
Solutions to Problem Set 6 

 

1.   non- ideal gas,    1 mol  20.0 L 300 K   →    40.0 L  300 K   isothermal, reversible 

Equation of state:                              
Equation Basis for the equation Eq. 

# 
(a)B is a constant independent of T Given   
dU = (∂U/∂T)VdT + (∂U/∂V)TdV U = U(T,V) 1 
dT = 0 Given, isothermal  2 
dU =  (∂U/∂V)TdV   3 
   (∂U/∂V)T = T(∂p/∂T)V - p Derived from first and second law of thermodynamics 

and using cross derivatives (see lecture notes Part 4) 
 4 

(∂p/∂T)V =  ∂{RT[V-1 + BV-2]} 
= R[V-1 + BV-2] 
 
(∂U/∂V)T  = T(∂p/∂T)V - p  
=  T R[V-1 + BV-2] - RT[V-1 + BV-2]  
= 0 
 

Apply to this equation of state, where B (has units of 
volume) is indep of T 

 5 

ΔU  = 0                        Answer From Eq 1, 2 and 5  6 
dH = (∂H/∂T)pdT + (∂H/∂p)Tdp H = H(T,p)  
  We could do this:  
 (∂H/∂p)T = - T(∂V/∂T)p + V  
But equation of state is too 
complex to derive(∂V/∂T)p  . 
Use another route to get ΔH   

Derived from first and second law of thermodynamics 
and using cross derivatives (see lecture notes Part 4) 

 

 H = U + pV 
ΔH  =  ΔU  + pfVf-piVi                        

 Definition  7 

p = RT/V + BRT/V2 
pi = (0.0820578)(300)[(1/20.0) + 
(B/20.02)]  
 pf = (0.0820578)(300)[(1/40.0) + 
(B/40.02)] 
Δ(pV) = (0.0820578)(300)B(-0.025) 

 
Substituting known values 

 8 

ΔH = 0+(0.0820578)(300)B• 
                                      (-0.025)  
= (8.31451J mol-1K-1)(300)B 
                                         • (-0.025)
                                       Answer  

  9 

ΔU  = q + W                        First law of thermodynamics 10 
qREV = -WREV From Eq  6 and 10 11 



W  = - ∫popdV Definition 12 
pop = pgas reversible  

13 
WREV  = - ∫ [RT/V + BRT/V2]dV 
= - RT ln(Vf/Vi) +2BRT[(1/Vf)-(1/Vi)] 
 

Using equation of state for this gas and integrating 14 

WREV = -RT[ ln(2) + 2B (-0.025)] 
          = - (8.31451J mol-1K-1)(300)• 
       [ln(2) -0.050B]  
= - qREV 

Substituting 15 

dS = δqREV/T 
ΔS =  qREV/T   

Second Law of thermodynamics 
reversible isothermal 

16 
17 

ΔS = + (8.31451J mol-1K-1)• 
              [ln(2) -0.050B]    Answer 

From Eq 15 and 17 18 

A = U - TS Definition 19 
ΔA = ΔU - TΔS For constant T (this problem) 20 
ΔA = 0 – 300• (8.31451J mol-1K-1)• 
            [ln(2) -0.050B]       Answer 

From Eq  6, 18 and 20 21 

G = H - TS Definition 21 
ΔG = ΔH - TΔS For constant T (this problem) 22 
ΔG =   300• (8.31451J mol-1K-1)• 
       [-0.025B - ln(2) +0.050B]   
   =   300• (8.31451J mol-1K-1)• 
       [0.025B - ln(2) ]       Answer 

From Eq  9, 18 and 22 23 

(b)  B is dependent on T 
            B = a + bT + cT2 

 
Given 

 
24 

(∂p/∂T)V =  ∂{RT[V-1 + BV-2 ]} 
= R[V-1 + BV-2] + RV-2(dB/dT) 
 
(∂U/∂V)T  = T(∂p/∂T)V - p  
=  RT[V-1 + BV-2] - RT[V-1 + BV-2]      
                                +RTV-2(dB/dT) 
(∂U/∂V)T  = RTV-2(dB/dT) 

