Solutions to Problem Set 4

1. (a) heat engine

Develop the equations you need:

Equation	Basis for the equation	Eq. $\#$
$\varepsilon=-W_{\text {cycle }} / \mathrm{q}_{\mathrm{h}}$	Efficiency of any heat engine based on 2 thermal reservoirs is the ratio of the work produced in the surroundings to the quantity of heat transferred from the high temperature reservoir	1
$-\mathrm{W}_{\text {cycle }}=\mathrm{R}\left(\mathrm{T}_{\mathrm{h}}-\mathrm{T}_{\mathrm{c}}\right) \ln \left(\mathrm{V}_{\mathrm{B}} / \mathrm{V}_{\mathrm{A}}\right)$ $\mathrm{q}_{\mathrm{h}}=R \mathrm{~T}_{\mathrm{h}} \ln \left(\mathrm{V}_{\mathrm{B}} / \mathrm{V}_{\mathrm{A}}\right)$ ε rev cycle $=\left(\mathrm{T}_{\mathrm{h}}-\mathrm{T}_{\mathrm{c}}\right) / \mathrm{T}_{\mathrm{h}}$	For the Carnot cycle operating reversibly using an ideal gas (see lecture notes Part 3) efficiency is given by this equation.	2
ε rev cycle $=\varepsilon$ rev cycle'	For all engines based on 2 thermal reservoirs and operating reversibly using any gas, efficiency is the same. (See lecture notes Part 3.) This is the maximum possible efficiency.	3
$\left(T_{h}-T_{c}\right) / T_{h}=(125-25) /(125+273)$ $=0.251$	Given t_{c} and th are 25 deg and 125 deg respectively	4
ε rev cycle $=0.251$ Answer	Maximum possible efficiency for this problem	5

Maximum possible efficiency of heat engine is for ideal, reversible conditions, i.e., no frictional loss.
(b) Given T_{c} and T_{h} are 4 K and 20 K respectively, efficiency of a reversible engine working between heat reservoirs at these temperatures is $\left(T_{h}-T_{c}\right) / T_{h}=(20-4) /(20)=0.80$
(c) Given efficiency $=0.80$ and $T_{c}=300 \mathrm{~K},\left(T_{h}-300\right) / T_{h}=0.80$, therefore $T_{h}=1500 \mathrm{~K}$
2. Refrigerator:

Develop the equations you need:

Equation	Basis for the equation	Eq. \#
$\beta=q_{c} / W_{\text {cycle }}$	Definition of coefficient of performance of a refrigerator	1
$\mathrm{dU}=\delta \mathrm{q}+\delta \mathrm{W}$	First Law of Thermodynamics	2
For a cycle: $\Delta \mathbf{U}=0$	\mathbf{U} is a state function	3
$\begin{aligned} & 0=q_{\text {cycle }}+W_{\text {cycle }} \\ & 0=q_{c}+q_{h}+W_{\text {cycle }} \\ & W_{\text {cycle }}=-q_{c}-q_{h} \end{aligned}$	From Eq 2 and 3	4
$\begin{aligned} & -W_{\text {cycle }}=R\left(T_{h}-T_{c}\right) \ln \left(V_{B} / V_{A}\right) \\ & q_{c}=-R T_{c} \ln \left(V_{B} / V_{A}\right) \\ & W_{\text {cycle }}=R\left(T_{h}-T_{c}\right) \ln \left(V_{B} / V_{A}\right) \\ & q_{c}=R T_{c} \ln \left(V_{B} / V_{A}\right) \end{aligned}$	For the Carnot cycle operating reversibly using an ideal gas (see lecture notes Part 3, but change signs for reverse direction of cycle)	5 6
β rev cycle $=T_{c} /\left(T_{h}-T_{c}\right)$	From Eq. 1 and 6 ideal coeff of performance is given by this equation.	7
$\begin{aligned} & \mathrm{q}_{\mathrm{c}} / \mathrm{W}_{\text {cycle }}=(0.75) \bullet\left[\mathrm{T}_{\mathrm{c}} /\left(\mathrm{T}_{\mathrm{h}}-\mathrm{T}_{\mathrm{c}}\right)\right] \\ & \mathrm{q}_{\mathrm{c}}=\mathrm{W}_{\text {cycle }} \bullet(0.75) \bullet\left[\mathrm{T}_{\mathrm{c}} /\left(\mathrm{T}_{\mathrm{h}}-\mathrm{T}_{\mathrm{c}}\right)\right] \end{aligned}$	Given: not ideal, actual is 75\% of ideal	8
$\mathrm{W}_{\text {cycle }}=(1 / 4)(10.688 \mathrm{kcal} / \mathrm{min})$	Given, for 1 min	9
$\mathrm{T}_{\mathrm{c}}=-20+273, \mathrm{~T}_{\mathrm{h}}=35+273$	Given: t_{c} and t_{h} are -20 deg and 35 deg respectively	10
$\begin{aligned} & \mathrm{q}_{\mathrm{c}}=(1 / 4)(10.688 \mathrm{kcal} / \mathrm{min}) \bullet(0.75) \\ & \bullet[253 /(308-253)] \end{aligned}$	From Eq 8, 9,10	11
$\mathrm{q}_{\mathrm{c}}=6.9138 \mathrm{kcal} / \mathrm{min}$ Answer	Solving Eq 10	12

The heat removed from the low temperature reservoir, if motor runs continuously, is $6.9138 \mathrm{kcal} / \mathrm{min}$. Therefore, can tolerate a maximum heat leak into the box by an amount $6.9138 \mathrm{kcal} / \mathrm{min}$.
3. 1 mole

(a)

