Solutions to Problem Set 5

1. ideal gas, $1 \mathrm{~mol} 1 \mathrm{~L} 25^{\circ} \mathrm{C} \rightarrow 100 \mathrm{~L} 25^{\circ} \mathrm{C}$

Equation	Basis for the equation	Eq. \\|
$\mathrm{d} \mathbf{U}=(\partial \mathbf{U} / \partial \mathrm{T})_{\mathrm{V}} \mathrm{dT}+(\partial \mathbf{U} / \partial \mathrm{V})_{T} \mathrm{dV}$	$\mathbf{U}=\mathbf{U}(\mathrm{T}, \mathrm{V})$	1
$\mathrm{d} \mathbf{H}=(\partial \mathbf{H} / \partial \mathrm{T})_{\mathrm{p}} \mathrm{dT}+(\partial \mathbf{H} / \partial \mathrm{p})_{T} \mathrm{dp}$	$\mathbf{H}=\mathbf{H}(\mathrm{T}, \mathrm{p})$	2
$\Delta \mathbf{U}=0$ Answer $\Delta \mathbf{H}=0$ Answer	For an ideal gas, $(\partial \mathbf{U} / \partial \mathrm{V})_{T}=0$ and $(\partial \mathbf{H} / \partial \mathrm{p})_{T}=0$ and $d T=0$ for this problem	$\begin{array}{\|l\|} \hline 3 \\ 4 \end{array}$
$\mathrm{d} \mathbf{S}=(\partial \mathbf{S} / \partial \mathrm{T})_{\mathrm{V}} \mathrm{dT}+(\partial \mathbf{S} / \partial \mathrm{V})_{\mathrm{T}} \mathrm{d} \mathrm{V}$	$\mathbf{S}=\mathbf{S}(\mathrm{T}, \mathrm{V})$	5
$(\partial S / \partial V)_{T}=(\partial p / \partial T)_{V}$	Derived (see lecture notes Part 4) starting from $\mathrm{d} \boldsymbol{U}=\Delta \mathrm{q}_{\mathrm{rev}}-p \mathrm{~d} V=T \mathrm{~d} \boldsymbol{S}-p \mathrm{~d} V$ and use of cross derivatives	6
$\begin{aligned} & p=R T / V \\ & (\partial \mathrm{p} / \partial \mathrm{T})_{\mathrm{V}}=\mathrm{R} / \mathrm{V} \\ & (\partial \mathrm{~S} / \partial \mathrm{V})_{T}=\mathrm{R} / \mathrm{V} \end{aligned}$	Ideal gas equation of state for one mol Differentiating Substituting Eq 8 into Eq 6	$\begin{array}{\|l} \hline 7 \\ 8 \\ 9 \end{array}$
$\Delta \mathbf{S}=\int(R / V) d V$	Substituting Eq 9 into Eq 5 and using dT $=0$ for this problem	10
$\begin{aligned} & \Delta \mathbf{S}=\mathrm{R} \ln \left(\mathrm{~V}_{f} / \mathrm{V}_{\mathrm{i}}\right) \\ & =(1 \mathrm{~mol})\left(8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \bullet \\ & \ln (100 / 1)=38.3 \mathrm{~J} \mathrm{~K}^{-1} \text { Answer } \end{aligned}$	Integrating Eq 10 between the limits	11
$\mathbf{A}=\mathbf{U}-\mathrm{TS}$	Definition	12
$\Delta \mathbf{A}=\Delta \mathbf{U}-\mathrm{T} \Delta \mathbf{S}$	At constant T	13
$\begin{aligned} & \Delta \mathbf{A}=0-(298)\left(38.3 \mathrm{JK}^{-1}\right) \\ & \Delta \mathbf{A}=-11409 . \mathrm{J} \end{aligned}$	From $\Delta \mathbf{U}=0$ Eq $3 \& \Delta \mathbf{S}$ from Eq 11, and given $T=$ 298 K	14
G = H-TS	Definition	12
$\Delta \mathbf{G}=\Delta \mathbf{H}-\mathrm{T} \Delta \mathbf{S}$	At constant T	13
$\begin{aligned} & \Delta \mathbf{G}=0-(298)\left(38.3 \mathrm{JK}^{-1}\right) \\ & \Delta \mathbf{G}=-11409 . \mathrm{J} \end{aligned}$	From $\Delta \mathbf{H}=0$ Eq $4 \& \Delta \mathbf{S}$ from Eq 11, and given $T=$ 298 K	14

2. (a) ideal gas, $1 \mathrm{~mol} 22.4 \mathrm{~L}, 0^{\circ} \mathrm{C} \rightarrow 224 \mathrm{~L}, 0^{\circ} \mathrm{C}$ isothermal, reversible

Equation	Basis for the equation	Eq. $\#$
$\Delta \mathbf{U}=0 \quad$ Answer	Using all the same equations as in problem 1 (Eq 114) except for $\mathrm{V}_{\mathrm{f}}=224 \mathrm{~L}$ and $\mathrm{V}_{\mathrm{i}}=22.4 \mathrm{~L}, \mathrm{~T}=273 \mathrm{~K}$ Reversible or otherwise, the same equations hold for state functions for isothermal process for ideal gas.	
$\Delta \mathbf{H}=0 \quad$ Answer		
$\Delta S=R \ln \left(\mathrm{~V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{i}}\right)$		
$=(1 \mathrm{~mol})\left(8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \bullet$		
$\ln (224 / 22.4)=19.14 \mathrm{~J} \mathrm{~K}^{-1}$ Answer		
$\Delta \mathbf{A}=-(273)\left(19.1 \mathrm{~J} \mathrm{~K}^{-1}\right)$		
=-5226 J Answer		
$\Delta \mathbf{G}=-(273)\left(19.1 \mathrm{~J} \mathrm{~K}^{-1}\right)$		
$=-5226 \mathrm{~J}$ Answer		