Just as in deriving Eq  5 but with the additional term 
in (dB/dT) 
Where dB/dT = b + 2cT 

25 

ΔU  = ∫ (∂U/∂V)TdV  
= RT(dB/dT) ∫ V-2dV  
=  RT(dB/dT)[(1/Vf) – (1/Vi)] 
= (8.31451J mol-1K-1)(300)• 
      (b + 600c) •[- 0.025] 
                        Answer 

From Eq  3 and 25 
 
 
Note that ΔU ≠ 0 when B is dependent on T 
 

26 

p = RT/V + BRT/V2 
pi = (0.0820578)(300)[(1/20.0) + 
(B/20.02)]  
 pf = (0.0820578)(300)[(1/40.0) + 
(B/40.02)] 
Δ(pV) = (0.0820578)(300)B(-0.025) 

The equation for Δ(pV)  is the same as when B is 
independent of T  

27 



ΔH  =  (8.31451J mol-1K-1)(300)• 
      (b + 600c)•(-0.025) 
 + (8.31451J mol-1K-1)(300)B 
              • (-0.025) 
 
= - (8.31451J mol-1K-1)(300)• 
0.025•[a+bT+cT2 + b + 600c] 
                                       Answer  

The same as in part (a) except that ΔU  from Eq  26 
and B = a + bT + cT2 are inserted.  

28 

ΔS = + (8.31451J mol-1K-1)• 
       [ln(2) -0.050B]            Answer 

The equation is derived the same as in part (a) 
except that B = a + bT + cT2 is inserted 

29 

ΔA = ΔU - TΔS 
ΔA = (8.31451J mol-1K-1)(300)• 
               (b + 600c) •(- 0.025) 
     – 300• (8.31451J mol-1K-1)• 
              [ln(2) -0.050B]      Answer 

 The same as in part (a) except that ΔU from Eq  26 
and B = a + bT + cT2 are inserted. 

30 

ΔG = ΔH - TΔS 
ΔG = - (8.31451J mol-1K-1)(300)• 
0.025•[a+bT+cT2 + b + 600c] 
– 300• (8.31451J mol-1K-1)• 
       [ln(2) -0.050B] 
ΔG = + (8.31451J mol-1K-1)(300)• 
                [0.025•(a+bT+cT2 )  
                - 0.025(b + 600c)- ln(2)] 
                                        Answer

ΔH from Eq 28 and  B = a + bT + cT2 are inserted. 31 

(c) B is a constant independent of 
temperature and the process is 
carried out irreversibly 

   

ΔU  = 0                             Answer 
ΔH  =   
- (8.31451J mol-1K-1)(300)(0.025)B  
                                        Answer 
ΔS = + (8.31451J mol-1K-1)• 
       [ln(2) -0.050B]         Answer  
ΔA = – 300• (8.31451J mol-1K-1)• 
       [ln(2) -0.050B]          Answer 
ΔG =   300• (8.31451J mol-1K-1)• 
       [0.025B - ln(2) ]        Answer 
But qIRREV and WIRREV are not the 
same as in part (a). 
qIRREV + WIRREV = 0 
qIRREV  < TΔS 
WIRREV > WREV 
 
WIRREV > -TΔS 
 

All are exactly the same as in part (a) because these 
are state functions and do not depend on the path  
(reversible or otherwise). 
 
 
 
 
 
 
 
What do we know about the non-state functions? 
  
Because ΔU  = 0 here 
because of Clausius inequality: TΔS > qIRREV         
Algebraic relation! Remember W is a signed quantity. 
Negative value means work is done by system on the 
surroundings. Less work than maximum work 
appears in the surroundings for irreversible process 

  



2.   non- ideal gas,    2 mol     10 atm 600 K   →    5 atm  300 K     irreversible 
Equation of state: pV = nRT + nBp     B = 0.035 L mol-1  

          J mol-1 K-1 
               
Equation Basis for the equation Eq. 

