Solutions to Problem Set 5

1. ideal gas, 1 mol 1 L 25 °C \rightarrow 100 L 25 °C

Equation	Basis for the equation	Eq.
		#
$d\mathbf{U} = (\partial \mathbf{U} / \partial \mathbf{T})_{V} d\mathbf{T} + (\partial \mathbf{U} / \partial V)_{T} dV$	$\mathbf{U} = \mathbf{U}(T,V)$	1
$d\mathbf{H} = (\partial \mathbf{H} / \partial \mathbf{T})_{p} d\mathbf{T} + (\partial \mathbf{H} / \partial p)_{T} dp$	$\mathbf{H} = \mathbf{H}(T,p)$	2
$\Delta U = 0$ Answer	For an ideal gas, $(\partial \mathbf{U}/\partial V)_T = 0$ and $(\partial \mathbf{H}/\partial p)_T = 0$	3
$\Delta H = 0$ Answer	and $dT = 0$ for this problem	4
$d\mathbf{S} = (\partial \mathbf{S} / \partial T)_V dT + (\partial \mathbf{S} / \partial V)_T dV$	$\mathbf{S} = \mathbf{S}(T,V)$	5
$(\partial \mathbf{S}/\partial V)_T = (\partial \mathbf{p}/\partial T)_V$	Derived (see lecture notes Part 4) starting from	6
	$d\boldsymbol{U} = \delta q_{rev} - p dV = T d\boldsymbol{S} - p dV$	
	and use of cross derivatives	
p = RT/V	Ideal gas equation of state for one mol	7
(∂p/∂T) _V = R/V	Differentiating	8
$(\partial \mathbf{S} / \partial \mathbf{V})_{T} = R / V$	Substituting Eq 8 into Eq 6	9
∆ S = ∫ (R/V)dV	Substituting Eq 9 into Eq 5 and using dT = 0 for this	10
	problem	
$\Delta \mathbf{S} = \mathbf{R} \ln(\mathbf{V}_{f}/\mathbf{V}_{i})$	Integrating Eq 10 between the limits	11
= (1 mol)(8.314 J mol ⁻¹ K ⁻¹)•		
In(100/1) = 38.3 J K ⁻¹ Answer		
A = U - ⊺S	Definition	12
$\Delta \mathbf{A} = \Delta \mathbf{U} - \mathbf{T} \Delta \mathbf{S}$	At constant T	13
∆ A = 0 - (298)(38.3 J K ⁻¹)	From $\Delta U = 0$ Eq 3 & ΔS from Eq 11, and given T=	14
∆ A = - 11409. J	298 K	
G = H - ⊤S	Definition	12
$\Delta \mathbf{G} = \Delta \mathbf{H} - T \Delta \mathbf{S}$	At constant T	13
Δ G = 0 - (298)(38.3 J K ⁻¹)	From $\Delta H = 0$ Eq 4 & ΔS from Eq 11, and given T=	14
∆ G = - 11409. J	298 K	

2. (a) ideal gas, 1 mol 22.4 L, 0 °C \rightarrow 224 L, 0 °C isothermal, reversible

Equation		Basis for the equation	Eq.
			#
$\Delta \mathbf{U} = 0$	Answer	Using all the same equations as in problem 1 (Eq 1-	
$\Delta \mathbf{H} = 0$	Answer	14) except for V_f = 224 L and V_i = 22.4 L, T = 273 K	
$\Delta \mathbf{S} = R \ln(V_{f}/V_{i})$		Reversible or otherwise, the same equations hold for	
= (1 mol)(8.314 J mol ⁻¹ K ⁻¹	¹)●	state functions for isothermal process for ideal gas.	
In(224/22.4) = 19.14 J K ⁻¹	¹ Answer		
∆ A = - (273)(19.1 J K ⁻¹)	1		
= - 5226 J	Answer		
Δ G = - (273)(19.1 J K ⁻¹))		
= - 5226 J	Answer		