$\delta \mathrm{W}=-\mathrm{p}_{\text {op }} \mathrm{dV}$	Definition of pV work	1
$\begin{aligned} & p_{\mathrm{op}}=p_{\text {gas }} \\ & \mathrm{p}_{\mathrm{gas}}=(1) \mathrm{RT} / \mathrm{V} \end{aligned}$	reversible ideal gas equation of state, 1 mole	2 3
$\begin{aligned} & \mathrm{\delta W}=-\mathrm{RTdV} / \mathrm{V} \\ & \mathrm{~W}=-\mathrm{JRTdV} / \mathrm{V}=-(1 \mathrm{~mol})(8.314 \mathrm{~J} \\ & \left.\mathrm{mol}^{-1} \mathrm{~K}^{-1}\right) 273 \cdot \ln (224 / 22.4) \\ & =-5226 \mathrm{~J} \quad \text { Answer } \end{aligned}$	From Eq 1, 2 and 3 Integrating	4
$\mathrm{d} \mathbf{U}=\delta q+\delta W$	First Law of Thermodynamics	5
$\Delta \mathbf{U}=0$	Already found	
$\begin{aligned} & 0=q+W \\ & q=-W=+5226 J \end{aligned}$ Answer	From Eq 5 This is q for the system	6
$\begin{aligned} & \Delta \mathbf{S}_{\text {surr }}=-5226 \mathrm{~J} / 273 \mathrm{~K}=-19.14 \mathrm{~J} \\ & \mathrm{~K}^{-1} \\ & \Delta \mathbf{S} \text { universe }=\Delta \mathbf{S}_{\text {gas }}+\Delta \mathbf{S}_{\text {surr }}= \\ & 19.14-19.14=00 \mathrm{~J} \mathrm{~K}^{-1} \text { as expected } \\ & \text { for a reversible process Answer } \end{aligned}$	q for the surroundings is -5226 J and $\mathrm{T}=273$	7

(b) ideal gas, $1 \mathrm{~mol} 22.4 \mathrm{~L}, 0^{\circ} \mathrm{C} \rightarrow 224 \mathrm{~L}, 0^{\circ} \mathrm{C} \quad$ irreversible expansion into evacuated vessel

Equation	Basis for the equation	Eq. \\|
$\begin{aligned} & \Delta \mathbf{U}=0 \\ & \Delta \mathbf{H}=0 \\ & \Delta \mathbf{S}=19.14 \mathrm{~J} \mathrm{~K}^{-1} \\ & \Delta \mathbf{A}=-5226 \mathrm{~J} \\ & \Delta \mathbf{G}=-5226 \mathrm{~J} \\ & \hline \end{aligned}$ Answer	The same values hold for changes in state functions for identical initial and final states, regardless of the process that brought it about.	1
$\delta \mathrm{W}=-\mathrm{p}_{\mathrm{op}} \mathrm{dV}$	Definition of pV work	2
$\mathrm{p}_{\mathrm{op}}=0$	Expanding into a vacuum, the gas encounters zero opposing pressure	3
$\mathrm{W}=0 \quad$ Answer	Since $\mathrm{p}_{\mathrm{op}}=0$	4
$\mathrm{d} \mathbf{U}=\delta q+\delta W$	First law of thermodynamics	5
$\mathrm{q}=0 \quad$ Answer	From Eq 4 and 5	6
$\mathrm{q}_{\text {surroundings }}=0$	Since no heat passed between gas and its surroundings	7
$\Delta \mathbf{S}_{\text {surr }}=0$	Can imagine a reversible process by which the surroundings accepted zero heat from the gas at $0^{\circ} \mathrm{C}$	8
$\begin{aligned} & \Delta \mathbf{S} \text { universe }=\Delta \mathbf{S}_{\text {gas }}+\Delta \mathbf{S}_{\text {surr }} \\ & =19.14 \mathrm{~J} \mathrm{~K}^{-1} \end{aligned}$	$\Delta \mathbf{S}$ universe is positive, consistent with a spontaneous expansion of a gas into vacuum	9

3. ideal gas, $1 \mathrm{~mol} \mathrm{~V}_{1}, \mathrm{~T}_{1} \rightarrow \mathrm{~V}_{2}, \mathrm{~T}_{2}$ irreversible adiabatic expansion no work done