# 
dU = (∂U/∂T)VdT + (∂U/∂V)TdV U = U(T,V) 1 
   (∂U/∂V)T = T(∂p/∂T)V - p Derived from first and second law of thermodynamics 

and using cross derivatives (see lecture notes Part 4) 
2 

p = nRT/(V-nB) Given equation of state 3 
(∂p/∂T)V =  nR/(V-nB) 
  
(∂U/∂V)T  = T(∂p/∂T)V - p  
            =  nRT/(V-nB) - nRT/(V-nB) 
            = 0 
 

Apply to this equation of state, where B (has units of 
volume) is independent of T 

4 

dU = CVdT + 0 From Eq 1 and 4 5 

 
General relation derived from U = U(T,V) and the first 
law of thermodynamics (see lecture notes Part 2)  

6 

V-nB = nRT/p 
(∂V/∂T)p = nR/p 

Rearrange equation of state and differentiate 7 

Cp-CV = [p +0](nR/p) = nR From Eq  6, 7 and 4  8 
CV  = Cp – nR = n[52.675  
 + 1.561×10-2T- 8.31451] J mol-1K-1 
CV  = 2 mol•(44.361+ 1.561×10-2T) 
                                        J mol-1K-1 

From Eq  8 and given Cp  9 

ΔU  = 2 mol•  
              ∫(44.361 + 1.561×10-2T)dT  

Integrating Eq 5 and using given CV 10 

ΔU  = 2{44.361(T2-T1) 
              + (1/2)1.561×10-2(T2

2-T1
2)} 

     = 2{(44.361(300 - 600) 
         + (1/2)1.561×10-2(3002-6002)}
= 2{-13308.3 -2107.3} 
    = - 30830 J                     Answer
 

Integrating Eq 5 and using given CV 11 

dH = (∂H/∂T)pdT + (∂H/∂p)Tdp  H = H(T,p) 12 
  (∂H/∂p)T = - T(∂V/∂T)p + V      . 
 

Derived from first and second law of thermodynamics 
and using cross derivatives (see lecture notes Part 4) 

13 

(∂V/∂T)p = nR/p   
and V = nRT/p +nB 
  (∂H/∂p)T = nB 

 From Eq  7 and Equation of state substituted into Eq 
13 

 
 
14 

dH = CpdT + nB dp  
ΔH  =  ∫n( 52.675 + 1.561×10-2T)dT 
                       + ∫nBdp                       

 From Eq 12 and 14 15 



ΔH   = 2{52.675(T2-T1) 
            + (1/2)1.561×10-2(T2

2-T1
2)}   

                  +2• 0.035 L mol-1 [p2-p1] 
= 2{(52.675(300 - 600) 
         + (1/2)1.561×10-2(3002-6002)}
 +2• 0.035[5-10] 
•8.31451/0.0820578 
= 2{-15802.5 -2107.3 - 17.7 } 
= - 35850 J                Answer 

Integrating and substituting known values 
 
 
 
 
We would have obtained the same answer by using  
H = U+pV 
ΔH   = ΔU   + Δ(pV)   It happens that dV=0 here 

 8 

dS = (∂S/∂T)pdT + (∂S/∂p)Tdp  S = S(T,p) 12 
  Derived (see lecture notes Part 4) starting from 

 
and use of cross derivatives 

13 

 dS = (Cp/T)dT - nRdp/p                    Using Eq 7 and 2 into Eq 12 14 
ΔS  = ∫n( 52.675/T + 1.561×10-2)dT 
              - nR∫dp/p                              

Using Eq 7 and 2 into Eq 12  
15 

 ΔS  = 2{ 
52.675ln(T2/T1)+1.561×10-2 (T2-T1) 
- 8.31451ln(p2/p1) } 
ΔS   = 2{ 52.675ln(300/600)  
           +1.561×10-2 (300-600) 
                         - 8.31451ln(5/10) } 
 
ΔS   = - 52.12 J K-1         Answer 

Integrating and substituting given values 
 
 
 
We would have obtained the same answer by using 
dS = (∂S/∂T)VdT + (∂S/∂V)TdV 
(∂S/∂V)T = (∂p/∂T)V but  it happens that dV=0 here, so 
ΔS  = ∫CVdT/T = same answer 

16 

A = U – TS 
ΔA   =   ΔU   - Δ(TS)              
 Sabs, f = Sabs,i + ΔS     
Δ(TS) = 300Sabs,i - 600[Sabs, i + ΔS ] 
ΔA   =  - 30830 J  
        - 300Sabs, i - 600[Sabs, i - 52.12]   

Definition 
 
We already have ΔU.   Since dT is not zero for this 
problem, it requires that we know absolute entropy. 
We have to have either the absolute entropy for the 
gas at the initial state or at the final state in order to 
calculate ΔA. If we are given data to calculate Sabs, i , 
then we can do it.   