Equation	Basis for the equation	Eq. \\|
$\mathrm{d} \mathbf{U}=\delta \mathrm{q}+\delta \mathrm{W}$	First Law of Thermodynamics	1
$\Delta \mathbf{U}_{1}=0$	For an ideal gas, $\mathbf{U}=\mathbf{U}(\mathrm{T})$ only	2
$\begin{aligned} & \delta W=-p_{o p} d V \\ & p_{o p}=0 \\ & \delta W_{1}=0 \end{aligned}$	Definition of pV work Given	3 4
$\delta q_{1}=0 ; q_{1}=0$	From Eq 1, 2 and 4	5
$\int \delta q_{1} / T=0$	From Eq 5	6
$\begin{aligned} & p_{\text {op }}=p_{\text {gas }} \\ & p_{\text {gas }}=(1) R T / V \\ & \delta W_{2}=-R T d V / V \end{aligned}$	Step 2 is reversible ideal gas equation of state, 1 mole	$\begin{array}{\|l} \hline 7 \\ 8 \\ 9 \\ \hline \end{array}$
$\delta \mathrm{q}_{2}=\mathrm{RTdV} / \mathrm{V}$	From Eq 1 and 9	10
$\int \delta \mathrm{q}_{2} / \mathrm{T}=\int \mathrm{RdV} / \mathrm{V}=\mathrm{R} \ln \left(\mathrm{V}_{1} / 2 \mathrm{~V}_{1}\right)$	From Eq 10	11
$\int \delta q_{2} / \mathrm{T}=-\mathrm{R} \ln (2)$	Evaluating Eq 11	12
$\begin{aligned} \int_{\text {cycle }} \delta \mathrm{q} / \mathrm{T} & =\int \delta q_{1} / \mathrm{T}+\int \delta \mathrm{q}_{2} / \mathrm{T} \\ & =-\mathrm{R} \ln (2) \end{aligned}$	From Eq 5 and 12	13
$\oint^{\lambda q_{\text {irrev }} / T}<0$	As it should be, according to Clausius inequality.	14

(b)

Equation	Basis for the equation	Eq. $\#$
$\Delta \mathbf{S}=\int \delta \mathrm{q}_{\mathrm{REv}} / \mathrm{T}$	Second Law of Thermodynamics	15
$\Delta \mathbf{S}_{2}=\int \delta \mathrm{q}_{2} / \mathrm{T}=-\mathrm{Rln}(2)$ $=-\left(1 \mathrm{~mol}^{2}\right) 8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}(0.693)$ $=-5.76 \mathrm{~J} \mathrm{~K}^{-1} \quad$ Answer	Step 2 is reversible and Eq 12	16

(c)

Equation	Basis for the equation	Eq. $\mathbf{S}_{\text {cycle }}=0$ $\Delta \mathbf{S}_{\text {cycle }}=\Delta \mathbf{S}_{1}+\Delta \mathbf{S}_{2}$
	S is a state function	17

$0=\Delta \mathbf{S}_{1}-5.76 \mathrm{~J} \mathrm{~K}^{-1}$	Use Eq 16	19
$\Delta \mathbf{S}_{1}=+5.76 \mathrm{~J} \mathrm{~K}^{-1} \quad$ Answer	Solving Eq 19	20

(d)

Equation	Basis for the equation	Eq. $\#$
$\mathrm{q}_{1}=0, \quad \mathrm{q}_{1} / \mathrm{T}=0$	From Eq 5	21
$\Delta \mathbf{S}_{1}=+5.76 \mathrm{~J} \mathrm{~K}^{-1} \neq 0 \quad$ Answer	As it should be; since step 1 is not reversible, $\Delta \mathbf{S}_{1} \neq \mathrm{q}_{1} / T$	21

4. Given $T_{1}=10 \mathrm{~K}, \mathrm{~T}_{2}=300 \mathrm{~K}$ for one mol of an ideal gas, $\mathrm{C}_{\mathrm{V}}=(3 / 2) \mathrm{R}$

Equation	Basis for the equation	Eq. \#
(a) $\mathrm{dV}=0$	Given	1
$\mathrm{d} \mathbf{S}=(\partial \mathbf{S} / \partial \mathrm{T})_{\mathrm{V}} \mathbf{d T}+(\partial \mathbf{S} / \partial \mathrm{V})_{\mathrm{T}} \mathrm{dV}$	$\mathbf{S}=\mathbf{S}(\mathrm{T}, \mathrm{V})$	2
$\begin{aligned} & (\partial \mathbf{S} / \partial \mathrm{T})_{\mathrm{V}}=\mathrm{C}_{\mathrm{V}} / \mathrm{T} \\ & (\partial \mathrm{~S} / \partial \mathrm{V})_{T}=(1 / T)\left\{p+(\partial \mathrm{U} / \partial \mathrm{V})_{T}\right\}=(\partial p / \partial T)_{V} \end{aligned}$	Derived (see lecture notes Part 4) starting from $\mathrm{d} U=\Delta \mathrm{q}_{\mathrm{rev}}-p \mathrm{~d} V=T \mathrm{~d} S-p \mathrm{~d} V$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$
$\begin{aligned} & \mathrm{dS}=\left(\mathrm{C}_{\mathrm{V}} / \mathrm{T}\right) \mathrm{dT} \\ & \Delta \mathbf{S}=\int(3 / 2) \mathrm{RdT} / \mathrm{T} \\ & \hline \end{aligned}$	From Eq 1, 2 and 3	5
$\Delta \mathbf{S}=\left(1 \mathrm{~mol}^{2}\right)(3 / 2)\left(8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ - $\operatorname{In}(300 / 10)=42.4 \mathrm{~J} \mathrm{~K}^{-1}$ Answer	Integrating Eq 5	6
(b) $\mathrm{dp}=0$	Given	7
$\mathrm{dS}=(\partial \mathbf{S} / \partial \mathrm{T})_{\mathrm{p}} \mathrm{dT}+(\partial \mathbf{S} / \partial \mathrm{p})_{T} \mathrm{dp}$	S = S(T, p)	8
$\begin{aligned} & (\partial \mathbf{S} / \partial \mathrm{T})_{\mathrm{p}}=\mathrm{C}_{\mathrm{p}} / \mathrm{T} \\ & (\partial \mathbf{S} / \partial \mathrm{p})_{T} \stackrel{(}{=}-(\partial \mathrm{V} / \partial T)_{p} \end{aligned}$	Derived (see lecture notes Part 4) starting from $\mathrm{d} \boldsymbol{U}=\grave{\mathrm{d}} \mathrm{q}_{\mathrm{rev}}-p \mathrm{~d} V=T \mathrm{~d} \boldsymbol{S}-p \mathrm{~d} V$ and use of cross derivatives	$\begin{array}{\|l\|} \hline 9 \\ 10 \end{array}$
$\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{V}}=\mathrm{R}$	For an ideal gas	11
$\begin{aligned} & \mathrm{dS}=\left(\mathrm{C}_{\mathrm{p}} / \mathrm{T}\right) \mathrm{dT} \\ & \Delta \mathbf{S}=\int(5 / 2) \mathrm{RdT} / \mathrm{T} \end{aligned}$	From Eq 7, 8 and 9 From Eq 11 and 12	$\begin{aligned} & 12 \\ & 13 \end{aligned}$
$\Delta \mathbf{S}=(1 \mathrm{~mol})(5 / 2)\left(8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ $\bullet \ln (300 / 10)=70.7 \mathrm{~J} \mathrm{~K}^{-1} \quad$ Answer	Integrating Eq 13	14
(c) 3 moles	Given	15
$\Delta \mathbf{S}=$ multiplied by factor of 3 Answer	Substituting 3 mol for 1 mol in Eq 6 and 14	16