Equation	Basis for the equation	Eq. \#
$\mathrm{W}=0$	Given	1
$\mathrm{q}=0$	Given (adiabatic)	2
$\mathrm{d} \mathbf{U}=\delta q+\delta W$	First law of thermodynamics	3
$\Delta \mathbf{U}=0$	From Eq 1, 2 and 3	4
$\mathrm{d} \mathbf{U}=(\partial \mathbf{U} / \partial \mathrm{T})_{\mathrm{V}} \mathrm{dT}+(\partial \mathbf{U} / \partial \mathrm{V})_{T} \mathrm{dV}$	$\mathbf{U}=\mathbf{U}(\mathrm{T}, \mathrm{V})$	5
$\Delta \mathbf{U}=\int \mathrm{C}_{V} \mathrm{dT}$	For an ideal gas, $(\partial \mathbf{U} / \partial \mathrm{V})_{T}=0$	6
$\mathrm{dT}=0 \quad$ Answer	Since $\Delta \mathbf{U}=0$ and C_{V} cannot be zero This is a consequence of the condition that no work is done by the gas.	7
$\begin{aligned} & \mathrm{d} \mathbf{S}=(\partial \mathbf{S} / \partial \mathrm{T})_{\mathrm{V}} \mathrm{dT}+(\partial \mathbf{S} / \partial \mathrm{V})_{\mathrm{T}} \mathrm{dV} \\ & (\partial \mathbf{S} / \partial \mathrm{V})_{T}=(\partial \mathrm{P} / \partial T)_{V} \\ & (\partial \mathrm{p} / \partial \mathrm{T})_{\mathrm{V}}=\mathrm{R} / \mathrm{V} \\ & (\partial \mathbf{S} / \partial \mathrm{V})_{\mathrm{T}}=\mathrm{R} / \mathrm{V} \\ & \Delta \mathbf{S}=\int(\mathrm{R} / \mathrm{V}) \mathrm{dV} \\ & \hline \end{aligned}$	Using the same arguments as in the previous problem for 1 mole of an ideal gas undergoing a volume change and also $\mathrm{dT}=0$	8
$\Delta \mathbf{S}=\mathrm{R} \ln \left(\mathrm{V}_{2} / \mathrm{V}_{1}\right)$	This is positive since $V_{2}>V_{1}$ in an expansion	
$\mathrm{q}_{\text {surroundings }}=0$	Since no heat passed between gas and its surroundings	7
$\Delta \mathbf{S}_{\text {surr }}=0$	Can imagine a reversible process by which the surroundings accepted zero heat from the gas at T_{1}	8
$\begin{aligned} & \Delta \mathbf{S} \text { universe }=\Delta \mathbf{S}_{\text {gas }}+\Delta \mathbf{S}_{\text {surr }} \\ & =\mathrm{R} \ln \left(\mathrm{~V}_{2} / \mathrm{V}_{1}\right) \end{aligned}$	$\Delta \mathbf{S}$ universe is positive, consistent with an irreversible process for the gas	9
$\Delta \mathbf{S}_{\text {gas }}=\mathrm{R} \ln \left(\mathrm{V}_{2} / \mathrm{V}_{1}\right)$ since $\mathrm{dT}=0$, ideal gas $\begin{aligned} & \Delta U=0, q=-W \\ & W=-\int R T d V / V=-R T \ln \left(V_{2} / V_{1}\right) \\ & \mathrm{q}_{\text {gas }}=R T \ln \left(\mathrm{~V}_{2} / \mathrm{V}_{1}\right) \\ & \mathrm{q}_{\text {surroundings }}=-\mathrm{RT} \ln \left(\mathrm{~V}_{2} / \mathrm{V}_{1}\right) \\ & \Delta \mathbf{S}_{\text {surr }}=-\mathrm{R} \ln \left(\mathrm{~V}_{2} / \mathrm{V}_{1}\right) \\ & \Delta \mathbf{S} \text { universe }=\Delta \mathbf{S}_{\text {gas }}+\Delta \mathbf{S}_{\text {surr }}=0 \\ & \text { as expected for a reversible } \\ & \text { process } \end{aligned}$	If on the other hand, reversible isothermal process for 1 mol ideal gas from V_{1} to V_{2}, then conditions are the same as in Problem 2 and $q=-W$ where W can be calculated from $p_{o p}=p_{\text {gas }}$ leading to $q_{\text {surroundings }} / T$ opposite sign to $\Delta \mathbf{S}_{\text {gas }}$	10

4. ideal gas 1 mol in contact with heat reservoir at $25^{\circ} \mathrm{C} 100 \mathrm{~atm} \rightarrow 1 \mathrm{~atm}$

Equation	Basis for the equation	Eq. $\#$
$\mathrm{~d} \mathbf{S}=(\partial \mathbf{S} / \partial \mathrm{T})_{\mathrm{p}} \mathrm{dT}+(\partial \mathbf{S} / \partial \mathrm{p})_{T} \mathrm{dp}$	$\mathbf{S}=\mathbf{S}(\mathrm{T}, \mathrm{p})$	1
$(\partial \mathbf{S} / \partial \mathrm{p})_{T}=-(\partial \mathrm{V} / \partial T)_{p}$	Derived $($ see lecture notes Part 4) starting from $\mathrm{d} \boldsymbol{U}=\frac{\partial q_{\text {rev }}-p \mathrm{~d} V=T \mathrm{~d} S}{}-p \mathrm{~d} V$ and use of cross derivatives	2