  

G = H -TS 
ΔG = ΔH - Δ(TS) 
Sabs, f = Sabs,i + ΔS     
Δ(TS) = 300Sabs,i - 600[Sabs, i + ΔS ] 
 
ΔG   =   - 35850 J  
        - 300Sabs, i - 600[Sabs, i - 52.12] 

Definition 
We already have ΔH.    
As from above argument, we have to use the 
absolute entropy for the gas at the initial state and at 
the final state in order to calculate ΔG    

   

 



3. non- ideal gas,    2 mol     pi =1 atm Ti =300 K     →    pf =11 atm  Tf =300 K  
                                                 Vi = a + RTi /pi                       Vf = a + RTf  /pf 

Equation of state: pV = RT +ap     a = a(T)   
 
Equation Basis for the equation Eq. 

# 
dU = (∂U/∂T)VdT + (∂U/∂V)TdV U = U(T,V) 1 
   (∂U/∂V)T = T(∂p/∂T)V - p Derived from first and second law of thermodynamics 

and using cross derivatives (see lecture notes Part 4) 
2 

pV = RT +ap 
p = RT/(V-a), a=a(T) 

Given equation of state 3 

(∂p/∂T)V  
=  R/(V-a) + RT(da/dT)/(V-a)2 
  
(∂U/∂V)T  = T(∂p/∂T)V - p  
            =  p + RT2(da/dT)/(V-a)2 - p 
(∂U/∂V)T  = RT2(da/dT)/(V-a)2                 

                                                                    Q.E.D.

Apply to this equation of state 
 
 
Using Eq 2 

4 
 
 
 
 
5 

dH = (∂H/∂T)pdT + (∂H/∂p)Tdp  H = H(T,p) 6 
(∂H/∂p)T = - T(∂V/∂T)p + V      . 
 

Derived from first and second law of thermodynamics 
and using cross derivatives (see lecture notes Part 4) 

7 

V = RT/p  + a 
(∂V/∂T)p = R/p  + da/dT        

 From Equation of state (Eq 3)   
8 

(∂H/∂p)T = - T(∂V/∂T)p + V  
          = -RT/p -T(da/dT) + RT/p + a 
(∂H/∂p)T =  a  -T(da/dT)        Q.E.D. 

 
Substituting  Eq  8 into Eq 7 

 
 
9 

  
a = 0.02 + 0.005×10-2(T-300) 
                                          L mol-1 

(da/dT) = 0.005×10-2       L mol-1K-1 

We will need da/dT in Eq 5 and Eq 9 
The given 3 values of a(T) changes linearly with T by 
0.005 per 100 K increment   

10 

dU = (∂U/∂T)VdT + (∂U/∂V)TdV U = U(T,V) 1 
dU = CVdT + RT2(da/dT)/(V-a)2dV 
In this problem dT = 0 

Substituting  Eq   5 into Eq 1 11 

ΔU  = 2 mol•  
              RT2(da/dT) ∫ (V-a) - 2 dV  
 = 2 mol• RT2(da/dT) • (-1)(V-a)-1|if 
      = - 2 mol• RT2(da/dT) • p/RT |if  
           = - 2 mol•T(da/dT) • [pf - pi] 
ΔU  = - 2 mol• (300 K)(0.005×10-2 L 
                    mol-1K-1) • [11 - 1] atm 
ΔU  = - 0.30 L atm    or - 30.4 J 
                                        Answer 

Integrating Eq 11  
 
 
Using equation of state to express (V-a)-1 
 
substituting values 
 
Using conversion factor 8.31451 J / 0.0820578 L atm 

 
 
12 
 
13 
 
 
 