5. (a) Given 1 mol liquid water $T_{1}=0+273 \mathrm{~K}, \mathrm{~T}_{2}=100+273 \mathrm{~K}$, constant pressure, $\mathrm{C}_{\mathrm{p}}=$ $18.0 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~mol}^{-1}$.

Equation	Basis for the equation	Eq. $\#$ $\#$
dp $=0$	Given	1
$\mathrm{d} \mathbf{S}=(\partial \mathbf{S} / \partial \mathrm{T})_{\mathrm{p}} \mathrm{dT}+(\partial \mathbf{S} / \partial \mathrm{p})_{\mathrm{T}} \mathrm{dp}$	$\mathbf{S}=\mathbf{S}(\mathrm{T}, \mathrm{p})$	2
$\begin{aligned} & (\partial \mathbf{S} / \partial \mathrm{T})_{\mathrm{p}}=\mathrm{C}_{\mathrm{p}} / \mathrm{T} \\ & (\partial \mathbf{S} / \partial \mathrm{p})_{T} \stackrel{ }{=}-(\partial \mathrm{V} / \partial \mathrm{T})_{p} \end{aligned}$	Derived (see lecture notes Part 4) starting from $\mathrm{d} \boldsymbol{U}=\Delta \mathrm{q}_{\mathrm{rev}}-p \mathrm{~d} V=T \mathrm{~d} \boldsymbol{S}-p \mathrm{~d} V$ and use of cross derivatives	$\begin{aligned} & 3 \\ & 4 \end{aligned}$
$\mathrm{C}_{\mathrm{p}}=18.0 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~mol}^{-1}$.	Given	5
$\mathrm{dS}=\left(\mathrm{C}_{p} / \mathrm{T}\right) \mathrm{dT}$	From Eq 1, 2 and 3	6
$\begin{aligned} & \Delta \mathbf{S}=\left(1 \mathrm{~mol}^{\prime}\right)\left(18.0 \mathrm{cal} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \bullet \\ & \ln (373 / 273)=5.62 \mathrm{cal} \mathrm{~K}^{-1} \\ & \text { Answer } \end{aligned}$	Integrating Eq 6 and using Eq 5	7

(b) ice $\left(0^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right) \rightarrow$ steam $\left(100^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right) . \quad \Delta \mathbf{S}=$?

Devise reversible steps which lead from same initial state to same final state, to calculate any state function change for the given process.

ice $\left(0^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right) \rightarrow$ liq water $\left(0^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right)$	step (1)	$\Delta \mathbf{S}_{1}$
liq water $\left(0^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right) \rightarrow$ liq water $\left(100^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right)$	step (2)	$\Delta \mathbf{S}_{2}$
liq water $\left(100^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right) \rightarrow$ steam $\left(100^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right)$	step (3)	$\Delta \mathbf{S}_{3}$

$\Delta \mathbf{S}=\Delta \mathbf{S}_{1}+\Delta \mathbf{S}_{2}+\Delta \mathbf{S}_{3}$

Equation	Basis for the equation	Eq. $\#$ $\#$
$\mathrm{dp}=0$	Given	1
$\mathrm{d} \mathbf{S}=(\partial \mathbf{S} / \partial \mathrm{T})_{p} \mathrm{dT}+(\partial \mathbf{S} / \partial \mathrm{p})_{\mathrm{T}} \mathrm{dp}$	$\mathbf{S}=\mathbf{S}(\mathrm{T}, \mathrm{p})$	2
$\begin{aligned} & (\partial \mathbf{S} / \partial \mathrm{T})_{\mathrm{p}}=\mathrm{C}_{p} / \mathrm{T} \\ & (\partial \mathbf{S} / \partial p)_{T} \stackrel{ }{=}-(\partial \mathrm{V} / \partial T)_{p} \end{aligned}$	Derived (see lecture notes Part 4) starting from $\mathrm{d} \boldsymbol{U}=\Delta \mathrm{q}_{\mathrm{rev}}-p \mathrm{~d} V=T \mathrm{~d} \boldsymbol{S}-p \mathrm{~d} V$ and use of cross derivatives	$\begin{aligned} & \hline 3 \\ & 4 \end{aligned}$
$\mathrm{C}_{\mathrm{p}}=18.0 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~mol}^{-1}$.	Given	5
$\mathrm{q}_{\mathrm{p}}=1.4363 \mathrm{kcal} \mathrm{mol}^{-1}$ at ($0^{\circ} \mathrm{C}, 1 \mathrm{~atm}$)	Given. This is $\mathrm{q}_{\text {REV, fusion }}$ at these conditions	6
$\mathrm{q}_{\mathrm{p}}=9.7171 \mathrm{kcal} \mathrm{mol}^{-1}$ at ($100^{\circ} \mathrm{C}, 1 \mathrm{~atm}$)	Given. This is $\mathrm{q}_{\text {Rev, vaporizn }}$ at these conditions	7
$\mathrm{C}_{\mathrm{p}}=18.0 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~mol}^{-1}$.	Given	8
$\begin{aligned} & \mathrm{dS}=\left(\delta \mathrm{q}_{\mathrm{REV}} / \mathrm{T}\right) \\ & \Delta \mathbf{S}=\mathrm{q}_{\mathrm{REV}} / \mathrm{T} \text { for constant } \mathrm{T} \end{aligned}$	Second Law of thermodynamics	$\begin{aligned} & 9 \\ & 10 \end{aligned}$
$\begin{aligned} & \operatorname{step}(1): \\ & \Delta \mathbf{S}_{1}=\mathrm{q}_{\text {REV }} / \mathrm{T} \end{aligned}$	Eq 10 and using Eq 6	11

