Solutions to Problem Set 4

1. (a) heat engine

High
Temperature
Reservoir

l' A
.‘ chcle
L
Low

Temperature
Reservoir

125°C

25°C

Develop the equations you need:

Equation Basis for the equation Eq.
#
e = -Woycle / Oh Efficiency of any heat engine based on 2 thermal 1
reservoirs is the ratio of the work produced in the
surroundings to the quantity of heat transferred from
the high temperature reservoir
-Weyele = R(Th - Te) In(Ve/Va) For the Carnot cycle operating reversibly using an 2
gr = RTh In(Ve/Va) ideal gas (see lecture notes Part 3)
grevcycle = (Th-Te)/ Th efficiency is given by this equation.
grevcycle = grev cycle’ For all engines based on 2 thermal reservoirs and 3
operating reversibly using any gas, efficiency is the
same. (See lecture notes Part 3.) This is the
maximum possible efficiency.
(Th-To) / Th = (125-25)/(125+273) | Given t. and ty are 25 deg and 125 deg respectively 4
= 0.251
grevcycle= 0.251 Answer Maximum possible efficiency for this problem 5

Maximum possible efficiency of heat engine is for ideal, reversible conditions, i.e., no

frictional loss.

(b) Given T; and Ty are 4 K and 20K respectively, efficiency of a reversible engine
working between heat reservoirs at these temperatures is (Th- Tc) / T =(20-4)/(20)=0.80

(c) Given efficiency = 0.80 and T, = 300 K, (Tn- 300) / T, = 0.80, therefore T, = 1500K




2. Refrigerator:

High
Temperature
Reservoir

I Ah
._ chcle
1
Low

Temperature
Reservoir

Develop the equations you need:

Equation Basis for the equation Eq.
#

B = ac/Weycle Definition of coefficient of performance of a 1

refrigerator
dU = 8q + dW First Law of Thermodynamics 2
Foracycle: AU=0 U is a state function 3
0 = Qcycle + Weycle From Eq 2 and 3 4
0= Qctant chcle
Woeycle = - gc - Oh
-Weyele = R(Th - T¢) In(Va/Va) For the Carnot cycle operating reversibly using an 5
gc= - RT; In(Vs/Va) ideal gas (see lecture notes Part 3,
Weycle = R(Th - Te) In(Va/Va) but change signs for reverse direction of cycle) 6
Jdc= RT. In(VB/VA)

From Eq. 1 and 6 7
Brevcycle=T./(Th- Te) ideal coeff of performance is given by this equation.
9c/Weycie = (0.75) o [To/(Th-Te)] Given: not ideal, actual is 75% of ideal 8
Jc = Weycle®(0.75) o [To/(Th-To)]
Weyee = (1/4)(10.688 kcal/min) Given, for 1 min 9
T, =-20+273, T = 35+273 Given: t; and t, are -20 deg and 35 deg respectively 10
gc = (1/4)(10.688 kcal/min) ¢(0.75) | From Eq 8, 9,10 11
e [253/(308-253)]
gc = 6.9138 kcal/min Answer Solving Eq 10 12

The heat removed from the low temperature reservoir, if motor runs continuously, is
6.9138 kcal/min. Therefore, can tolerate a maximum heat leak into the box by an

amount 6.9138 kcal/min.