$\delta W = -p_{op}dV$	Definition of pV work	1
$p_{op} = p_{gas}$	reversible	2
$p_{gas} = (1)RT/V$	ideal gas equation of state, 1 mole	3
$\delta W = - RTdV/V$	From Eq 1, 2 and 3	4
W = -∫RTdV/V = - (1 mol)(8.314 J	Integrating	
mol ⁻¹ K ⁻¹)273∙ In(224/22.4)		
= - 5226 J Answer		
d U = δq + δW	First Law of Thermodynamics	5
$\Delta \mathbf{U} = 0$	Already found	
0 = q + W	From Eq 5	6
q = -W = + 5226 J Answer	This is q for the system	
∆ S _{surr} = -5226 J /273 K = -19.14 J	q for the surroundings is – 5226 J and T = 273	7
K ⁻¹		
ΔS universe = $\Delta S_{qas} + \Delta S_{surr}$ =		
19.14 - 19.14 = $0 J K^{-1}$ as expected		
for a reversible process Answer		

(b) ideal gas, 1 mol 22.4 L, 0 °C \rightarrow 224 L, 0 °C irreversible expansion into

evacuated vessel

Equation	Basis for the equation	Eq.
		#
$\Delta \mathbf{U} = 0$	The same values hold for changes in state functions	1
$\Delta \mathbf{H} = 0$	for identical initial and final states, regardless of the	
∆ S =19.14 J K ⁻¹	process that brought it about.	
∆ A = -5226 J		
Δ G = -5226 J Answer		
$\delta W = -p_{op}dV$	Definition of pV work	2
$p_{op} = 0$	Expanding into a vacuum, the gas encounters zero	3
	opposing pressure	
W = 0 Answer	Since p _{op} = 0	4
d U = δq + δW	First law of thermodynamics	5
q = 0 Answer	From Eq 4 and 5	6
$q_{surroundings} = 0$	Since no heat passed between gas and its	7
	surroundings	
$\Delta S_{surr} = 0$	Can imagine a reversible process by which the	8
	surroundings accepted zero heat from the gas at 0 °C	
ΔS universe = $\Delta S_{gas} + \Delta S_{surr}$	ΔS universe is positive, consistent with a	9
$= 19.14 \text{ J K}^{-1}$	spontaneous expansion of a gas into vacuum	

Equation	Basis for the equation	Ea
		цц. #
W = 0	Given	# 1
q = 0	Given (adiabatic)	2
$d\mathbf{U} = \delta \mathbf{q} + \delta \mathbf{W}$	First law of thermodynamics	3
$\Delta \mathbf{U} = 0$	From Eq 1, 2 and 3	4
$d\mathbf{U} = (\partial \mathbf{U} / \partial \mathbf{T})_{V} d\mathbf{T} + (\partial \mathbf{U} / \partial V)_{T} dV$	$\mathbf{U} = \mathbf{U}(T,V)$	5
$\Delta \mathbf{U} = \int C_V dT$	For an ideal gas, $(\partial \mathbf{U}/\partial V)_T = 0$	6
dT = 0 Answer	Since $\Delta U = 0$ and C_V cannot be zero	7
	This is a consequence of the condition that no work is	
	done by the gas.	
$d\mathbf{S} = (\partial \mathbf{S} / \partial T)_V dT + (\partial \mathbf{S} / \partial V)_T dV$	Using the same arguments as in the previous	8
$(\partial \mathbf{S}/\partial V)_T = (\partial p/\partial T)_V$	problem for 1 mole of an ideal gas undergoing a	
(∂p/∂T) _V = R/V	volume change and also dT = 0	
$(\partial \mathbf{S}/\partial V)_T = R/V$		
∆ S = ∫ (R/V)dV		
$\Delta \mathbf{S} = R \ln (V_2/V_1)$	This is positive since $V_2 > V_1$ in an expansion	
$q_{surroundings} = 0$	Since no heat passed between gas and its	7
	surroundings	
$\Delta \mathbf{S}_{surr} = 0$	Can imagine a reversible process by which the	8
	surroundings accepted zero heat from the gas at T_1	
ΔS universe = $\Delta S_{gas} + \Delta S_{surr}$	ΔS universe is positive, consistent with an	9
$= R \ln (V_2/V_1)$	irreversible process for the gas	
$\Delta \mathbf{S}_{gas} = R \ln(V_2/V_1) \text{ since dT=0},$	If on the other hand, reversible isothermal process for	10
ideal gas	1 mol ideal gas from V_1 to V_2 , then conditions are the	
$\Delta \mathbf{U} = 0$, q = -W	same as in Problem 2 and $q = -W$ where W can be	
$W = - \int RT dV/V = - RT \ln(V_2/V_1)$	calculated from $p_{op} = p_{gas}$ leading to $q_{surroundings}/1$	
$q_{gas} = RTIn(V_2/V_1)$	opposite sign to ΔS_{gas}	
$q_{surroundings} = - RT \ln(V_2/V_1)$		
$\Delta \mathbf{S}_{surr} = -R \ln(V_2/V_1)$		
$\Delta \mathbf{S}$ universe = $\Delta \mathbf{S}_{gas} + \Delta \mathbf{S}_{surr} = 0$		
as expected for a reversible		
process		