14 

dH = (∂H/∂T)pdT + (∂H/∂p)Tdp  H = H(T,p) 6 
dH = 0 + {a  - T(da/dT)}dp  Using dT = 0 and Eq 9  into Eq 6 15 



ΔH  = 2 mol• 
{0.02 L mol-1 - (300 K)(0.005×10-2 L  
                    mol-1K-1)} • [pf - pi] 
ΔH  = 2 mol•0.005 L mol-1  
                             • [11 - 1] atm 
ΔH  = +0.10 L atm    or +10.1 J 
                                          Answer 

Integrating Eq 15  
 
 
Substituting values 

 
 
16 

W = - ∫ popdV 
Wmax =  - ∫ pgasdV  
=  -2 mol ∫RT (V-a)-1dV 
= -2 mol RT ln [(Vf - a)/(Vi - a)] 
=  -2 mol RT ln (pi /(pf ) 
Wmax =  - 2 mol• 
(8.31451 J mol-1 K-1)(300K)ln(1/11) 
Wmax = +11963 J               Answer  

Maximum work is obtained by carrying out the 
process reversibly, in which case pop = pgas 
Integrating 
Using the equation of state 
Substituting values 

17 
 
18 

dG = Vdp - SdT  one of the fundamental equations of thermodynamics 
(Lecture notes Part 5) 

19 

dT = 0 for this process 
ΔG  = ∫Vdp = 2 mol• ∫ (RT/p  + a)dp 
ΔG  =2 mol•{ RTln(pf /pi) + a[pf-pi] }
     = 2 mol• 
          {(8.31451 J mol-1K-1)(300K) •  
         ln(11/1) + 0.02 L mol-1[11-1] 
atm • 8.31451J /0.0820578 L atm} 
ΔG  = +11963 J + 20.26 J 
ΔG  = +11983 J                 Answer 
 

 
Using the equation of state 
Integrating  

 

dA = - pdV  - SdT one of the fundamental equations of thermodynamics 
(Lecture notes Part 5) 

 

dT = 0 for this process 
ΔA  = - ∫pdV = - ∫RTdV/(V-a) 
= - 2 mol RT ln [(Vf - a)/(Vi - a)] 
=  - 2 mol RT ln (pi /(pf ) 
ΔA  =  - 2 mol• 
(8.31451 J mol-1 K-1)(300K)ln(1/11) 
ΔA  = +11963 J                 Answer  

 
Integrating 
 
Using the equation of state 
Substituting the values 
 
Note that ΔA  = Wmax , as it should be 

 

 



4. 0.5 mol CH4(g) at 298 K is burned in excess O2 under adiabatic conditions.  Tfinal = ?  
 
The reaction at 298 K                   CH4(g) + 2O2(g) → CO2(g) + 2H2O(l) 
 
Standard enthalpy of combustion at 298 K   = ΔcombH298   
          = 2ΔformH298 (H2O(l)) +ΔformH298 (CO2(g)) - ΔformH298 (CH4(g)) - 2ΔformH298 (O2(g))    
 
Equation Basis for the equation Eq. 

# 
ΔcombH298

 = 2ΔformH298 (H2O(l) )  
                   +ΔformH298 (CO2(g) )  
                   - ΔformH298 (CH4(g) ) 
= 2(-285.83)+(-393.51)-(-74.81) kJ  
                                               mol-1  

ΔcombH298
 = - 890.36 kJ mol-1 

ΔformH298  for the elements in their standard state is 
defined as zero 
 
Using ΔformH298  given in the provided table 
 
for CH4(g) + 2O2(g) → CO2(g) + 2H2O(l) all at 298 K 

1 
 
 
 
 
2 

 
 

  

(a) at constant pressure ~ 1 bar 
 

 
0.5 mol CH4       0.5 mol CO2(g) 
10 mol O2           [10-1] mol O2(g) 
                       0.5(2) mol H2O(g) 
298 K                      Tf = ? 
 

qp = 0 adiabatic (insulated container and piston) 
 

