/T - Rdp/p \\ \hline \Delta \mathbf{S}_{b} &= 2.5R \ln(T_{2}/T_{1}) - R \ln (p_{2}/p_{1}) \\ \Delta \mathbf{S}_{b} &= 2.5R \ln[0.5 \bullet 39.38/(1 \bullet 24.61)] \\ - R \ln (0.5/1) &= (8.314 \text{ J mol}^{-1}\text{K}^{-1}) \bullet \\ (2.5 \ln 0.80 - \ln 0.50) \end{aligned}$	Derived (see lecture notes Part 4) starting from $dU = \delta q_{rev} - pdV = TdS - pdV$ and use of cross derivatives Differentiating ideal gas equation of state Substitution of Eq 30 & 32 into Eq. 29 Integrating Eq 33 Substitution of known values into Eq 34 and evaluating	30 31 32 33 34

9.

 $q_{total} = 0$ (adiabatic) ; this is also q_p because pressure is constant in this problem. $q = \int C dT = mass \bullet heat capacity \bullet (t_{final} - t_{initial})$ when heat capacity is a constant except for a phase change where need to use instead: $q = mass \bullet (\Delta H_{phase change} cal g^{-1})$ $\Delta H = q_p$, which is 0 because adiabatic.

Assume that final state is at 0 °C with both ice and water present.

1	20 g ice, - 5 °C \rightarrow 20 g ice, 0°C	$q_1 = 20 \text{ g} (0.5 \text{ cal } \text{deg}^{-1} \text{ g}^{-1})(05)$
2	30 g water, 25 °C \rightarrow 30 g water, 0 °C	$q_2 = 30 \text{ g} (1.0 \text{ cal } \text{deg}^{-1} \text{ g}^{-1})(0 - 25)$
3	x g ice, 0°C \rightarrow x g water, 0°C	$q_3 = x g (80 \text{ cal } g^{-1})$

 $q_{total} = 0 = q_1 + q_2 + q_3$

 $0 = 20 \text{ g} (0.5 \text{ cal deg}^{-1} \text{ g}^{-1})(0 - -5) + 30 \text{ g} (1.0 \text{ cal deg}^{-1} \text{ g}^{-1})(0 - 25) + x \text{ g} (80 \text{ cal g}^{-1}) = 50 - 750 + 80 \text{ x}$ Solving for x, x = 700/80 = 8.75 gFinal state is 11.25 g ice and 38.75 g water, all at 0°C If we had found a negative value for x then the final state would be some of the water

If we had found a negative value for x then the final state would be some of the water will have turned to ice instead. This could happen if we had either less water or lower temperature of water to begin with.

To calculate ΔS , we use for each step, either $\Delta S = q_{REV,trans}/T_{trans}$, or else use $\Delta S = C_p \ln(T_{final}/T_{initial})$ from S = S(T,p) and dp = 0 and C_p is given independent of T in these cases.

 $\Delta \mathbf{S} = \Delta \mathbf{S}_1 + \Delta \mathbf{S}_2 + \Delta \mathbf{S}_3$

= 20(0.5) ln(273/268) + 30(1) ln(273/298) + 8.75(80)/273

= 0.1848 - 2.6287 + 2.5641 = +0.1202 cal K⁻¹. We expected Δ **S** > 0 for a spontaneous process such as this one.

10. Just like problem 9, but four different amounts of water, ending in 4 different final states.

For all cases:

 $q_{total} = 0$ (adiabatic) ; this is also q_p because pressure is constant in this problem. $q = \int C dT = mass \bullet$ heat capacity $\bullet (t_{final} - t_{initial})$ when heat capacity is a constant $\Delta H = q_p = 0$

To calculate ΔS , we use for each step, either $\Delta S = q_{REV,trans}/T_{trans}$, or else use $\Delta S = C_p \ln(T_{final}/T_{initial})$ from S = S(T,p) and dp = 0 and because C_p is given independent of T in this problem.

1	20 g ice, - 5 °C \rightarrow 20 g ice, - 2°C	$q_1 = 20 \text{ g} (0.5 \text{ cal } \text{deg}^{-1} \text{ g}^{-1})(-25)$
2	x g water, 25 °C \rightarrow x g water, 0 °C	$q_2 = x g (1.0 \text{ cal } \deg^{-1} g^{-1})(0 - 25)$
3	x g water, $0^{\circ}C \rightarrow x$ g ice, $0^{\circ}C$	$q_3 = x g (-80 cal g^{-1})$
4	x g ice, 0 °C \rightarrow x g ice, - 2°C	q ₄ = x g (0.5 cal deg ⁻¹ g ⁻¹)(-2 - 0)

 $q_{total} = 0 = q_1 + q_2 + q_3 + q_4$

 $0 = 20 \text{ g} (0.5 \text{ cal } \deg^{-1} \text{ g}^{-1})(-2 - 5) + x \text{ g} (1.0 \text{ cal } \deg^{-1} \text{ g}^{-1})(0 - 25) + x \text{ g} (80 \text{ cal } \text{ g}^{-1}) + x \text{ g} (0.5 \text{ cal } \deg^{-1} \text{ g}^{-1})(-2 - 0)$ 0 = 30 - 25x - 80 x - xSolving for x, x = 30/106 = 0.28 g of water to start with Answer