3. ideal gas, 1 mol V1, T1 \rightarrow V2, T2 irreversible adiabatic expansion no work done

4. ideal gas 1 mol in contact with heat reservoir at 25°C 100 atm \rightarrow 1 atm

Equation	Basis for the equation	Eq.
		#
$d\mathbf{S} = (\partial \mathbf{S} / \partial T)_{p} dT + (\partial \mathbf{S} / \partial p)_{T} dp$	S = S (T,p)	1
$(\partial \mathbf{S}/\partial \mathbf{p})_T = -(\partial V/\partial T)_p$	Derived (see lecture notes Part 4) starting from	2
	$d\boldsymbol{U} = \delta q_{rev} - p dV = T d\boldsymbol{S} - p dV$	
	and use of cross derivatives	

V = RT/p	Ideal gas equation of state for one mol	3
$(\partial V/\partial T)_{p} = R/p$	Differentiating	4
$(\partial \mathbf{S}/\partial \mathbf{p})_{\mathrm{T}} = - \mathrm{R}/\mathrm{p}$	Substituting Eq 4 into Eq 2	
∆ S = - ∫ (R/p)dp	Substituting Eq 5 into Eq 1 and using dT = 0 for this problem	6
$\Delta S_{gas} = - (1 \text{ mol})(8.314 \text{ J mol}^{-1}\text{K}^{-1})$	In all cases, for the same initial and final conditions,	7
ln(1/100) =+ 38.3 J mol ⁻¹ K ⁻¹	regardless of whether work is done or not during the	
	process, because S is a state function	
$\Delta \mathbf{U} = 0, \ \Delta \mathbf{U} = \mathbf{q} + \mathbf{W}$	Ideal gas and first law of thermodynamics	8
q _{system} = - W _{system}	In all cases, for the same initial and final conditions,	
	regardless of whether work is done or not during the	
	process, because U is a state function and the first	
	law of thermodynamics always holds.	
q _{surr} = - q _{system} = W _{system}	Any heat transferred from the system goes into the	
	surroundings. q _{surr} is negative (the surroundings	
	provide heat to the system) when the gas does some	
	work	

	W _{system}	q _{surr}	∆ S _{surr} =q _{surr} /T	ΔS_{gas}	$\Delta \mathbf{S}_{universe}$
				-	$=\Delta S_{surr} + \Delta S_{gas}$
(a)	- 2730 cal =	- 11422	-11422/298 = - 38.3	+38.3 J K ⁻¹	0
	- 11422 J	J	J K ⁻¹		
(b)	- 1000 cal =	- 4184 J	-4184/298 = - 14.0	+38.3 J K ⁻¹	+24.3 J K ⁻¹
	-4184 J		J K ⁻¹		
(C)	0 cal	0 J	0	+38.3 J K ⁻¹	+38.3 J K ⁻¹

5. Third law entropy of CH_3NO_2 (gas, 298.1 K, 1 atm) can be obtained by adding up the entropies for all the transformations needed for