$\begin{aligned} & \mathrm{V}=\mathrm{RT} / \mathrm{p} \\ & (\partial \mathrm{~V} / \partial \mathrm{T})_{\mathrm{p}}=\mathrm{R} / \mathrm{p} \\ & (\partial \mathrm{~S} / \partial \mathrm{p})_{T}=-\mathrm{R} / \mathrm{p} \end{aligned}$	Ideal gas equation of state for one mol Differentiating Substituting Eq 4 into Eq 2	$\begin{array}{\|l\|} \hline 3 \\ 4 \\ 5 \\ \hline \end{array}$
$\Delta \mathbf{S}=-\int(R / p) d p$	Substituting Eq 5 into Eq 1 and using dT $=0$ for this problem	6
$\begin{aligned} & \Delta \mathbf{S}_{\text {gas }}=-\left(1 \mathrm{~mol}^{\prime}\right)\left(8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \bullet \\ & \ln (1 / 100)=+38.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned}$	In all cases, for the same initial and final conditions, regardless of whether work is done or not during the process, because \mathbf{S} is a state function	7
$\Delta \mathbf{U}=0, \Delta \mathbf{U}=\mathrm{q}+\mathrm{W}$	Ideal gas and first law of thermodynamics	8
$\mathrm{q}_{\text {system }}=-\mathrm{W}_{\text {system }}$	In all cases, for the same initial and final conditions, regardless of whether work is done or not during the process, because \mathbf{U} is a state function and the first law of thermodynamics always holds.	
$q_{\text {surr }}=-q_{\text {system }}=W_{\text {system }}$	Any heat transferred from the system goes into the surroundings. $q_{\text {surr }}$ is negative (the surroundings provide heat to the system) when the gas does some work	

	$\mathrm{W}_{\text {system }}$	$\mathrm{q}_{\text {surr }}$	$\Delta \mathbf{S}_{\text {surr }}=\mathrm{q}_{\text {surr }} / \mathrm{T}$	$\Delta \mathbf{S}_{\text {gas }}$	$\Delta \mathbf{S}_{\text {universe }}$ $=\Delta \mathbf{S}_{\text {surr }}+\Delta \mathbf{S}_{\text {gas }}$
(a)	$-2730 \mathrm{cal}=$ -11422 J	-11422 J	$-11422 / 298=-38.3$ $\mathrm{JK} \mathrm{K}^{-1}$	$+38.3 \mathrm{~J} \mathrm{~K}^{-1}$	0
(b)	$-1000 \mathrm{cal}=$ -4184 J	-4184 J	$-4184 / 298=-14.0$ $\mathrm{JK} \mathrm{K}^{-1}$	$+38.3 \mathrm{~J} \mathrm{~K}^{-1}$	$+24.3 \mathrm{~J} \mathrm{~K}^{-1}$
(c)	0 cal	0 J	0	$+38.3 \mathrm{~J} \mathrm{~K}^{-1}$	$+38.3 \mathrm{~J} \mathrm{~K}^{-1}$

5. Third law entropy of $\mathrm{CH}_{3} \mathrm{NO}_{2}$ (gas, $298.1 \mathrm{~K}, 1 \mathrm{~atm}$) can be obtained by adding up the entropies for all the transformations needed for
$\mathrm{CH}_{3} \mathrm{NO}_{2}$ (perfect crystal, $0 \mathrm{~K}, 1 \mathrm{~atm}$) $\rightarrow \mathrm{CH}_{3} \mathrm{NO}_{2}$ (gas, $298.1 \mathrm{~K}, 1 \mathrm{~atm}$)
We will use
$\mathrm{d} \mathbf{S}=(\partial \mathbf{S} / \partial \mathrm{T})_{\mathrm{p}} \mathrm{dT}+(\partial \mathbf{S} / \partial \mathrm{p})_{\mathrm{T}} \mathrm{dp}=\left(\mathrm{C}_{\mathrm{p}} / \mathrm{T}\right) \mathrm{dT}-(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{p}} \mathrm{dp}$
$(\partial \mathbf{S} / \partial p)_{T}=-(\partial \mathrm{V} / \partial T)_{p}$
$\mathrm{d} \mathbf{S}=\left(\mathrm{C}_{\mathrm{p}} / \mathrm{T}\right) \mathrm{dT}-(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{p}} \mathrm{dp}$
Since $p=1 \mathrm{~atm}, \mathrm{dp}=0, \mathrm{dS}=\left(\mathrm{C}_{\mathrm{p}} / \mathrm{T}\right) \mathrm{dT} ; \Delta \mathbf{S}=\int\left(\mathrm{C}_{\mathrm{p}} / \mathrm{T}\right) \mathrm{dT}$
For a phase transformation where $\mathrm{dT}=0$, we will use $\Delta \mathbf{S}=\mathrm{q}_{\mathrm{REV}, \mathrm{p}} / \mathrm{T}_{\text {trans }}=\Delta \mathbf{H}_{\text {trans }} / T_{\text {trans }}$

Given the table of C_{p} (cal mol-1 $K-1$) as function of T, calculate C_{p} / T values and plot vs T to find the integral of $\left(\mathrm{C}_{\mathrm{p}} / \mathrm{T}\right) \mathrm{dT}$ between 15 K and 298.1 K