 

dH = (∂H/∂T)pdT + (∂H/∂p)Tdp H = H(T,p) 3 
dH = CpdT + 0 
ΔH = qp 
qp = 0 

Given dp = 0  
 
Given adiabatic 

4 
5 
6 

ΔH = ½ ΔcombH298
    

+ 0.5∫298
TfCp(CO2g)dT  

+ 9∫298
Tf Cp(O2g)dT  

+ 1 ∫298
373 Cp(H2Oliq)dT 

+ 1•ΔvapH373 (H2O) 
+ 1 ∫373

Tf Cp(H2Og)dT = 0 

Need to sum up all the contributions to ΔH 7 



0.5(- 890.36×103) 
+ 0.5(37.11)(Tf - 298) 
+ 9(29.355)(Tf - 298) 
+1(75.291)(373-298) 
+ 1(40.656×103) 
+ 1(33.58)(Tf - 373) = 0 

Substitute values of ΔH in J mol-1 from Eq 2 and  into 
Eq 7 
and look up Cp in J mol-1K-1 for CO2(g), O2(g), 
H2O(liq) and H2O(g) in given table 

8 

Tf = 1567 K                 Answer Solving Eq  8 for Tf 9 
(b) at constant volume 

 
initial                            final 
0.5 mol CH4       0.5 mol CO2(g) 
10 mol O2           [10-0.5] mol O2(g) 
                       0.5(2) mol H2O(g) 
298 K                      Tf = ? 

adiabatic (insulated container) with rigid walls   

dU = (∂U/∂T)VdT + (∂U/∂V)TdV U = U(T,V) 10 
dU = (∂U/∂T)VdT + 0 
ΔU = qV 
qV = 0 

Given dV = 0 
 
Given adiabatic 

11 
12 
13 

ΔU = ½ ΔcombU298
    

+ 0.5∫298
TfCV(CO2g)dT  

+ 9∫298
Tf CV(O2g)dT  

+ 1 ∫298
373 CV(H2Oliq)dT 

+ 1•ΔvapU373 (H2O) 
+ 1 ∫373

Tf CV(H2Og)dT = 0 

Need to sum up all the contributions to ΔU 14 

H = U + pV Definition 15 
ΔH = ΔU + Δ(pV)  16 
ΔcombH298

 = ΔcombU298
 

                         +(pV)products - (pV)reactants 
Apply Eq 16  to the reaction CH4(g) + 2O2(g) → 
CO2(g) + 2H2O(l) at 298 K 

17 

(pV) products = (298 R) 1 
(pV) reactants = (298 R) 3 
(pV)products - (pV)reactants = - 2(298 R) 
= - 2(298)(8.31451)  
(pV)products - (pV)reactants = 
              - 4955  J mol-1 

Assuming ideal gas behavior for reactants and 
products, neglecting pV for liquid 

18 
 
 
 
 
19 

ΔcombU298
 =  - 890.36×103 

                                     - (-4955)  
= - 885.40×103  J mol-1 

Substituting the values from Eq  2 & 19 into Eq 17 20 
 
21 



ΔvapH373
 = ΔvapU373

 

                         + (pV)gas - (pV)liq  
ΔvapU373

 = ΔvapH373
 - Δ(pV) 

Apply Eq 16 to vaporization  22 
 
23 

Δ(pV) = (373R) = 3101 J mol-1 Assuming ideal gas behavior for gas and neglecting 
pV for liquid 

24 

ΔvapU373
 = (40.656×103) - 3101 

                = 37.554×103 J mol-1 
Substituting  the values   

25 
ΔU = ½( - 885.40×103) 
+ 0.5(28.8)(Tf - 298) 
+ 9(21.0)(Tf - 298) 
+1(75.2)(373-298) 
+ 1(37.554×103) 
+ 1(25.3)(Tf - 373) = 0 

Using  values for Eq  21 & 25 into Eq 14 and looking 
up CV values in J mol-1K-1 for CO2(g), O2(g), H2O(liq) 
and H2O(g) in given table 

26 

Tf = 2053 K              Answer Solving Eq  26 for Tf   
Note that this is a higher final 
temperature than the final 
temperature reached in doing the 
combustion at constant pressure. 

This is because all of the chemical energy released 
by the reaction at constant volume went into raising 
the temperature of the products, whereas, some of 
the chemical energy released by the reaction at 
constant pressure went into Work against pop = 1 bar.  