$\begin{aligned} & =\left(1 \mathrm{~mol}^{2}\left(1436.3 \mathrm{cal} \mathrm{~mol}^{-1}\right) / 273\right. \\ & \Delta \mathbf{S}_{1}=5.26 \mathrm{cal} \mathrm{~K}^{-1} \end{aligned}$	Evaluating Eq 11	
$\begin{aligned} & \text { step (2): } \\ & \mathrm{dS}=\left(\mathrm{C}_{\mathrm{p}} / \mathrm{T}\right) \mathrm{dT} \\ & \Delta \mathbf{S}_{2}=(1 \mathrm{~mol})\left(18.0 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~mol}^{-1}\right) \bullet \\ & \ln (373 / 273)=5.62 \mathrm{cal} \mathrm{~K}^{-1} \end{aligned}$	Eq 1, 2, 3 Integrating Eq 12 and using Eq 8 Already done in part (a) of this problem	12 13
$\begin{aligned} & \text { step (3): } \\ & \mathbf{S}_{3}=\mathrm{q}_{\text {REV }} / \mathrm{T}=(1 \mathrm{~mol})(9717.1 \mathrm{cal} \\ & \left.\mathrm{mol}^{-1}\right) / 373 \\ & \Delta \mathbf{S}_{3}=26.05 \mathrm{cal} \mathrm{~K}^{-1} \end{aligned}$	Eq 10 and using Eq 7 Evaluating Eq 14	14
$\begin{aligned} & \Delta \mathbf{S}=\Delta \mathbf{S}_{1}+\Delta \mathbf{S}_{2}+\Delta \mathbf{S}_{3} \\ & =5.26+5.62+26.05 \\ & =36.93 \text { cal K }^{-1} \quad \text { Answer } \end{aligned}$	\mathbf{S} is a state function	15

6. (a) sulfur(s, rhombic) \rightarrow sulfur(s, monoclinic)
(b) sulfur(s, monoclinic) \rightarrow sulfur(liquid)
$\mathrm{T}_{\text {trans }}=95.4+273 \mathrm{~K}$,
q$_{\text {REV, trans }}=0.09 \mathrm{kcal} \mathrm{mol}^{-1} \Delta \mathbf{S}_{\mathrm{a}}=$?
$\mathrm{T}_{\text {trans }}=119+273 \mathrm{~K}$,
qrev, trans $=0.293 \mathrm{kcal} \mathrm{mol}^{-1} \Delta \mathbf{S}_{\mathrm{b}}=$?

Equation	Basis for the equation	Eq.
$\mathrm{dp}=0$	Given (understood, 1 atm)	1
$\mathrm{q}_{\mathrm{p}}=\mathrm{q}_{\mathrm{REV}, \text { trans }}=0.09 \mathrm{kcal} \mathrm{mol}^{-1}$ at ($95.4^{\circ} \mathrm{C}, 1 \mathrm{~atm}$)	Given. This is $\mathrm{q}_{\mathrm{REV} \text {, trans }}$ at these conditions, for 1 mol $=32 \mathrm{~g}$	2
$\begin{aligned} & \mathrm{q}_{\mathrm{p}}=\mathrm{q}_{\mathrm{REv}, \text { fusion }}=0.293 \mathrm{kcal} \mathrm{~mol}^{-1} \\ & \text { at }\left(119^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right) \end{aligned}$	Given. This is $q_{R E v, ~ f u s i o n ~}$ at these conditions, for 1 mol $=32 \mathrm{~g}$	3
$\begin{aligned} & \text { dS }=\left(\delta \mathrm{q}_{\mathrm{REvE}} / T\right) \\ & \Delta \mathbf{S}=\mathrm{q}_{\mathrm{REV}} / T \text { for constant } \mathrm{T} \end{aligned}$	Second Law of thermodynamics	4 5
$\begin{aligned} & \text { step (a): } \\ & \Delta \mathbf{S}_{\mathrm{a}}=\mathrm{q}_{\text {REV }} / \mathrm{T}=\left(90 \mathrm{cal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\ & /(273+95.4) \\ & \Delta \mathbf{S}_{\mathrm{a}}=0.244 \mathrm{cal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \quad \text { Answer } \end{aligned}$	Eq 5 and using Eq 2 Evaluating Eq 6	6
$\begin{aligned} & \text { step (b): } \\ & \Delta \mathbf{S}_{\mathrm{b}}=\mathrm{q}_{\mathrm{REV}} / \mathrm{T}=\left(293 \mathrm{cal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\ & /(273+119) \\ & \Delta \mathbf{S}_{\mathrm{b}}=0.747 \mathrm{cal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \quad \text { Answer } \end{aligned}$	Eq 5 and using Eq 3 Evaluating Eq 7	7
$\begin{aligned} & \Delta \mathbf{S}_{\mathrm{a}}=\mathrm{q}_{\text {REV }} / \mathrm{T}=\left(8 \times 90 \mathrm{cal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\ & /(273+95.4) \\ & \Delta \mathbf{S}_{\mathrm{b}}=\mathrm{q}_{\text {REV }} / \mathrm{T}=\left(8 \times 293 \mathrm{cal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\ & /(273+119) \\ & \Delta \mathbf{S}_{\mathrm{a}}=1.95 \mathrm{cal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\ & \Delta \mathbf{S}_{\mathrm{b}}=5.98 \mathrm{cal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \quad \text { Answer } \end{aligned}$	If unit is not S atom but S_{8} molecule, then I mole $=$ $32 \times 8 \mathrm{~g}$ not 32 g , making $\mathrm{q}_{\text {REV, trans }}=8 \times 0.09 \mathrm{kcal} \mathrm{mol}^{-1}$ GREV, fusion $=8 \times 0.293 \mathrm{kcal} \mathrm{mol}^{-1}$ Trouton's rule applies to vaporization, not these types of transitions.	7

7.