 CH_3NO_2 (perfect crystal, 0 K, 1 atm) $\rightarrow CH_3NO_2$ (gas, 298.1 K, 1 atm)

We will use $\begin{aligned} d\mathbf{S} &= (\partial \mathbf{S}/\partial T)_p dT + (\partial \mathbf{S}/\partial p)_T dp = (C_p/T) dT - (\partial V/\partial T)_p dp \\ \underline{(\partial \mathbf{S}/\partial p)_T} &= -(\partial V/\partial T)_p \\ d\mathbf{S} &= (C_p/T) dT - (\partial V/\partial T)_p dp \\ \text{Since } p &= 1 \text{ atm, } dp = 0, \ d\mathbf{S} = (C_p/T) dT; \ \Delta \mathbf{S} = \int (C_p/T) dT \\ \text{For a phase transformation where } dT = 0, \ \text{we will use } \Delta \mathbf{S} = q_{\text{REV},p} / T_{\text{trans}} = \Delta \mathbf{H}_{\text{trans}} / T_{\text{trans}} \end{aligned}$

Given the table of C_p (cal mol-1 K-1) as function of T, calculate C_p/T values and plot vs T to find the integral of (C_p/T) dT between 15 K and 298.1 K

CH ₃ NO ₂ (perfect crystal, 0 K, 1	S = 0 at absolute 0 K for a perfect crystal		
atm)	(Third law of thermodynamics)		
(crystal, 15 K, 1 atm)	for dp =0 $\Delta S_1 = \int_0^{15} (C_p/T) dT$		
	For solids, C_p and C_v are nearly the same	ΔS_1	
	$C_p - C_V = -T \left(\frac{\partial V}{\partial T}\right)_p^2 \left(\frac{\partial p}{\partial V}\right)_T$		
	because the two factors are small for solids,		
	especially for low T.		
	For perfect solids, C_V behaves asymptotically		
	$\lim_{(T \to 0 K)} C_V = aT^3$		
	$C_v = 464.4(T/\Theta_D)^3$ cal mol ⁻¹ K ⁻¹ = aT^3		
	where Θ_D = 215 K for Cu, for example,		
	therefore $a = 4.67 \times 10^{-5}$		
	Debye extrapolation from 0 K to 15K Debye:		
	$\Delta S_1 = (1/3)a(15)^3 = 0.05 \text{ cal mol}^{-1} \text{ K}^{-1}$		
	This seems rather small.		
(crystal, 244.7 K, 1 atm)	Integration from 15K to 244.7 K, dp =0 (Δ S ₂)		
	Integration over the whole range of temperatures 15K	ΔS_2	
	to 298.1 K gives 30.52 cal mol ⁻¹ K ⁻¹		
	which includes $(\Delta S_2 + \Delta S_4)$		
(liquid, 244.7 K, 1 atm)	Phase transition at 244.7 K		
	$\Delta \mathbf{H} = \mathbf{q}_{p \text{ REV}} = 2319 \text{ cal mol}^{-1}$	ΔS_3	
	$\Delta S_3 = 2319 \text{ cal mol}^{-1}/244.7 \text{ K} = 9.48 \text{ cal mol}^{-1} \text{ K}^{-1}$		
(liquid, 298.1, 1 atm)	Integration from 244.7 K to 298.1 K, dp = 0 (Δ S ₄)		
	This is already included in $(\Delta S_2 + \Delta S_4)$ integration.	ΔS_4	
(liquid, 298.1, 3.666 cm Hg)	Integration from 76.0 cm Hg to 3.666 cm Hg at 298.1		
	K for liquid, $dT = 0$	ΔS_5	
	For the liquid, assume small temperature coefficient		
	of volume, $(\partial V/\partial T)_p \sim 0$, leads to $(\partial S/\partial p)_T = - (\partial V/\partial T)_p$		