 

 

5.  The formation of H2O(g)  at 298 K         H2(g) + ½O2(g) →        H2O(g)   
     given ΔformH 298  = ‐241.82 kJ mol-1 
                                                                   Initial                               Final 
                                                             1 mol H2(g)                    (1-x) mol H2(g) 
                                                            10 mol O2(g)                 (10-½x) mol O2(g) 
                                                                                                      x mol H2O(g) 
                                                                T = 298                           T = 2000 K 
                                                                           constant pressure 
 
Equation Basis for the equation Eq. 

# 
set up the problem as shown 
above 

 Recognize that the reaction is that for the formation 
of H2O(g) 

  

dH = (∂H/∂T)pdT + (∂H/∂p)Tdp H = H(T,p) 1 
dH = CpdT + 0 
ΔH = qp 

Given dp = 0  
 

2 
3 

qp = 0 Assume that all the ΔrxnH is accounted for by the final 
temperature of 2000 K, i.e., as if H2 was burned in an 
insulated cylinder/piston at ~ 1 atm or 1 bar. 

4 

ΔH = x ΔformH298
    

+ (1-x) ∫298
2000Cp(H2g)dT  

+ (10-½x) ∫298
2000 Cp(O2g)dT  

+ x ∫298
2000 Cp(H2Og)dT = 0 

Need to sum up all the contributions to ΔH 5 



x (- 241.82×103) 
+  (1-x) (28.824)(2000 - 298) 
+  (10-½x)(29.355)(2000 - 298) 
+ x (33.58)(2000 - 298) = 0 

Substitute value of ΔformH298   in J mol-1 into Eq 5 
and look up Cp in J mol-1K-1 for H2(g), O2(g), and 
H2O(g) in given table 

6 

x = 0.47                 Answer 
fraction of original H2 that had 
undergone combustion 

Solving Eq  6 for x  7 

 
6.   f /p of ethane as a function of pressure at 600 K 
 
Equation Basis for the equation Eq. 

# 
 Z = 1.0000  
            - 0.000612 (p/1 bar)  
           + 2.661×10-6(p/1bar)2  
           - 1.390×10-9 (p/1bar)3 

           - 1.077×10-13(p/1bar)4  

 Given at 600 K  1 

 ln(f /p) = ∫0p[(Z-1)/p]T dp   which we derived in class (see lecture notes Part 5)  2 
 (Z-1)/p = - 0.000612  
+ 2.661×10-6(p/1 bar) 
- 1.390×10-9 (p/1bar) 2 

- 1.077×10-13(p/1bar) 3 

  From Eq 1  3 

ln(f /p) = ∫0p[(Z-1)/p]T dp  
       = - 0.000612 (p/1 bar) 
     +½• 2.661×10-6 (p/1bar) 2 

  - (1/3)•1.390×10-9 (p/1bar) 3 

  - (1/4)•1.077×10-13(p/1bar) 4 

 

  Substituting Eq 3 into Eq 2 and integrating  4 

 (f /p) =  
exp{- 0.000612 (p/1 bar) 
     +½• 2.661×10-6 (p/1bar) 2 

  - (1/3)•1.390×10-9 (p/1bar) 3 

  - (1/4)•1.077×10-13(p/1bar) 4} 
at 600 K                     Answer 

  Rearranging Eq 4  5 

 



7.   Distribution of a real gas in a gravity field  
 
Equation Basis for the equation Eq. 

# 
F = mg 
Fz+dz + dF = Fz 
  
 
 
 

See lecture notes Part 1 for starting this problem 
Pressure at any height z is determined by the column 
of fluid above that height. Start withforce arising from 
the weight of fluid in the column at z (Fz) and 
compare that with the force arising from the weight of 
the fluid in the column at z+dz. 