	(a) isothermal	
ideal gas	reversible expansion OR	$25^{\circ} \mathrm{C}$
$\begin{aligned} & \text { gas } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	OR	40 L
20 L	(b) isothermal	p_{2}
p_{1}	irreversible	

Equation	Basis for the equation	Eq. \#
$\mathrm{d} \mathbf{U}=\delta q+\delta W$	First Law of Thermodynamics	1
$\Delta \mathbf{U}=0$ for both (a) and (b) Answer	For an ideal gas, $\mathbf{U}=\mathbf{U}(\mathrm{T})$ only	2
$\delta \mathrm{W}=-\mathrm{p}_{\text {op }} \mathrm{dV}$	Definition of pV work	3
$\begin{aligned} & \text { (a) } p_{o p}=p_{\text {gas }} \\ & p_{\text {gas }}=(1) R T / V \\ & \delta W_{a}=-R T d V / V \\ & W_{a}=-\left(8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(298) \bullet \\ & \ln (40 / 20)=-1717 \mathrm{~J} \mathrm{~mol}^{-1} \quad \text { Answer } \end{aligned}$	Expansion (a) is reversible Ideal gas equation of state, 1 mole Integrating Eq 6	$\begin{array}{\|l} \hline 4 \\ 5 \\ 6 \\ 7 \end{array}$
$\begin{aligned} & \delta q_{a, R E V}=-\delta W_{a}=R T d V / V \\ & q_{a}=1717 \mathrm{Jmol}^{-1} \quad \text { Answer } \end{aligned}$	From Eq 1, 2 and 6 From Eq 7	$\begin{array}{\|l\|} \hline 8 \\ 9 \end{array}$
$\begin{aligned} & \Delta \mathbf{S}_{\mathrm{a}}=\int \delta \mathrm{q}_{\mathrm{a}, \mathrm{REV} / \mathrm{T}} \\ & \Delta \mathbf{S}_{\mathrm{a}}=\int \mathrm{RdV} / \mathrm{V}=\mathrm{R} \ln (40 / 20) \end{aligned}$	Second law of thermodynamics From Eq 8 and 10	$\begin{aligned} & 10 \\ & 11 \end{aligned}$
$\begin{aligned} & \Delta \mathbf{S}_{\mathrm{a}}=\left(8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \cdot \ln (2) \\ & =5.76 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \quad \text { Answer } \end{aligned}$	Evaluating Eq 11	12
$\begin{aligned} & \text { (b) } p_{o p}=0 \\ & \delta W_{b}=0 \\ & W_{b}=0 \end{aligned}$ Answer	Given From Eq 3	$\begin{array}{\|l\|} \hline 13 \\ 14 \\ 15 \\ \hline \end{array}$
$\begin{aligned} & \delta q_{b}=0 \\ & q_{b}=0 \end{aligned}$ Answer	From Eq 1 and 2 From Eq 14	$\begin{aligned} & 16 \\ & 17 \end{aligned}$
$\begin{aligned} & \Delta \mathbf{S}_{\mathrm{b}}=\Delta \mathbf{S}_{\mathrm{a}} \\ & \Delta \mathbf{S}_{\mathrm{b}}=5.76 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned}$ Answer	S is a state function (same initial \&final states) From Eq 12	18
$\begin{aligned} & \Delta \mathbf{S}_{\mathrm{a}}=\mathrm{q}_{\mathrm{a}, \text { REV }} / T \text { while } \\ & \Delta \mathbf{S}_{\mathrm{b}} \neq \mathrm{q}_{\mathrm{b}, \text { IRREV }} / \mathrm{T} \end{aligned}$ Answer		

8.

expansion against

$p_{o p}=0.5 \mathrm{~atm}$

Equation	Basis for the equation	Eq. $\#$
$\mathrm{d} \mathbf{U}=\delta \mathrm{q}+\delta \mathrm{W}$	First Law of Thermodynamics	1
$\mathrm{q}=0$ for both (a) and (b) Answer	Definition of adiabatic	2
$\begin{aligned} & \mathrm{d} \mathbf{U}=\delta \mathrm{W} \\ & \Delta \mathbf{U}=\mathrm{W} \text { for both }(\mathrm{a}) \text { and }(\mathrm{b}) \end{aligned}$	From Eq 1 and 2	3
סW = - $\mathrm{pop}_{\text {op }} \mathrm{dV}$	Definition of pV work	4
part (a) $\mathrm{p}_{\mathrm{op}}=\mathrm{p}_{\text {gas }}$	Expansion (a) is reversible	5
$\begin{aligned} & \mathrm{p}_{\text {gas }}=(1) \mathrm{RT} / \mathrm{V} \\ & \mathrm{~V}_{1}=(1 \mathrm{~mol})\left(0.08205 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1}\right) \\ & \bullet(300) /(1 \mathrm{~atm})=24.61 \mathrm{~L} \end{aligned}$	Ideal gas equation of state, 1 mole	6
$\delta \mathrm{W}_{\mathrm{a}}=-\mathrm{RTdV} / \mathrm{V}$	Integrating Eq 6	7
$\mathrm{dU}=\mathrm{C}_{\mathrm{V}} \mathrm{dT}+(\partial \mathrm{U} / \partial \mathrm{V})_{\mathrm{T}} \mathrm{dV}$	$\mathbf{U}=\mathbf{U}(\mathrm{T}, \mathrm{V})$	8
$\mathrm{d} \mathbf{U}=\mathrm{C}_{V} \mathrm{dT}$	For an ideal gas, $(\partial \mathrm{U} / \partial \mathrm{V})_{\mathrm{T}}=0$	9
$\mathrm{C}_{V} \mathrm{dT}=-\mathrm{RTdV} / \mathrm{V}$	From Eq 3, 7 and 9	10
$\begin{aligned} & \int \mathrm{C}_{\mathrm{V}} \mathrm{dT} / \mathrm{T}=-\mathrm{R} \int \mathrm{dV} / \mathrm{V} \\ & \mathrm{CV} \ln \left(\mathrm{~T}_{2} / \mathrm{T}_{1}\right)=-\mathrm{R} \ln \left(\mathrm{~V}_{2} / \mathrm{V}_{1}\right) \end{aligned}$	Integrating Eq 10	11
$\mathrm{Cv} \ln \left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)=-\mathrm{R} \ln \left(\mathrm{T}_{2} \mathrm{p}_{1} / \mathrm{T}_{1} \mathrm{p}_{2}\right)$	Using Eq 6	12
$\left(\mathrm{C}_{\mathrm{V}}+\mathrm{R}\right) \ln \left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)=\mathrm{R} \ln \left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)$	Rearranging Eq 12	13
(1.5R+R) $\ln \left(T_{2} / 300\right)=R \ln (0.5 / 1)$	Substituting given values into Eq 13	14
$\mathrm{T}_{2}=227 \mathrm{~K}$	Solving Eq 14 for the unknown T_{2}	15
$\begin{aligned} & V_{2}=\left(1 \mathrm{~mol}^{2}\right)\left(0.08205 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1}\right) \\ & \cdot(227) /(0.5 \mathrm{~atm})=37.25 \mathrm{~L} \end{aligned}$	Solving Eq 6 for the unknown V_{2}, using the value of T_{2}	15
$\Delta \mathbf{U}_{\mathrm{a}}=1.5\left(8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \bullet$ $(227-300)=910.4 \mathrm{~J} \mathrm{~mol}^{-1} \quad$ Answer	Integrating Eq 9 and substituting values	16
$\mathrm{W}_{\mathrm{a}}=\Delta \mathbf{U}_{\mathrm{a}}=910.4 \mathrm{~J} \mathrm{~mol}^{-1}$ Answer	From Eq 3	17
$\begin{aligned} & \Delta \mathbf{S}_{\mathrm{a}}=\int \delta q_{\mathrm{a}, \mathrm{REV}} / \mathrm{T} \\ & =0 \end{aligned}$ Answer	Second law of thermodynamics Since $\delta q_{a, R E V}=0$ (adiabatic)	$\begin{aligned} & 18 \\ & 19 \end{aligned}$
part (b) $\mathrm{p}_{\mathrm{op}}=0.5$	Given	20
$\mathrm{W}_{\mathrm{b}}=-\int \mathrm{p}_{\mathrm{op}} \mathrm{dV}=-0.5 \mathrm{~atm}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)$	From Eq 4 and 20, integrating	21
(b)		
$\Delta \mathbf{U}_{\mathrm{b}}=\int \mathrm{C}_{\mathrm{V}} \mathrm{dT}=1.5 \mathrm{R}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$	Integrating Eq 9	22