3. 1 mole

isothermal
|deal expansion 25 o0
gas against p,, =0 0.5 atm
25°C 2V,
Tatm | isothermal
v, reversible
compression
(a)
Equation Basis for the equation Eq.
#
dU = dq + dW First Law of Thermodynamics 1
AU =0 For an ideal gas, U = U(T) only 2
OW = - popdV Definition of pV work 3
Pop = 0 Given
oW:=0 4
0q:1=0; 91=0 FromEqg1,2and 4 5
[5q4/T =0 From Eq 5 6
Pop = Pgas Step 2 is reversible 7
Pgas = (1)RT/V ideal gas equation of state, 1 mole 8
oW, = - RTdV/V 9
0q = RTdV/V From Eq 1 and 9 10
[5qo/T = JRAV/V = RIn(V4/2V1) From Eq 10 11
[5g2/T = - RIn(2) Evaluating Eq 11 12
Jeyedq /T = [6Q4/T + [5G/ T From Eq 5 and 12 13
= - RIn(2)
9Shqm”/T <0 As it should be, according to Clausius inequality. 14
(b)
Equation Basis for the equation Eq.
#
AS = [5qrev/T Second Law of Thermodynamics 15
AS, = [892/T = - RIn(2) Step 2 is reversible and Eq 12 16
= - (1 mol) 8.314 J mol'K™" (0.693)
=-576 JK’ Answer
(c)
Equation Basis for the equation Eq.
#
AScycie =0 S is a state function 17
AScycle = AS1 4+ AS» S is a state function 18




0=AS;-576 JK Use Eq 16 19

AS;=+576 JK' Answer Solving Eq 19 20

(d)

Equation Basis for the equation Eq.

#

q1=0, q1/T=0 From Eq 5 21

AS1=+576JK"'#0 Answer |Asitshould be; 21
since step 1 is not reversible, AS;# qq /T

4. Given T1 =10 K, T, = 300 K for one mol of an ideal gas, Cy = (3/2)R

Equation Basis for the equation Eq.

#

(@)dv =0 Given 1

dS = (8S/oT)vdT + (0S/oV)rdV S =S5(T,V) 2

(0SIoT)y = CIT Derived (see lecture notes Part 4) starting from 3
dU = 0Qq,e, - pdV =TdS - pdV

(08/6V)r= (1/T)p + (QU/BV)7} = (0p/oT)y 4

dS = (Cy/T)dT FromEq 1,2 and 3

AS = [ (3/2)RdT/T 5

AS = (1 mol)(3/2)(8.314 J mol'’K™") | Integrating Eq 5 6

« In(300/10) = 42.4 J K' Answer

(b)dp=0 Given 7

dS = (6S/8T)pdT + (6S/op)rdp S=3(T,p) 8

(0S/0T), Cp/T Derived (see lecture notes Part 4) starting from 9

(8/0)r = -(VIET), dU = dq,e, - pdV =TdS - pdV 10
and use of cross derivatives

Cp-Cv =R For an ideal gas 11

dS = (Cp/T)dT FromEq7,8and 9 12

AS = (5/2)RdT/T From Eq 11 and 12 13

AS = (1 mol)(5/2)(8.314 J mol''K™) | Integrating Eq 13 14

« In(300/10) = 70.7 J K" Answer

(c) 3 moles Given 15

AS = multiplied by factor of 3 Substituting 3 mol for 1 mol in Eq 6 and 14 16

Answer




5. (a) Given 1 mol liquid water T4 = 0+273 K, T, = 100+273 K, constant pressure, C, =
18.0 cal deg™ mol™.

Equation Basis for the equation Eq.
#

dp=0 Given 1

dS = (8S/6T),dT + (8S/6p)rdp S =8(T,p) 2

(0SI0T), = Cp/T Derived (see lecture notes Part 4) starting from 3

(5S/dp)r = -(V/AT), dU = dq,e, - pdV =TdS - pdV 4

and use of cross derivatives

C,=18.0 cal deg™ mol™. Given 5

dS = (Cp/T)dT FromEq1,2and 3 6

AS = (1 mol)(18.0 cal mol'K™") e Integrating Eq 6 and using Eq 5 7

In(373/273) = 5.62 cal K’

Answer

(b) 1ce (0°C, 1 atm) — steam (100°C, 1 atm). As=»

Devise reversible steps which lead from same initial state to same final state, to

calculate any state function change for the given process.