1 
2 
 
 

Let  ρ be the density at height z  
The mass of fluid in the column 
between z and z+dz is ρAdz 
dF = (ρAdz)g 

  
 
A is the cross sectional area of the column 

  
 
 
3 

The pressure: 
p at height z = Fz/A  
p + dp at height z+dz = Fz+dz/A 
A(p+dp) +dF = Ap 
dF = -Adp 

 
 
 
Substituting  Eq 4&5 into Eq  2 
Rearranging 

  
4 
5 
 
6 

dp = - ρgdz  Substituting Eq 6 into Eq 3  7 
ρ = M/V where M is the molar mass and V is the molar volume   
dp = - (M/V) gdz substituting for ρ in Eq 7 8 
dp/p = - (M/ZRT) gdz  Using Z = pV/RT  or  V = ZRT/p into Eq 8 9 
∫p0

p(dp/p) = - (M/ZRT) g ∫0zdz 
ln(p/p0) =  - (Mg/ZRT) z 
p = p0 exp[- (Mg/ZRT) z] 

Integrating between z = 0 and z 
 
 

10 
 
11 

(a) if Z > 1, 
exp[- (Mg/ZRT)z] > exp[- (Mg/RT)z]
That is, need to go to larger height 
to drop from p0 (at the surface) to 
the same pressure p it would have 
been had the gas been ideal. 
This means the gas distribution is 
broader when Z > 1. 
(b) if Z < 1, 
exp[- (Mg/ZRT)z] < exp[- (Mg/RT)z]
That is, don’t need to go as high to 
drop from p0 to the same pressure 
p it would have been had the gas 
been ideal. 
This means the gas distribution is 
narrower Z < 1. 

Comparing with ideal case where Z = 1 
 

  

If Z = 1+Bp 
dp/p = - [M/(1+Bp)RT] gdz 

 
Substitute this into Eq 9  

12 

{(1+Bp)/p} dp = - [Mg/RT] dz Rearranging  



∫p0
p(dp/p) + B∫p0

p dp  
                    = - (Mg/RT) ∫0zdz 
ln(p/p0) + B(p-p0)  
                    =  - (Mg/RT) z 
                                          Answer 

Integrating between z = 0 and z 
 
 
to be compared with the ideal case: 
ln(p/p0) =  - (Mg/RT) z 

 

 
8. Fugacity of a gas 
 
Equation Basis for the equation Eq. 

# 
Z = 1 + [b-(a/RT)](p/RT) 
(Z-1)/p = [b-(a/RT)]/RT 

Given 
Rearranging 

1 
2 

 ln(f /p) = ∫0p[(Z-1)/p]T dp  which we derived in class (see lecture notes Part 5) 3 
ln(f /p) = ∫0p {b-(a/RT)]/RT}T dp 
                = [b-(a/RT)]/RT}T p 

Substituting Eq 2 into Eq 3 
Integrating 

 

(f /p) = exp[(p/RT)[b-(a/RT)] 
 f  = p exp[(p/RT)[b-(a/RT)] 
                                         Answer 

  

 
9. 
 
Equation Basis for the equation Eq. 

# 
The actual chemical potential is 
μ(T,p) = μ (T) +  RTln (f/1bar)  
 

Recall that the standard state for a gas corresponds 
to a fictitious state of an ideal gas at 1 bar and 
temperature T for which the chemical potential is 
μ (T)  

1 

μ(T,p) = μ (T) +  Rln (f/1bar)  
  T             T 

Dividing Eq 1 by T 2 

(1/n) G   =  (1/n)  G   + Rln (f/1bar) 
         T                 T 

Recall that for a substance  μ = G/n where n is the 
number of moles 

3 

(1/n)[ ∂/∂T(G/T)]p = 
                     (1/n)[ ∂/∂T(G /T)]p  
                         + R∂ln (f/1bar)/∂T]p  

Take the derivative of both sides with respect to T at 
constant p 

4 

[ ∂/∂T(G/T)]p = - H/T2 The Gibbs-Helmholtz equation (see lecture notes 
Part 5) 

5 

- H/T2  = - H /T2  +R∂ln (f/1bar)/∂T]p Substitute Eq 5 into Eq 4, where H and H  are now 
molar quantities 

6 

 H  =  H   - R T2∂ln (f/1bar)/∂T]p 

                                            Q.E.D. 
H  is Hideal since the standard state at temperature T 
corresponds to a fictitious gas behaving ideally at 1 
bar, whereas H is the molar enthalpy of the real gas. 

7 

 