	~ 0			
	$\Delta \mathbf{S}_5 = 0$			
(vapor, 298.1, 3.666 cm Hg)	Phase transition at 298.1 K, 3.666 cm Hg			
	Δ S ₆ = 9147 cal mol ⁻¹ /298.1 K = 30.68 cal mol ⁻¹ K ⁻¹	ΔS_6		
(vapor, 298.1, 1 atm)	Integration from 3.666 cm Hg to 76.0 cm Hg at 298.1			
	K for gas, dT = 0	ΔS_7		
	For the vapor, if ideal: $V = RT/p$			
	$(\partial V / \partial T)_p = R/p$			
	(∂ S /∂p) _T = - R/p			
	$\Delta \mathbf{S}_7 = - R \ln(76.0/3.666) = - 6.03 \text{ cal mol}^{-1} \text{K}^{-1}$			
$\mathbf{S}_{\text{absolute}} = 65.70 \text{ cal mol}^{-1} \text{ K}^{-1}$	S _{absolute} =			
Answer	$\mathbf{S}(0 \text{ K}) + \Delta \mathbf{S}_1 + \Delta \mathbf{S}_2 + \Delta \mathbf{S}_3 + \Delta \mathbf{S}_4 + \Delta \mathbf{S}_5 + \Delta \mathbf{S}_6 + \Delta \mathbf{S}_7$			

6. N₂ gas at 1000 atm, 1000 °C fugacity = ?

Equation	Basis for the equation	Eq.
		#
$\ln f = \int_{0}^{p} \frac{(Z-1)}{p} dp$	Relation of fugacity to pressure (from lecture notes Part 5)	1
Z = pV/RT	For a non-ideal gas, Z is not 1	2
$p(V-b) = RT \ b = 39.1 \times 10^{-3} \ L \ mol^{-1}$	For a non-ideal gas, Z is not 1 Equation of state to be used for this gas	
Z = V/(V-b)	From Eq. 2 and 3	
Z-1 = b/(V-b)		5
(Z-1)/p = b/RT	From Eq 3 and 5	
$\int (Z-1)dp/p = (b/RT) \int_0^p dp$	From Eq 6	7
$\ln (f/p) = (b/RT)p$	From Eq 1 and 7	
$f = p \cdot exp(bp/RT)$	Eq 8 and definition of In	9
f=1000 atm•exp[0.0391L mol ⁻¹	Substituting values into Eq 9 and evaluating	
•1000 atm/(0.08205 L atm mol ⁻¹ K ⁻¹		
•1273 K)] = 1450 atm Answer		

7. From given table of Z vs p, calculate the following:

р	1.0000	4.00000	7.00000	10.0000	40.0	70.0	100.0
(Z-1)/p	-0.00290	-0.00301	-0.00303	-0.00304	-0.00316	-0.00319	-0.00313

Equation	Basis for the equation	Eq.
		#
$\ln f = \int_{0}^{p} \frac{(Z-1)}{p} dp$	Relation of fugacity to pressure (from lecture notes Part 5)	1
$(Z-1)/p = -0.0031 - 2 \times 10^{-6} (p/1atm)$	Fit the values in above table to a function of p.	2
	Nearly independent of p.	

In (f/p) = Integral \approx - 0.31	Integral = area under this curve for $p = 0$ to $p=100$ atm has a value very close to $100 \cdot (-0.0031)$	3
$f = p \exp(-0.31) = 0.733p$ f = 73.3 atm at 100 atm, 200 KAnswer	From Eq 3 rearrange and evaluate	
8.		

Equation	Basis for the equation	Eq.
		#
$d\mathbf{G} = V dp - \mathbf{S} dT$	One of the four fundamental equations of	1
•	thermodynamics	
$d\boldsymbol{G} = (\partial \boldsymbol{G} / \partial T)_p \ dT + (\partial \boldsymbol{G} / \partial p)_T \ dp$	G = G (T,p)	2
$(\partial \boldsymbol{G} / \partial \boldsymbol{p})_{\mathcal{T}} = \mathbf{V}$	From Eq 1 & 2	3
G = RT ln(p/1atm) + A' + B'p	Given G = G (T,p) functional form	4
+ (1/2)C'p ² + (1/3)D'p ³		
$V = RT/p + B' + C'p + D'p^2$	Taking $(\partial \mathbf{G} / \partial p)_T$ and equating it to V	5
This is the equation of state Answer		