ice (0°C, 1 atm) — liq water (0°C, 1 atm) step (1) AS1

lig water (0°C, 1 atm) — lig water (100°C, 1 atm) step (2) AS;

lig water (100°C, 1 atm) — steam (100°C, 1 atm) step (3) AS3

AS = AS4 + AS, + AS3

Equation Basis for the equation Eq.
#

dp=0 Given 1

dS = (0S/0T),dT + (8S/op)rdp S =S5(T,p) 2

(0S/0T), = Cp/T Derived (see lecture notes Part 4) starting from 3

(ES/p)r = ~(AV/ET), dU = dQye, - pdV =TdS - pdV 4

and use of cross derivatives

C,=18.0 cal deg” mol™. Given 5

qp = 1.4363 kcal mol™ at (0°C,1 atm) | Given. This is grev, usion at these conditions 6

qp = 9.7171 kcal mol™" at (100°C,1 atm) | Given. This is grev, vaporizn at these conditions 7

C,=18.0 cal deg™” mol™. Given 8

dS = (6qrev/T) Second Law of thermodynamics 9

AS = qreV/T for constant T 10

step (1):

AS1 = Qrev /T Eq 10 and using Eq 6 11




= (1 mol)(1436.3 cal mol™ ) /273
AS1 = 5.26 cal K

Evaluating Eq 11

step (2):

ds = (C/T)dT Eq1,2,3 12
AS; = (1 mol)( 18.0 cal deg™ mol™") o Integrating Eq 12 and using Eq 8 13
In(373/273) =5.62 cal K Already done in part (a) of this problem
step (3):
AS3 = qrev /T = (1 mol)( 9717.1 cal Eq 10 and using Eq 7 14
mol™ ) /373
AS; = 26.05 cal K™ Evaluating Eq 14
AS = AS1 + AS, + AS3 S is a state function 15
=5.26 + 5.62 + 26.05
=36.93 cal K' Answer
6. (a) sulfur(s, rhombic) — sulfur(s, monoclinic) Tirans = 95.4+273 K,

OREeV trans = 0.09 kcal mol™ AS, =7

(b) sulfur(s, monoclinic) — sulfur(liquid) Tians = 119+273 K,

OREV trans = 0.293 kcal mol™” AS,=?

Equation Basis for the equation Eq.
#

dp=0 Given (understood, 1 atm) 1
Jp = grEV,trans = 0.09 kcal mol™ at | Given. This is grev, rrans at these conditions, for 1 mol | 2
(95.4°C, 1 atm) =329
Jp = QrEeV, fusion = 0.293 kcal mol” Given. This is grev, fusion at these conditions, for 1 mol | 3
at (119°C, 1 atm) =329
dS = (0qrev/T) Second Law of thermodynamics 4
AS = grev/T for constant T 5
step (a):
ASs = qrev/T = (90 cal K" mol™") | Eq5and using Eq 2 6
/(273+95.4)
ASa =0.244 cal K' mol" Answer | Evaluating Eq 6
step (b):
ASp = qrev /T = (293 cal K" mol" ) | Eq 5 and using Eq 3 7
/(273+119)
ASp = 0.747 cal K" mol"  Answer | Evaluating Eq 7
AS, = qrev/T = (8x90 cal K" mol™) | If unit is not S atom but Sg molecule, then | mole =
/(273+95.4) 32x8 g not 32 g, making 7

ASp = grev /T = (8x293cal K™ mol™)
1(273+119)
AS, =1.95cal K mol

AS, =5.98 cal K" mol’  Answer

QREV.rans = 8x0.09 kcal mol™

QREV, fusion = 8x0.293 kcal mol”

Trouton’s rule applies to vaporization, not these
types of transitions.