$\mathrm{CH}_{3} \mathrm{NO}_{2}$ (perfect crystal, $0 \mathrm{~K}, 1$ atm)	$\mathbf{S}=0$ at absolute 0 K for a perfect crystal (Third law of thermodynamics)	0
(crystal, $15 \mathrm{~K}, 1 \mathrm{~atm}$)	for $\mathrm{dp}=0 \Delta \mathbf{S}_{1}=\int_{0}^{15}\left(\mathrm{C}_{\mathrm{p}} / \mathrm{T}\right) \mathrm{dT}$ For solids, C_{p} and C_{v} are nearly the same $C_{p}-C_{V}=-T\left(\frac{\partial V}{\partial T}\right)_{p}^{2}\left(\frac{\partial p}{\partial V}\right)_{T}$ because the two factors are small for solids, especially for low T. For perfect solids, C_{V} behaves asymptotically $\lim _{(T \rightarrow 0 K)} C_{V}=a T^{3}$ $\mathrm{C}_{\mathrm{v}}=464.4\left(\mathrm{~T} / \Theta_{\mathrm{D}}\right)^{3} \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}=a \mathrm{~T}^{3}$ where $\Theta_{\mathrm{D}}=215 \mathrm{~K}$ for Cu , for example, therefore $a=4.67 \times 10^{-5}$ Debye extrapolation from 0 K to 15 K Debye: $\Delta \mathbf{S}_{1}=(1 / 3) \mathrm{a}(15)^{3}=0.05 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ This seems rather small.	$\Delta \mathbf{S}_{1}$
(crystal, 244.7 K, 1 atm)	Integration from 15 K to $244.7 \mathrm{~K}, \mathrm{dp}=0\left(\Delta \mathbf{S}_{2}\right)$ Integration over the whole range of temperatures 15K to $298.1 \mathrm{~K}^{2}$ gives $30.52 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ which includes $\left(\Delta \mathbf{S}_{2}+\Delta \mathbf{S}_{4}\right)$	$\Delta \mathbf{S}_{2}$
(liquid, 244.7 K, 1 atm)	Phase transition at 244.7 K $\Delta \mathbf{H}=\mathrm{q}_{\mathrm{pREV}}=2319 \mathrm{cal} \mathrm{mol}^{-1}$ $\Delta \mathbf{S}_{3}=2319 \mathrm{cal} \mathrm{mol}^{-1} / 244.7 \mathrm{~K}=9.48 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$	$\Delta \mathbf{S}_{3}$
(liquid, 298.1, 1 atm)	Integration from 244.7 K to $298.1 \mathrm{~K}, \mathrm{dp}=0\left(\Delta \mathbf{S}_{4}\right)$ This is already included in $\left(\Delta \mathbf{S}_{2}+\Delta \mathbf{S}_{4}\right)$ integration.	$\Delta \mathbf{S}_{4}$
(liquid, 298.1, 3.666 cm Hg)	Integration from 76.0 cm Hg to 3.666 cm Hg at 298.1 K for liquid, $\mathrm{dT}=0$ For the liquid, assume small temperature coefficient of volume, $(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{p}} \sim 0$, leads to $(\partial \mathbf{S} / \partial \mathrm{p})_{\mathrm{T}}=-(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{p}}$	$\Delta \mathbf{S}_{5}$

	$\begin{aligned} & \sim 0 \\ & \Delta \mathbf{S}_{5}=0 \end{aligned}$	
(vapor, 298.1, 3.666 cm Hg)	Phase transition at $298.1 \mathrm{~K}, 3.666 \mathrm{~cm} \mathrm{Hg}$ $\Delta \mathbf{S}_{6}=9147 \mathrm{cal} \mathrm{mol}^{-1} / 298.1 \mathrm{~K}=30.68 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$	$\Delta \mathbf{S}_{6}$
(vapor, 298.1, 1 atm)	Integration from 3.666 cm Hg to 76.0 cm Hg at 298.1 K for gas, $\mathrm{dT}=0$ For the vapor, if ideal: $V=R T / p$ $\begin{aligned} (\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{p}} & =\mathrm{R} / \mathrm{p} \\ (\partial \mathrm{~S} / \partial \mathrm{p})_{\mathrm{T}} & =-\mathrm{R} / \mathrm{p} \\ \Delta \mathbf{S}_{7}=- & \mathrm{R} \ln (76.0 / 3.666)=-6.03 \mathrm{cal} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned}$	$\Delta \mathbf{S}_{7}$
$\mathbf{S}_{\text {absolute }}=65.70 \mathrm{cal} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ Answer	$\begin{aligned} & \mathbf{S}_{\text {absolute }}= \\ & \mathbf{S}(0 \text { K })+\Delta \mathbf{S}_{1}+\Delta \mathbf{S}_{2}+\Delta \mathbf{S}_{3}+\Delta \mathbf{S}_{4}+\Delta \mathbf{S}_{5}+\Delta \mathbf{S}_{6}+\Delta \mathbf{S}_{7} \end{aligned}$	

6. N_{2} gas at $1000 \mathrm{~atm}, 1000^{\circ} \mathrm{C}$ fugacity $=$?

Equation	Basis for the equation	Eq. \\|
$\ln f=\int_{0}^{p} \frac{(Z-1)}{p} \mathrm{~d} p$	Relation of fugacity to pressure (from lecture notes Part 5)	1
$\mathrm{Z}=\mathrm{pV} / \mathrm{RT}$	For a non-ideal gas, Z is not 1	2
$\mathrm{p}(\mathrm{V}-\mathrm{b})=$ RT $\mathrm{b}=39.1 \times 10^{-3} \mathrm{~L} \mathrm{~mol}^{-1}$	Equation of state to be used for this gas	3
$\mathrm{Z}=\mathrm{V} /(\mathrm{V}-\mathrm{b})$	From Eq 2 and 3	4
Z-1 = b/(V-b)		5
(Z-1)/p = b/RT	From Eq 3 and 5	6
$\int(Z-1) d p / p=(b / R T) \int_{0}{ }^{p} d p$	From Eq 6	7
In (f/p) $=(\mathrm{b} / \mathrm{RT}) \mathrm{p}$	From Eq 1 and 7	8
$f=\mathrm{p} \bullet \exp (\mathrm{bp} / \mathrm{RT})$	Eq 8 and definition of In	9
$f=1000$ atm•exp[0.0391 $\mathrm{L} \mathrm{mol}^{-1}$ - $1000 \mathrm{~atm} /\left(0.08205 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right.$ $\cdot 1273 \mathrm{~K})$] $=1450 \mathrm{~atm} \quad$ Answer	Substituting values into Eq 9 and evaluating	