$\Delta \mathbf{U}_{\mathrm{b}}=1.5\left[(0.5 \mathrm{~atm}) \mathrm{V}_{2}-(1 \mathrm{~atm}) \mathrm{V}_{1}\right]$	Substituting ideal gas equation of state	23
$\mathrm{W}_{\mathrm{b}}=\Delta \mathrm{U}_{\mathrm{b}}$	From Eq 3	3
$\begin{aligned} & -0.5 \mathrm{~atm}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)=1.5\left[(0.5 \mathrm{~atm}) \mathrm{V}_{2}\right. \\ & \left.-(1 \mathrm{~atm}) \mathrm{V}_{1}\right] \\ & -0.5\left(\mathrm{~V}_{2}-24.61\right)=1.5\left[0.5 \mathrm{~V}_{2}-24.61\right] \end{aligned}$	Substituting Eq 21 and 23 into Eq 3 From Eq 6, $\mathrm{V}_{1}=24.61 \mathrm{~L}$	25 26
$\mathrm{V}_{2}=39.38 \mathrm{~L}$	Solving Eq 26 for V_{2}	27
$\begin{aligned} \mathrm{W}_{\mathrm{b}} & =-0.5 \mathrm{~atm}(39.38-24.61) \\ & =-7.385 \mathrm{~L} \text { atm } \\ & \bullet(8.314 \mathrm{~J} / 0.08205 \mathrm{~L} \text { atm }) \\ & =-748.3 \mathrm{~J} \quad \text { Answer } \end{aligned}$	Substituting V_{2} into Eq 21	
$\Delta \mathbf{U}_{\mathrm{b}}=-748.3 \mathrm{~J} \quad$ Answer	From Eq 3	28
$\mathrm{d} \mathbf{S}=(\partial \mathbf{S} / \partial \mathrm{T})_{\mathrm{p}} \mathrm{dT}+(\partial \mathbf{S} / \partial \mathrm{p})_{T} \mathrm{dp}$	S = S(T,p)	29
$\begin{aligned} & (\partial \mathbf{S} / \partial T)_{\mathrm{p}}=\mathrm{C}_{p} / \mathrm{T} \\ & (\partial \mathbf{S} / \partial \mathrm{p})_{T} \stackrel{ }{=}-(\partial \mathrm{V} / \partial T)_{p} \end{aligned}$	Derived (see lecture notes Part 4) starting from $\mathrm{d} \boldsymbol{U}=\Delta \mathrm{q}_{\mathrm{rev}}-p \mathrm{~d} V=T \mathrm{~d} \boldsymbol{S}-p \mathrm{~d} V$ and use of cross derivatives	$\begin{aligned} & 30 \\ & 31 \end{aligned}$
- $(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{p}}=-\mathrm{R} / \mathrm{p}$	Differentiating ideal gas equation of state	32
$\mathrm{dS}=\mathrm{C}_{\mathrm{p}} \mathrm{dT} / \mathrm{T}-\mathrm{Rdp} / \mathrm{p}$	Substitution of Eq 30 \& 32 into Eq. 29	33
$\Delta \mathbf{S}_{\mathrm{b}}=2.5 \mathrm{R} \ln \left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)-\mathrm{R} \ln \left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)$	Integrating Eq 33	34
$\begin{aligned} & \Delta \mathbf{S}_{\mathrm{b}}=2.5 \mathrm{R} \ln [0.5 \bullet 39.38 /(1 \cdot 24.61)] \\ & -\mathrm{R} \ln (0.5 / 1)=\left(8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \bullet \\ & (2.5 \ln 0.80-\ln 0.50) \\ & =1.125 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \quad \text { Answer } \end{aligned}$	Substitution of known values into Eq 34 and evaluating	

9.