(a) isothermal

25°C
40L
P2

ideal | “Teversible expansion”
gas OR
25 °C
20L (b) isothermal
P4 Irreversible
expansion

against p,, =0

Equation Basis for the equation Eq.
#
dU = dq + dW First Law of Thermodynamics 1
AU = 0 for both (a) and (b) Answer | For an ideal gas, U = U(T) only 2
OW = - popdV Definition of pV work 3
(@) Pop = Pgas Expansion (a) is reversible 4
Pgas = (1)RT/V Ideal gas equation of state, 1 mole 5
oW, = - RTdV/V 6
W, = - (8.314 J mol 'K ™")(298)e Integrating Eq 6 7
In(40/20) = -1717 J mol"  Answer
O0Qarev = - OWa= RTdV/V FromEqg1,2and 6 8
Ja= 1717 J mol” Answer From Eq 7 9
ASa = [6qarev/T Second law of thermodynamics 10
AS, = [RdV/V = RIn(40/20) From Eq 8 and 10 1
ASa = (8.314 J mol'K™)e In(2) Evaluating Eq 11 12
=5.76 J mol'K" Answer
(b) pop =0 Given 13
oW, =0 From Eq 3 14
W, =0 Answer 15
0gp =0 From Eq 1 and 2 16
gp =0 Answer From Eq 14 17
ASp = AS, S is a state function (same initial &final states) 18

AS, =5.76 Jmol 'K Answer

From Eq 12

ASa = qa‘REv/T while
ASb # qb,|RREv/T Answer




(a) adiabatic

ideal | “Feversible expansion’ T
gas OR v,
300K o 0.5 atm
1 atm (b) adiabatic
v, ireversible
expansion against
Pop = 0.5 atm
Equation Basis for the equation Eq.
#
dU = 8q + dW First Law of Thermodynamics 1
g = 0 for both (a) and (b) Answer | Definition of adiabatic 2
du= dW FromEq 1 and 2 3
AU = W for both (a) and (b)
OW = - popdV Definition of pV work 4
part (a) Pop = Pgas Expansion (a) is reversible 5
Pgas = (1)RT/V Ideal gas equation of state, 1 mole 6
V4 = (1 mol)(0.08205 L atm mol™)
¢(300)/(1 atm)=24.61L
oW, = - RTdV/V Integrating Eq 6 7
dU = CydT + (0U/oV)rdV U=U(T,Vv) 8
duU = CvdT For an ideal gas, (0U/6V)r=0 9
CydT = - RTdV/V FromEq 3,7 and 9 10
[CvdT/T = -RldV/IV Integrating Eq 10 11
Cv In(T2/T4) = -R In (V2/Vy)
CvIn(T2/T4) =-RIn (Top1/T1p2) Using Eq 6 12
(Cv+R) In(T2/T1) = R In(p2/p1) Rearranging Eq 12 13
(1.5R+R) In(T2/300) =R In (0.5/1) | Substituting given values into Eq 13 14
T,=227K Solving Eq 14 for the unknown T, 15
V5 = (1 mol)(0.08205 L atm mol™) | Solving Eq 6 for the unknown V., using the value of | 15
¢(227)/(0.5atm)=37.25L T
AU, = 1.5(8.314 J mol'K")e Integrating Eq 9 and substituting values 16
(227-300) = 910.4 J mol’ Answer
W, = AU, = 910.4 J mol Answer | From Eq 3 17
ASa = [89arev/T Second law of thermodynamics 18
=0 Answer | Since 0qarev = 0 (adiabatic) 19
part (b) pop, =0.5 Given 20
W, = - JpopdV = - 0.5 atm(Vo-Vy) From Eq 4 and 20, integrating 21
(b)
AUy = | CydT = 1.5R(T2-Ty) Integrating Eq 9 22




AUy, = 1.5[(0.5 atm)V, — (1 atm)V4]

Substituting ideal gas equation of state

23

Wb = AUb

From Eq 3

-0.5 atm(V2-V4) = 1.5 [(0.5 atm)V, | Substituting Eq 21 and 23 into Eq 3 25
— (1 atm)V4]
-0.5 (V2-24.61) =1.5[0.5V,-24.61] | FromEg6, V1=2461L 26
V,=39.38 L Solving Eq 26 for V, 27
W, = - 0.5 atm(39.38-24.61) Substituting V; into Eq 21
=-7.385 L atm
¢(8.314 J/0.08205 L atm)
=-748.3J Answer
AUp = -748.3J Answer From Eq 3 28
dS = (6S/8T)dT + (6S/op)rdp S=3(T,p) 29
(0S/0T), = Cp/T Derived (see lecture notes Part 4) starting from 30
(6S/c0)r = ~(V/ET), dU = dq,e, - pdV =TdS - pdV 31
and use of cross derivatives
- (0V/oT), =-R/p Differentiating ideal gas equation of state 32
dS = C, dT/T - Rdp/p Substitution of Eq 30 & 32 into Eqg. 29 33
ASp = 2.5R In(T2/T4) — R In (p2/p1) | Integrating Eq 33 34