9. At 100 °C and 1 atm, water and steam are at equilibrium (this point is on the liquid-vapor equilibrium curve for H_2O):

water (100 °C and 1 atm) \Leftrightarrow steam (100 °C and 1 atm)

Equation	Basis for the equation	Eq.
		#
H = U + pV	Definition	1
d U = δq + δW	First law of thermodynamics	2
$\Delta \mathbf{U} = \mathbf{q}_{p} - p\Delta \mathbf{V}$	At constant opposing pressure p	3
$\Delta \mathbf{H} = \Delta \mathbf{U} + \mathbf{p} \Delta \mathbf{V}$		
$\Delta \mathbf{H} = \mathbf{q}_{\mathbf{p}}$	At constant pressure, from 3	4
$\Delta S = q_{REV}/T$	Second law of thermodynamics	5
$\Delta \mathbf{S} = \Delta \mathbf{H} / \mathbf{T}$	q_{REV} is also q_p at constant pressure (1 atm) in this	6
	problem, for the phase change at 100 °C and 1 atm	
$\Delta S_{vaporizn} = (1.76 - 0.31) \text{ cal } \text{K}^{-1} \text{ g}^{-1}$	Given ($S_T - S^{\ominus}_{298}$) = 0.31 cal K ⁻¹ g ⁻¹ for water at	7
	100 °C and 1 atm	
	Given ($S_T - S^{\ominus}_{298}$) = 1.76 cal K ⁻¹ g ⁻¹ for steam at	
	100 °C and 1 atm	
= Δ H _{vaporizn} / 373.1 K	From Eq 6	8
(a) $\Delta \mathbf{H}_{vaporizn} = 373.1(1.76 - 0.31)$	Evaluating	9
= 541 cal g ⁻¹ Answer		

(b) ∆H _{vaporizn} =	Using Eq 9 and given	10
$\{(\mathbf{H}_{T} - \mathbf{H}^{\ominus}_{298})_{steam} - (\mathbf{H}_{T} - \mathbf{H}^{\ominus}_{298})_{water}\}$		
at 100 °C and 1 atm		
541 cal g ⁻¹		
= 640 cal g ⁻¹ - (H _T – H [⊖] ₂₉₈) _{water}		
(H _T – H [⊖] ₂₉₈) _{water} = 99 cal g ⁻¹		
(c) G = H -⊤ S	Definition	11
$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$	At constant T	12
$(\mathbf{G}_{\mathrm{T}} - \mathbf{G}^{\ominus}_{298})_{\mathrm{water}} = (\mathbf{H}_{\mathrm{T}} - \mathbf{H}^{\ominus}_{298})_{\mathrm{water}}$	Substituting values	13
- 373.1∙ (S _T – S [⊖] ₂₉₈) _{water}		
= 99 – 373.1∙0.31 = -16.7 cal g⁻¹		
Answer		
$(\mathbf{G}_{T} - \mathbf{G}^{\ominus}_{298})_{steam} = (\mathbf{H}_{T} - \mathbf{H}^{\ominus}_{298})_{steam}$	The two are equal as expected	
- 373.1●(S _T – S [⊖] ₂₉₈) _{steam}		
= 640 – 373.1∙1.76 = -16.7 cal g⁻¹		
Answer		

10.
$$C(graphite) \rightarrow C(diamond)$$

(298 K, 1 atm)