$q_{\text {total }}=0$ (adiabatic) ; this is also q_{p} because pressure is constant in this problem. $q=\int C d T=$ mass \bullet heat capacity $\bullet\left(t_{\text {final }}-t_{\text {initial }}\right) \quad$ when heat capacity is a constant except for a phase change where need to use instead: $q=$ mass $\bullet\left(\Delta \mathbf{H}_{\text {phase change }} \mathrm{cal}^{-1}\right.$) $\Delta \mathbf{H}=q_{p}$, which is 0 because adiabatic.

insulated (adiabatic)

Assume that final state is at $0^{\circ} \mathrm{C}$ with both ice and water present.

1	20 g ice, $-5^{\circ} \mathrm{C} \rightarrow 20 \mathrm{~g}$ ice, $0^{\circ} \mathrm{C}$	$\mathrm{q}_{1}=20 \mathrm{~g}\left(0.5 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}\right)(0--5)$
2	30 g water, $25^{\circ} \mathrm{C} \rightarrow 30 \mathrm{~g}$ water, $0^{\circ} \mathrm{C}$	$\left.\mathrm{q}_{2}=30 \mathrm{~g} \mathrm{(1.0cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}\right)(0-25)$
3	xg ice, $0^{\circ} \mathrm{C} \rightarrow \mathrm{x} \mathrm{g}$ water, $0^{\circ} \mathrm{C}$	$\mathrm{q}_{3}=\mathrm{xg}\left(80 \mathrm{cal} \mathrm{g}^{-1}\right)$

$$
\mathrm{q}_{\text {total }}=0=\mathrm{q}_{1}+\mathrm{q}_{2}+\mathrm{q}_{3}
$$

$0=20 \mathrm{~g}\left(0.5 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}\right)(0--5)+30 \mathrm{~g}\left(1.0 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}\right)(0-25)+\mathrm{xg}\left(80 \mathrm{cal} \mathrm{g}^{-1}\right)$
$0=50-750+80 x$
Solving for x ,
$\mathrm{x}=700 / 80=8.75 \mathrm{~g}$
Final state is 11.25 g ice and 38.75 g water, all at $0^{\circ} \mathrm{C}$
If we had found a negative value for x then the final state would be some of the water will have turned to ice instead. This could happen if we had either less water or lower temperature of water to begin with.

To calculate $\Delta \mathbf{S}$, we use for each step, either $\Delta \mathbf{S}=\mathrm{q}_{\text {Rev,trans }} / T_{\text {trans }}$, or else use $\Delta \mathbf{S}=\mathrm{C}_{\mathrm{p}} \ln \left(\mathrm{T}_{\text {final }} / T_{\text {initial }}\right)$ from $\mathbf{S}=\mathbf{S}(\mathrm{T}, \mathrm{p})$ and $\mathrm{dp}=0$ and C_{p} is given independent of T in these cases.
$\Delta \mathbf{S}=\Delta \mathbf{S}_{1}+\Delta \mathbf{S}_{2}+\Delta \mathbf{S}_{3}$
$=20(0.5) \ln (273 / 268)+30(1) \ln (273 / 298)+8.75(80) / 273$
$=0.1848-2.6287+2.5641=+0.1202$ cal K $^{-1}$. We expected $\Delta \mathbf{S}>0$ for a spontaneous
process such as this one.
10. Just like problem 9, but four different amounts of water, ending in 4 different final states.
For all cases:
$\mathrm{q}_{\text {total }}=0$ (adiabatic) ; this is also q_{p} because pressure is constant in this problem. $\mathrm{q}=\int \mathrm{C} d \mathrm{~T}=$ mass• heat capacity• $\left(\mathrm{t}_{\text {final }}-\mathrm{t}_{\text {initial }}\right)$ when heat capacity is a constant $\Delta H=q_{p}=0$
To calculate $\Delta \mathbf{S}$, we use for each step, either $\Delta \mathbf{S}=\mathrm{q}_{\text {REv, trans }} / T_{\text {trans }}$, or else use $\Delta \mathbf{S}=\mathrm{C}_{\mathrm{p}} \ln \left(\mathrm{T}_{\text {final }} / \mathrm{T}_{\text {initial }}\right)$ from $\mathbf{S}=\mathbf{S}(\mathrm{T}, \mathrm{p})$ and $\mathrm{dp}=0$ and because C_{p} is given independent of T in this problem.
(a)
insulated (adiabatic)

1	20 g ice, $-5^{\circ} \mathrm{C} \rightarrow 20 \mathrm{~g}$ ice, $-2^{\circ} \mathrm{C}$	$\mathrm{q}_{1}=20 \mathrm{~g}\left(0.5 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}\right)(-2-5)$
2	xg water, $25^{\circ} \mathrm{C} \rightarrow \mathrm{xg}$ water, $0^{\circ} \mathrm{C}$	$\mathrm{q}_{2}=\mathrm{xg}\left(1.0 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}\right)(0-25)$
3	xg water, $0^{\circ} \mathrm{C} \rightarrow \mathrm{xg}$ ice, $0^{\circ} \mathrm{C}$	$\mathrm{q}_{3}=\mathrm{xg}\left(-80 \mathrm{cal} \mathrm{g}^{-1}\right)$
4	xg ice, $0^{\circ} \mathrm{C} \rightarrow \mathrm{xg}$ ice, $-2^{\circ} \mathrm{C}$	$\mathrm{q}_{4}=\mathrm{xg}\left(0.5 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}\right)(-2-0)$

$$
\mathrm{q}_{\text {total }}=0=\mathrm{q}_{1}+\mathrm{q}_{2}+\mathrm{q}_{3}+\mathrm{q}_{4}
$$

$0=20 \mathrm{~g}\left(0.5 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}\right)(-2--5)+\mathrm{xg}\left(1.0 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}\right)(0-25)+\mathrm{xg}\left(80 \mathrm{cal} \mathrm{g}^{-1}\right)$ $+x \mathrm{~g}\left(0.5 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}\right)(-2-0)$
$0=30-25 x-80 x-x$
Solving for x ,
$\mathrm{x}=30 / 106=0.28 \mathrm{~g}$ of water to start with Answer
$\Delta \mathbf{S}=\Delta \mathbf{S}_{1}+\Delta \mathbf{S}_{2}+\Delta \mathbf{S}_{3}+\Delta \mathbf{S}_{4}$
$=20(0.5) \ln (271 / 268)+0.28(1) \ln (273 / 298)+0.28(-80) / 273+0.28(0.5) \ln (271 / 273)$
$=0.1113-0.0245-0.0820-0.0010=0.0038 \mathrm{cal} \mathrm{deg}^{-1}$ Answer
(b)
insulated (adiabatic)