7. From given table of Z vs p, calculate the following:

p	1.0000	4.00000	7.00000	10.0000	40.0	70.0	100.0
$(Z-1) / p$	-0.00290	-0.00301	-0.00303	-0.00304	-0.00316	-0.00319	-0.00313

Equation	Basis for the equation	Eq. $\#$
$\operatorname{In} f=\quad \int_{0}^{\rho} \frac{(Z-1)}{p} \mathrm{~d} p$	Relation of fugacity to pressure (from lecture notes Part 5)	1
$(Z-1) / p=-0.0031-2 \times 10^{-6}(p / 1$ atm $)$	Fit the values in above table to a function of p. Nearly independent of p.	2

$\ln (f / \mathrm{p})=$ Integral ≈-0.31	Integral = area under this curve for $\mathrm{p}=0$ to $\mathrm{p}=100$ atm has a value very close to $100 \bullet(-0.0031)$	3			
$f=\mathrm{p} \exp (-0.31)=0.733 \mathrm{p}$ $f=73.3 \mathrm{~atm}$ at $100 \mathrm{~atm}, 200 \mathrm{~K}$ Answer	From Eq 3 rearrange and evaluate				

8.

Equation	Basis for the equation	Eq. \#
$\mathrm{d} \mathbf{G}=V \mathrm{~d} p-\mathrm{Sd} T$	One of the four fundamental equations of thermodynamics	1
$\mathrm{d} \mathbf{G}=(\partial \mathbf{G} / \partial T)_{p} \mathrm{~d} T+(\partial \mathbf{G} / \partial p)_{T} \mathrm{~d} p$	$\mathbf{G}=\mathbf{G}(\mathrm{T}, \mathrm{p})$	2
$(\partial \boldsymbol{G} / \partial p)_{T}=\mathrm{V}$	From Eq 1 \& 2	3
$\begin{aligned} \mathbf{G}= & R T \\ & \ln (p / 1 a t m)+A^{\prime}+B^{\prime} p \\ & +(1 / 2) C^{\prime} p^{2}+(1 / 3) D^{\prime} p^{3} \end{aligned}$	Given $\mathbf{G}=\mathbf{G}(\mathrm{T}, \mathrm{p})$ functional form	4
$\mathrm{V}=\mathrm{RT} / \mathrm{p}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime} \mathrm{p}+\mathrm{D}^{\prime} \mathrm{p}^{2}$ This is the equation of state Answer	Taking $(\partial \mathbf{G} / \partial \mathrm{p})_{T \text { and equating it to } \mathrm{V}}$	5

9. At $100^{\circ} \mathrm{C}$ and 1 atm , water and steam are at equilibrium (this point is on the liquidvapor equilibrium curve for $\mathrm{H}_{2} \mathrm{O}$):
water $\left(100{ }^{\circ} \mathrm{C}\right.$ and 1 atm$) \Leftrightarrow$ steam $\left(100^{\circ} \mathrm{C}\right.$ and 1 atm$)$

Equation	Basis for the equation	Eq. \#
$\mathbf{H}=\mathbf{U}+\mathrm{pV}$	Definition	1
$\mathrm{d} \mathbf{U}=\delta q+\delta W$	First law of thermodynamics	2
$\begin{aligned} & \Delta \mathbf{U}=\mathrm{q}_{\mathrm{p}}-\mathrm{p} \Delta \mathrm{~V} \\ & \Delta \mathbf{H}=\Delta \mathbf{U}+\mathrm{p} \Delta V \end{aligned}$	At constant opposing pressure p	3
$\Delta \mathbf{H}=\mathrm{q}_{\mathrm{p}}$	At constant pressure, from 3	4
$\Delta \mathbf{S}=\mathrm{q}_{\text {REv }} / \mathrm{T}$	Second law of thermodynamics	5
$\Delta \mathbf{S}=\Delta \mathbf{H} / \mathrm{T}$	$\mathrm{q}_{\text {REV }}$ is also q_{p} at constant pressure (1 atm) in this problem, for the phase change at $100^{\circ} \mathrm{C}$ and 1 atm	6
$\Delta \mathbf{S}_{\text {vaporizn }}=(1.76-0.31) \mathrm{cal} \mathrm{K}^{-1} \mathrm{~g}^{-1}$	Given $\left(\mathbf{S}_{\boldsymbol{T}}-\mathbf{S}^{\ominus}{ }_{298}\right)=0.31$ cal K $^{-1} \mathrm{~g}^{-1}$ for water at $100^{\circ} \mathrm{C}$ and 1 atm Given $\left(\mathbf{S}_{\mathrm{T}}-\mathbf{S}^{\ominus}{ }_{298}\right)=1.76$ cal K $^{-1} \mathrm{~g}^{-1}$ for steam at $100^{\circ} \mathrm{C}$ and 1 atm	7
$=\Delta \mathbf{H}_{\text {vaporizn }} / 373.1 \mathrm{~K}$	From Eq 6	8
(a) $\Delta \mathbf{H}_{\text {vaporizn }}=373.1(1.76-0.31)$ $=541 \mathrm{cal} \mathrm{g}^{-1}$ Answer	Evaluating	9