Equation	Basis for the equation	Eq.
		#
$C_{(diamond)} + O_2 \rightarrow CO_2 (298 \text{ K}, 1 \text{ atm})$	H is a state function	1
$\Delta \dot{H} = 94.484 \text{ kcal mol}^{-1}$		
$C_{(graphite)} + O_2 \rightarrow CO_2$ (298 K, 1 atm)		
$\Delta H = 94.030 \text{ kcal mol}^{-1}$		
$C_{(graphite)} \rightarrow C_{(diamond)}$ (298 K, 1 atm)		
∆ H = 94.484-94.030 = 0.454		
kcal mol ⁻¹		
$\Delta S = S_{diamond} - S_{graphite}$	Use given data at 298 K, 1 atm	2
= 0.5829 – 1.3609		
= - 0.7780 cal K ⁻¹ mol ⁻¹		
G = H - ⊺S	Definition	3
$\Delta \mathbf{G} = \Delta \mathbf{H} - T \Delta \mathbf{S}$	At constant T	4
∆ G = 454 – 298•(- 0.7780)		5
= 685.8 cal mol ⁻¹ (298 K, 1 atm)		
Answer		
$\mathbf{G}_{298}(\text{diamond}) - \mathbf{G}_{298}(\text{graphite}) =$	[⊖] means 1 atm	6
685.8 cal mol ⁻¹		
$d\mathbf{G} = V dp - \mathbf{S} dT$	One of the four fundamental equations of	7
	thermodynamics	
$G(T) = G^{\ominus} + (p) V dp$	For any pure material at a given temperature	8
	(dT=0)	
J 1		

$\mathbf{G}_{298}(\text{diamond}) = \mathbf{G}_{298}(\text{diamond}) + \int_{1}^{p} V_{\text{diamond}} dp$	Applying Eq 7 to each pure material	9
G ₂₉₈ (graphite) = G ⊖ ₂₉₈ (graphite) + ∫ ₁ ^p V _{graphite} dp		
$C_{(graphite)} \iff C_{(diamond)}$ (298 K, p atm) $G_{298}(diamond,p) - G_{298}(graphite,p) = 0$	At equilibrium at this value of p means G of graphite and G of diamond are equal at this p and 298 K.	10
$0 = 685.8 \text{ cal mol}^{-1} + \int_{1}^{p} V_{\text{diamond}} dp$ $- \int_{1}^{p} V_{\text{graphite}} dp$	Using Eq 6, 9 and 10	11
$0 = 685.8 \text{ cal mol}^{-1} + (1.987/0.08206) \bullet $ (12 g/3.513×10 ³ g L ⁻¹)(p-1) - (12 g/2.260×10 ³ g L ⁻¹)(p-1)	Using given densities, independent of pressure and 1 mol C = 12 g and 10^3 cm ³ = 1 L and use conversion 1.98722 cal = 0.0820578 L atm	12
0 = = 685.8 - 0.04586(p-1) p-1 = 14950 atm Answer for $C_{(graphite)} \iff C_{(diamond)}$ (298 K, p atm)	Solving for p	
$\begin{array}{ll} C_{(graphite)} & \Leftrightarrow C_{(diamond)}(1273 \text{ K}, \text{ p atm}) \\ \textbf{G}_{1273}(diamond, p) - \textbf{G}_{1273}(graphite, p) \\ = 0 \\ 0 = \textbf{G}^{\ominus}_{1273}(diamond) - \\ \textbf{G}^{\ominus}_{1273}(graphite) + \int_{1}^{p} V_{diamond} dp \\ & - \int_{1}^{p} V_{graphite} dp \\ \end{array}$ Solve for p	To do the same calculation for 1000°C. We need the value $\mathbf{G}^{\ominus}_{1273}(\text{diamond}) - \mathbf{G}^{\ominus}_{1273}(\text{graphite})$, for which we need molar entropies \mathbf{S} at 1000°C, 1 atm, and also $\Delta \mathbf{H}$ at 1000°C, 1 atm. \mathbf{S}_{1273} for graphite = 1.3609 cal K ⁻¹ mol ⁻¹ + $\int_{298}^{1273} (C_{p,graphite}/T) dT$ \mathbf{S}_{1273} for diamond = 0.5829 cal K ⁻¹ mol ⁻¹ + $\int_{298}^{1273} (C_{p,diamond}/T) dT$ $\Delta \mathbf{H}_{1273}$ (graphite) = $\Delta \mathbf{H}_{298} + \int_{298}^{1273} C_{p,graphite} dT$ $\Delta \mathbf{H}_{1273}$ (diamond) = $\Delta \mathbf{H}_{298} + \int_{298}^{1273} C_{p,diamond} dT$ To estimate these quantities, we need to find C_p data for the two forms over the range 298 to 1273K.	