ASp = 2.5R In[0.5039.38/(1e24.61)]
—RIn (0.5/1) = (8.314 J mol'K™")e
(2.5 In 0.80- In 0.50)

=1.125 J mol 'K’ Answer

Substitution of known values into Eq 34 and
evaluating

9.

Jutal = 0 (adiabatic) ; this is also g, because pressure is constant in this problem.
q = JC dT = masse heat capacitye (tina - tinial) When heat capacity is a constant

except for a phase change where need to use instead: g = masse (AHphase change Cal g'1)

AH = qp , which is 0 because adiabatic.

insulated (adiabatic)

p=1atm
20gice, -5 °C
30 g water, 25 °C

(2
{30+x) g water 0°C

Assume that final state is at 0 °C with both ice and water present.

1 |20gice,-5°C— 20gice, 0°C

q+ =20 g (0.5 cal deg™ g")(0 - -5)

2 | 30 g water, 25 °C — 30 g water, 0 °C

q2=30g (1.0 cal deg™” g)(0 - 25)

3 |xgice, 0°C — x g water, 0°C

gs=xg (80 calg’)

Qtotal = 0 = Q1 + Q2+ Q3




0=20g(0.5caldeg’ g")(0--5)+ 30g (1.0 caldeg” g")(0-25)+xg(80calg’)
0=50 -750 +80x

Solving for x,

x =700/80=8.75¢g

Final state is 11.25 g ice and 38.75 g water, all at 0°C

If we had found a negative value for x then the final state would be some of the water
will have turned to ice instead. This could happen if we had either less water or lower
temperature of water to begin with.

To calculate AS, we use for each step, either AS = Qrev.trans/ Ttrans , OF €lse use

AS = Cp IN(Tinal/ Tinitiar) from S = S(T,p) and dp = 0 and C,; is given independent of T in
these cases.

AS = ASq + AS;, + AS3

= 20(0.5) In(273/268) + 30(1) In(273/298) + 8.75(80)/273

= 0.1848 - 2.6287 + 2.5641 = +0.1202 cal K"~ We expected AS > 0 for a spontaneous
process such as this one.

10. Just like problem 9, but four different amounts of water, ending in 4 different final
states.

For all cases:

Jutal = 0 (adiabatic) ; this is also g, because pressure is constant in this problem.

q = JC dT = masse heat capacitye (tina - tintia)) When heat capacity is a constant
AH=q,=0

To calculate AS, we use for each step, either AS = Qrev.trans/ Ttrans , OF €lSe use

AS = Cyp, In(Ttinal/ Tinitiat) from S = S(T,p) and dp = 0 and because C,; is given independent
of T in this problem.

(@)

insulated (adiabatic)

p= 1 atm P= 1 atm

20 gice, -5°C (20+x) gice, -2°C

x g water, 25 °C
1 | 20gice,-5°C — 20 gice, - 2°C q1=20g (0.5 caldeg™ g")(-2 - -5)
2 | x g water, 25 °C — x g water, 0 °C a2 =xg (1.0 cal deg™” g")(0 - 25)
3 | x gwater, 0°C — x g ice, 0°C gz =xg(-80 calg”)
4 |xgice, 0°C —>xgice, -2°C qs =x g (0.5 caldeg’ g")(-2 - 0)