$\begin{aligned} & \text { (b) } \Delta \mathbf{H}_{\text {vaporizn }}= \\ & \left\{\left(\mathbf{H}_{T}-\mathbf{H}^{\ominus}{ }_{298}\right)_{\text {steam }}-\left(\mathbf{H}_{T}-\mathbf{H}^{\ominus}{ }_{298}\right)_{\text {water }}\right\} \\ & \text { at } 100{ }^{\circ} \mathrm{C} \text { and } 1 \mathrm{~atm} \\ & 541 \mathrm{cal} \mathrm{~g}^{-1} \\ & =640 \mathrm{cal} \mathrm{~g}^{-1}-\left(\mathbf{H}_{T}-\mathbf{H}^{\ominus} 298\right)_{\text {water }} \\ & \left(\mathbf{H}_{T}-\mathbf{H}^{\ominus} 298\right)_{\text {water }}=99 \mathrm{cal} \mathrm{~g}^{-1} \end{aligned}$	Using Eq 9 and given	10
(c) $\mathbf{G}=\mathbf{H}-\mathrm{TS}$	Definition	11
$\Delta \mathbf{G}=\Delta \mathbf{H}-\mathrm{T} \Delta \mathbf{S}$	At constant T	12
$\begin{aligned} & \left(\mathbf{G}_{T}-\mathbf{G}^{\ominus}{ }_{298}\right)_{\text {water }}=\left(\mathbf{H}_{T}-\mathbf{H}^{\ominus}{ }_{298}\right)_{\text {water }} \\ & -373.1 \bullet\left(\mathbf{S}_{T}-\mathbf{S}^{\ominus} 298\right)_{\text {water }} \\ & =99-373.1 \bullet 0.31=-16.7 \text { cal g }{ }^{-1} \\ & \text { Answer } \end{aligned}$	Substituting values	13
$\begin{aligned} & \left(\mathbf{G}_{T}-\mathbf{G}^{\ominus}{ }_{298}\right)_{\text {steam }}=\left(\mathbf{H}_{T}-\mathbf{H}^{\ominus}{ }_{298}\right)_{\text {steam }} \\ & -373.1 \bullet\left(\mathbf{S}_{\mathrm{T}}-\mathbf{S}^{\ominus} 298\right)_{\text {steam }} \\ & =640-373.1 \bullet 1.76=-16.7 \text { cal g }^{-1} \\ & \text { Answer } \end{aligned}$	The two are equal as expected	

10. C (graphite) $\rightarrow \mathrm{C}$ (diamond) (298 K, 1 atm)

Equation	Basis for the equation	Eq. \#
$\begin{aligned} & \mathrm{C}_{\text {(diamond) }}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(298 \mathrm{~K}, 1 \mathrm{~atm}) \\ & \Delta \mathrm{H}=94.484 \mathrm{kcal} \mathrm{~mol}^{-1} \\ & \mathrm{C}_{\text {(graphite) }}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(298 \mathrm{~K}, 1 \mathrm{~atm}) \\ & \Delta \mathbf{H}=94.030 \mathrm{kcal} \mathrm{~mol}^{-1} \\ & \mathrm{C}_{\text {(graphite) }} \rightarrow \mathrm{C}_{\text {(diamond) }}(298 \mathrm{~K}, 1 \mathrm{~atm}) \\ & \Delta \mathrm{H}=94.484-94.030=0.454 \\ & \mathrm{kcal} \mathrm{~mol} \\ & \text { kil } \end{aligned}$	H is a state function	1
$\begin{aligned} & \Delta \mathbf{S}=\mathbf{S}_{\text {diamond }}-\mathbf{S}_{\text {graphite }} \\ & =0.5829-1.3609 \\ & =-0.7780 \mathrm{cal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \end{aligned}$	Use given data at $298 \mathrm{~K}, 1 \mathrm{~atm}$	2
$\begin{aligned} & \mathbf{G}=\mathbf{H}-\mathbf{T S} \\ & \Delta \mathbf{G}=\Delta \mathbf{H}-\mathrm{T} \Delta \mathbf{S} \end{aligned}$	Definition At constant T	$\begin{array}{\|l\|} \hline 3 \\ 4 \end{array}$
$\begin{gathered} \Delta \mathbf{G}=454-298 \bullet(-0.7780) \\ =685.8 \mathrm{cal} \mathrm{~mol}^{-1}(298 \mathrm{~K}, 1 \mathrm{~atm}) \\ \text { Answer } \end{gathered}$		5
$\mathbf{G}^{\ominus}{ }_{298}(\text { diamond })-\mathbf{G}^{\ominus}{ }_{298} \text { (graphite) }=$ $685.8 \mathrm{cal} \mathrm{~mol}^{-1}$	${ }^{\ominus}$ means 1 atm	6
$\mathrm{d} \boldsymbol{G}=V \mathrm{~d} p-\mathbf{S d} T$	One of the four fundamental equations of thermodynamics	7
$\mathbf{G}(T)=\boldsymbol{G}_{T}{ }_{T}+\int_{1}^{p} V d p$	For any pure material at a given temperature ($\mathrm{dT}=0$)	8