1	20 g ice, $-5^{\circ} \mathrm{C} \rightarrow 20 \mathrm{~g}$ ice, $0^{\circ} \mathrm{C}$	$\mathrm{q}_{1}=20 \mathrm{~g}\left(0.5 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}\right)(0--5)$
2	xg water, $25^{\circ} \mathrm{C} \rightarrow \mathrm{xg}$ water, $0^{\circ} \mathrm{C}$	$\left.\mathrm{q}_{2}=\mathrm{xg} \mathrm{(1.0cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}\right)(0-25)$
3	0.5 xg water, $0^{\circ} \mathrm{C} \rightarrow 0.5 \mathrm{xg}$ ice, $0^{\circ} \mathrm{C}$	$\mathrm{q}_{3}=0.5 \times \mathrm{g}\left(-80 \mathrm{cal} \mathrm{g}^{-1}\right)$

$\mathrm{q}_{\text {total }}=0=\mathrm{q}_{1}+\mathrm{q}_{2}+\mathrm{q}_{3}$
$0=20 \mathrm{~g}\left(0.5 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}\right)(0--5)+\mathrm{xg}\left(1.0 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}\right)(0-25)+0.5 \mathrm{xg}\left(-80 \mathrm{cal} \mathrm{g}^{-1}\right)$
$0=50-25 \mathrm{x}-40 \mathrm{x}$
Solving for x ,
$\mathrm{x}=50 / 65=0.77 \mathrm{~g}$ of water to start with Answer
$\Delta \mathbf{S}=\Delta \mathbf{S}_{1}+\Delta \mathbf{S}_{2}+\Delta \mathbf{S}_{3}$
$=20(0.5) \ln (273 / 268)+0.77(1) \ln (273 / 298)+0.385(-80) / 273$
$=0.1848-0.0675-0.1128=0.0045$ cal deg $^{-1}$ Answer
(c)
insulated (adiabatic)

1	20 g ice, $-5^{\circ} \mathrm{C} \rightarrow 20 \mathrm{~g}$ ice, $0^{\circ} \mathrm{C}$	$\mathrm{q}_{1}=20 \mathrm{~g}\left(0.5 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}\right)(0--5)$
2	xg water, $25^{\circ} \mathrm{C} \rightarrow \mathrm{xg}$ water, $0^{\circ} \mathrm{C}$	$\left.\mathrm{q}_{2}=\mathrm{xg} \mathrm{(1.0cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}\right)(0-25)$
3	10 g ice, $0^{\circ} \mathrm{C} \rightarrow 10 \mathrm{~g}$ water, $0^{\circ} \mathrm{C}$	$\mathrm{q}_{3}=10 \mathrm{~g}\left(80 \mathrm{cal} \mathrm{g}^{-1}\right)$

$q_{\text {total }}=0=q_{1}+q_{2}+q_{3}$
$0=20 \mathrm{~g}\left(0.5 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}\right)(0--5)+\mathrm{xg}\left(1.0 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}\right)(0-25)+10 \mathrm{~g}\left(80 \mathrm{cal} \mathrm{g}^{-1}\right)$
$0=50-25 \mathrm{x}+800$
Solving for x ,
$x=850 / 25=34 \mathrm{~g}$ of water to start with

Answer

$\Delta \mathbf{S}=\Delta \mathbf{S}_{1}+\Delta \mathbf{S}_{2}+\Delta \mathbf{S}_{3}$
$=20(0.5) \ln (273 / 268)+34(1) \ln (273 / 298)+10(80) / 273$
$=0.1845-2.9791+2.9304=0.136$ cal deg $^{-1}$ Answer
(d)
insulated (adiabatic)

1	20 g ice, $-5^{\circ} \mathrm{C} \rightarrow 20 \mathrm{~g}$ ice, $0^{\circ} \mathrm{C}$	$\mathrm{q}_{1}=20 \mathrm{~g}\left(0.5 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}\right)(0-5)$
2	x g water, $25^{\circ} \mathrm{C} \rightarrow \mathrm{x} \mathrm{g}$ water, $0^{\circ} \mathrm{C}$	$\mathrm{q}_{2}=\mathrm{xg}\left(1.0 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}\right)(0-25)$
3	20 g ice, $0^{\circ} \mathrm{C} \rightarrow 20 \mathrm{~g}$ water, $0^{\circ} \mathrm{C}$	$\left.\mathrm{q}_{3}=20 \mathrm{~g} \mathrm{(80cal} \mathrm{~g}{ }^{-1}\right)$
4	$(20+\mathrm{x}) \mathrm{g}$ water, $0^{\circ} \mathrm{C} \rightarrow(20+\mathrm{x}) \mathrm{g}$ water, $10^{\circ} \mathrm{C}$	$\left.\mathrm{q}_{4}=(20+\mathrm{x}) \mathrm{g} \mathrm{(1.0} \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}\right)(10-0)$

$q_{\text {total }}=0=q_{1}+q_{2}+q_{3}+q_{4}$
$0=20 \mathrm{~g}\left(0.5 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}\right)(0-5)+\mathrm{xg}\left(1.0 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}\right)(0-25)+20 \mathrm{~g}\left(80 \mathrm{cal} \mathrm{g}^{-1}\right)$
$+(20+x) g\left(1.0\right.$ cal deg $\left.^{-1} \mathrm{~g}^{-1}\right)(10-0)$
$0=50-25 x+1600+(20+x) 10$
Solving for x ,
$x=1850 / 15=123 . g$ of water to start with Answer
$\Delta \mathbf{S}=\Delta \mathbf{S}_{1}+\Delta \mathbf{S}_{2}+\Delta \mathbf{S}_{3}+\Delta \mathbf{S}_{4}$
$=20(0.5) \ln (273 / 268)+123(1) \ln (273 / 298)+20(80) / 273+143(1) \ln (283 / 273)$
$=0.1845-10.7775+5.8608+5.1444=0.412$ cal deg $^{-1}$ Answer