Quotal = 0 =Q1 + Q2+ Q3 + 4




0=20g(0.5caldeg”’ g")(-2--5)+ xg (1.0 cal deg™ g")(0-25) +x g (80 cal g)
+xg (0.5 cal deg” g")(-2-0)

0=30 -25x -80x -x

Solving for x,

x = 30/106 = 0.28 g of water to start with Answer

AS = AS4 + AS, + AS3 + AS,y
20(0.5) In(271/268) + 0.28(1) In(273/298) + 0.28(-80)/273 + 0.28(0.5) In(271/273)
0.1113 - 0.0245 - 0.0820 - 0.0010 = 0.0038 cal deg'1 Answer

(b)

insulated (adiabatic)

p=1atm
(20+0.5x) g ice, 0°C

p=1atm

20gice,-5°C

x g water, 25 °C 0.5x g water, 0°C

20 gice, - 5°C — 20 g ice, 0°C q1=20g (0.5 caldeg™ g™)(0 - -5)

x g water, 25 °C — x g water, 0 °C qz=xg (1.0 cal deg™” g™)(0 - 25)

WIN| =

0.5x g water, 0°C — 0.5x giice, 0°C | g3 = 0.5x g (-80 cal g

Qtotal = 0 = Q1 + g2t Q3

0=20g(0.5caldeg”’ g")(0--5)+xg (1.0 cal deg” g”)(0 - 25) + 0.5x g (-80 cal g)
0 =50 -25 x -40x

Solving for x,

x = 50/65 = 0.77 g of water to start with Answer

AS = AS4 + AS, + AS3

= 20(0.5) In(273/268) + 0.77(1) In(273/298) + 0.385(-80)/273

= 0.1848 — 0.0675—0.1128 = 0.0045 cal deg”’ Answer

(c)

insulated (adiabatic)

p=1atm p=1atm

20gice,-3°C 10gice, 0°C

x g water, 25 °C 10+x g water, 0°C
1 |20gice, -5°C — 20 gice, 0°C q1 =209 (0.5cal deg’ g")(0 - -5)
2 | x g water, 25 °C — x g water, 0 °C g2 =xg (1.0 cal deg™” g")(0 - 25)
3 |10 gice, 0°C — 10 g water, 0°C qs=10g (80 calg’)

Qtotal = 0 = Q1 + Q2+ Q3




0=20g(0.5caldeg”’ g")(0--5)+xg (1.0 caldeg” g")(0-25)+10g (80 calg”)
0 =50 -25 x +800

Solving for x,

x = 850/25 = 34 g of water to start with Answer

AS = ASq + AS, + AS3
20(0.5) In(273/268) + 34(1) In(273/298) + 10(80)/273
0.1845—-2.9791 + 2.9304 =0.136 cal deg”’ Answer

(d)

insulated (adiabatic)

p=1atm p=1atm
20 gice -5°C
X g water, 25 °C 20+x g water, 10°C
1120gice,-5°C - 20gice, 0°C g1 =20 g (0.5 cal deg” g7)(0 - -5)
2 | x g water, 25 °C — x g water, 0 °C g2 =xg (1.0 cal deg™ g")(0 - 25)
3 |20 gice, 0°C — 20 g water, 0°C gs=20g (80 calg’)
4 | (20+x) g water, 0 °C — (20+x) g water, 10°C | q4 = (20+x) g (1.0 cal deg” g7)(10 -0)

Grotal = 0 = Q1 + Q2+ Q3 + Q4

0=20g (0.5caldeg”’ g")(0--5)+xg (1.0 caldeg” g")(0-25)+20 g (80 calg™")
+ (20+x) g (1.0 cal deg™ g™")(10 - 0)

0 = 50 -25x +1600 + (20+x)10

Solving for x,

x = 1850/15 = 123. g of water to start with  Answer

AS = AS4 + AS, + AS3 + AS,
= 20(0.5) In(273/268) + 123(1) In(273/298) + 20(80)/273 + 143(1) In(283/273)
=0.1845-10.7775 + 5.8608 + 5.1444 = 0.412 cal deg'1 Answer