$\begin{array}{r} \mathbf{G}_{298}(\text { diamond })=\mathbf{G}^{\ominus}{ }_{298}(\text { diamond })+ \\ \int_{1}^{\mathrm{p}} \mathrm{~V}_{\text {diamond }} \mathrm{dp} \\ \mathbf{G}_{298}(\text { graphite })=\mathbf{G}^{\ominus}{ }_{298}(\text { graphite })+ \\ \int_{1}^{\mathrm{p}} \mathrm{~V}_{\text {graphite }} \mathrm{dp} \end{array}$	Applying Eq 7 to each pure material	9
$\mathrm{C}_{\text {(graphite) }} \Leftrightarrow \mathrm{C}_{\text {(diamond) }}(298 \mathrm{~K}, \mathrm{p} \mathrm{atm})$ \mathbf{G}_{298} (diamond, \mathbf{p}) \mathbf{G}_{298} (graphite, $\left.\mathbf{p}\right)=0$	At equilibrium at this value of p means \mathbf{G} of graphite and \mathbf{G} of diamond are equal at this p and 298 K .	10
$\begin{aligned} 0 & =685.8 \text { cal mol }^{-1}+\int_{1}{ }^{p} V_{\text {diamond }} \mathrm{dp} \\ & -\int_{1} \mathrm{p}_{\text {graphite }} \mathrm{dp} \end{aligned}$	Using Eq 6, 9 and 10	11
$\begin{aligned} & 0=685.8 \mathrm{cal} \mathrm{~mol} \\ &+(1.987 / 0.08206) \bullet \\ &\left(12 \mathrm{~g} / 3.513 \times 10^{3} \mathrm{~g} \mathrm{~L}^{-1}\right)(\mathrm{p}-1) \\ &-\left(12 \mathrm{~g} / 2.260 \times 10^{3} \mathrm{~g} \mathrm{~L}^{-1}\right)(\mathrm{p}-1) \end{aligned}$	Using given densities, independent of pressure and $1 \mathrm{~mol} \mathrm{C}=12 \mathrm{~g}$ and $10^{3} \mathrm{~cm}^{3}=1 \mathrm{~L}$ and use conversion $1.98722 \mathrm{cal}=0.0820578 \mathrm{~L}$ atm	12
$\begin{aligned} & 0==685.8-0.04586(\mathrm{p}-1) \\ & \mathrm{p}-1=14950 \text { atm } \quad \text { Answer for } \\ & C_{\text {(graphite) }} \Leftrightarrow C_{\text {(diamond) }}(298 \mathrm{~K}, \mathrm{p} \mathrm{~atm}) \end{aligned}$	Solving for p	
$\begin{aligned} & \hline \mathrm{C}_{\text {(graphite) }} \Leftrightarrow \mathrm{C}_{\text {(diamond) }}(1273 \mathrm{~K}, \mathrm{p} \text { atm }) \\ & \left.\mathbf{G}_{1273} \text { (diamond, } \mathrm{p}\right)-\mathbf{G}_{1273}(\text { graphite }, \mathrm{p}) \\ & =0 \\ & 0=\mathbf{G}^{\ominus}{ }_{1273}(\text { diamond })- \\ & \mathbf{G}^{\ominus}{ }_{1273}(\text { graphite })+\int_{1}^{\mathrm{p}} \mathrm{~V}_{\text {diamond }} \mathrm{dp} \\ & \quad-\int_{1}^{\mathrm{p}} \mathrm{~V}_{\text {graphite }} \mathrm{dp} \end{aligned}$ Solve for p	To do the same calculation for $1000^{\circ} \mathrm{C}$. We need the value $\mathbf{G}^{\ominus}{ }_{1273}$ (diamond) - $\mathbf{G}^{\ominus}{ }_{1273}$ (graphite), for which we need molar entropies \mathbf{S} at $1000^{\circ} \mathrm{C}$, 1 atm , and also $\Delta \mathrm{H}$ at $1000^{\circ} \mathrm{C}, 1 \mathrm{~atm}$. S_{1273} for graphite $=1.3609 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}+$ $\int_{298}{ }^{1273}\left(\mathrm{C}_{\mathrm{p}, \text { graphite }} / \mathrm{T}\right) \mathrm{dT}$ \mathbf{S}_{1273} for diamond $=0.5829 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}+$ $\int_{298}{ }^{1273}\left(\mathrm{C}_{\mathrm{p} \text {, diamond }} / \mathrm{T}\right) \mathrm{dT}$ $\Delta \mathbf{H}_{1273}$ (graphite) $=\Delta \mathbf{H}_{298}+\int_{298}{ }^{1273} C_{p, \text { graphite }} d T$ $\Delta \mathbf{H}_{1273}$ (diamond) $=\Delta \mathbf{H}_{298}+\int_{298}{ }^{1273} \mathrm{C}_{\mathrm{p}, \text { diamond }} \mathrm{dT}$ To estimate these quantities, we need to find C_{p} data for the two forms over the range 298 to 1273K.	