 $\Delta \mathbf{S} = \Delta \mathbf{S}_1 + \Delta \mathbf{S}_2 + \Delta \mathbf{S}_3 + \Delta \mathbf{S}_4$

- = $20(0.5) \ln(271/268) + 0.28(1) \ln(273/298) + 0.28(-80)/273 + 0.28(0.5) \ln(271/273)$
- = 0.1113 0.0245 0.0820 0.0010 = 0.0038 cal deg⁻¹ Answer

1	20 g ice, - 5 °C \rightarrow 20 g ice, 0°C	$q_1 = 20 \text{ g} (0.5 \text{ cal } \text{deg}^{-1} \text{ g}^{-1})(05)$
2	x g water, 25 °C \rightarrow x g water, 0 °C	$q_2 = x g (1.0 \text{ cal } \deg^{-1} g^{-1})(0 - 25)$
3	0.5x g water, 0°C \rightarrow 0.5x g ice, 0°C	$q_3 = 0.5 x g (-80 cal g^{-1})$

 $q_{total} = 0 = q_1 + q_2 + q_3$

$$0 = 20 \text{ g} (0.5 \text{ cal } \deg^{-1} \text{ g}^{-1})(0 - 5) + x \text{ g} (1.0 \text{ cal } \deg^{-1} \text{ g}^{-1})(0 - 25) + 0.5x \text{ g} (-80 \text{ cal } \text{ g}^{-1})(0 - 25) + 0.5x \text{ g}$$

 $0 = 50 - 25 \times -40 \times$

Solving for x,

x = 50/65 = 0.77 g of water to start with **Answer**

 $\Delta \mathbf{S} = \Delta \mathbf{S}_1 + \Delta \mathbf{S}_2 + \Delta \mathbf{S}_3$

$$= 20(0.5) \ln(273/268) + 0.77(1) \ln(273/298) + 0.385(-80)/273$$

= 0.1848 - 0.0675 - 0.1128 = 0.0045 cal deg⁻¹ Answer

insulated (adiabatic)

1	20 g ice, - 5 °C \rightarrow 20 g ice, 0°C	$q_1 = 20 \text{ g} (0.5 \text{ cal } \text{deg}^{-1} \text{ g}^{-1})(05)$
2	x g water, 25 °C \rightarrow x g water, 0 °C	$q_2 = x g (1.0 \text{ cal } \deg^{-1} g^{-1})(0 - 25)$
3	10 g ice, 0°C \rightarrow 10 g water, 0°C	q ₃ = 10 g (80 cal g⁻¹)

 $q_{total} = 0 = q_1 + q_2 + q_3$

0 = 20 g (0.5 cal deg⁻¹ g⁻¹)(0 - -5) + x g (1.0 cal deg⁻¹ g⁻¹)(0 - 25) + 10 g (80 cal g⁻¹) 0 = 50 -25 x +800 Solving for x, x = 850/25 = 34 g of water to start with **Answer**

 $\Delta \mathbf{S} = \Delta \mathbf{S}_1 + \Delta \mathbf{S}_2 + \Delta \mathbf{S}_3$

- $= 20(0.5) \ln(273/268) + 34(1) \ln(273/298) + 10(80)/273$
- = 0.1845 2.9791 + 2.9304 = 0.136 cal deg⁻¹ Answer

```
(d)
```

insulated (adiabatic)

1	20 g ice, - 5 °C \rightarrow 20 g ice, 0°C	q ₁ = 20 g (0.5 cal deg ⁻¹ g ⁻¹)(05)
2	x g water, 25 °C \rightarrow x g water, 0 °C	$q_2 = x g (1.0 cal deg^{-1} g^{-1})(0 - 25)$
3	20 g ice, 0°C \rightarrow 20 g water, 0°C	q₃ = 20 g (80 cal g⁻¹)
4	(20+x) g water, 0 °C \rightarrow (20+x) g water, 10°C	$q_4 = (20+x) g (1.0 \text{ cal } \text{deg}^{-1} \text{ g}^{-1})(10 - 0)$
$q_{total} = 0 = q_1 + q_2 + q_3 + q_4$		

 $0 = 20 \text{ g} (0.5 \text{ cal } \deg^{-1} \text{ g}^{-1})(0 - 5) + x \text{ g} (1.0 \text{ cal } \deg^{-1} \text{ g}^{-1})(0 - 25) + 20 \text{ g} (80 \text{ cal } \text{ g}^{-1}) + (20+x) \text{ g} (1.0 \text{ cal } \deg^{-1} \text{ g}^{-1})(10 - 0)$

0 = 50 - 25x + 1600 + (20 + x)10

Solving for x,

x = 1850/15 = 123. g of water to start with **Answer**

 $\Delta \mathbf{S} = \Delta \mathbf{S}_1 + \Delta \mathbf{S}_2 + \Delta \mathbf{S}_3 + \Delta \mathbf{S}_4$ = 20(0.5) ln(273/268) + 123(1) ln(273/298) + 20(80)/273 + 143(1) ln(283/273) = 0.1845 - 10.7775 + 5.8608 + 5.1444 = 0.412 cal deg⁻¹ Answer