Solutions to Problem Set 6

1. non- ideal gas, 1 mol 20.0 L 300 K \rightarrow 40.0 L 300 K isothermal, reversible

Equation of state: $p = R I [V^{-1} + I]$	BV 2	
Equation	Basis for the equation	Eq. #
(a)B is a constant independent of T	Given	
$\mathbf{d}\mathbf{U} = (\partial \mathbf{U}/\partial \mathbf{T})_{V}\mathbf{d}\mathbf{T} + (\partial \mathbf{U}/\partial V)_{T}\mathbf{d}V$	$\mathbf{U} = \mathbf{U}(T,V)$	1
dT = 0	Given, isothermal	2
$d\mathbf{U} = (\partial \mathbf{U} / \partial \mathbf{V})_{\mathrm{T}} \mathbf{dV}$		3
$(\partial \mathbf{U}/\partial \mathbf{V})_{T} = T(\partial p/\partial T)_{V} - p$	Derived from first and second law of thermodynamics and using cross derivatives (see lecture notes Part 4)	4
$(\partial p/\partial T)_V = \partial \{RT[V^{-1} + BV^{-2}]\}$ = R[V^{-1} + BV^{-2}]	Apply to this equation of state, where B (has units of volume) is indep of T	5
$(\partial \mathbf{U}/\partial \mathbf{V})_{T} = T(\partial p/\partial T)_{V} - p$ = $T R[V^{-1} + BV^{-2}] - RT[V^{-1} + BV^{-2}]$ = 0		
$\Delta U = 0$ Answer	From Eq 1, 2 and 5	6
$d\mathbf{H} = (\partial \mathbf{H} / \partial \mathbf{T})_{p} d\mathbf{T} + (\partial \mathbf{H} / \partial p)_{T} dp$	$\mathbf{H} = \mathbf{H}(T,p)$	
We could do this:	Derived from first and second law of thermodynamics	
$(\partial \mathbf{H}/\partial \mathbf{p})_{T} = -\mathbf{T}(\partial \mathbf{V}/\partial \mathbf{T})_{p} + \mathbf{V}$	and using cross derivatives (see lecture notes Part 4)	
But equation of state is too		
complex to derive $(\partial V / \partial T)_p$		
Use another route to get ΔH		<u> </u>
H = U + pV	Definition	7
$\Delta \mathbf{H} = \Delta \mathbf{U} + \mathbf{p}_{f} \mathbf{V}_{f} - \mathbf{p}_{i} \mathbf{V}_{i}$		
$p = R1/V + BR1/V^{-1}$	Substituting known values	8
$p_i = (0.0620576)(500)[(1720.0) + (8/20.0^2)]$		
$p_{\ell} = (0.0820578)(300)[(1/40.0) +$		
$(B/40, 0^2)$]		
$\Delta(pV) = (0.0820578)(300)B(-0.025)$		
$\Delta \mathbf{H} = 0 + (0.0820578)(300) \mathbf{B} \bullet$		9
(-0.025)		
= (8.31451J mol ⁻¹ K ⁻¹)(300)B		
• (-0.025)		
Answer		
$\Delta \mathbf{U} = \mathbf{q} + \mathbf{W}$	First law of thermodynamics	10
$q_{REV} = -W_{REV}$	From Eq. 6 and 10	11

 $p = RT[V^{-1} + BV^{-2}]$

$W = -\int p_{op} dV$	Definition	12
$p_{op} = p_{gas}$	reversible	
		13
$W_{REV} = -J [RT/V + BRT/V^2]dV$	Using equation of state for this gas and integrating	14
$= - RT In(V_{f}/V_{i}) + 2BRT[(1/V_{f})-(1/V_{i})]$		
$W_{\text{REV}} = -RT[\ln(2) + 2B(-0.025)]$	Substituting	15
$= -(8.31451 \text{J mol}^{-1} \text{K}^{-1})(300)$		
[ln(2) -0.050B]		
$= - q_{REV}$		
d S = δq _{REV} /T	Second Law of thermodynamics	16
$\Delta S = q_{REV}/T$	reversible isothermal	17
$\Delta S = + (8.31451 \text{J mol}^{-1} \text{K}^{-1}) \bullet$	From Eq 15 and 17	18
[ln(2) -0.050B] Answer		
A = U - IS	Definition	19
$\Delta \mathbf{A} = \Delta \mathbf{U} - 1 \Delta \mathbf{S}$	For constant 1 (this problem)	20
$\Delta \mathbf{A} = 0 - 300 \bullet (8.31451 \text{J mol}^{-1}\text{K}^{-1}) \bullet$	From Eq. 6, 18 and 20	21
	Definition	21
	Eor constant T (this problem)	21
$\Delta G = \Delta H - 1\Delta S$	From Eq. 9, 18 and 22	22
LG = 500 (8.5145151101 K) = [-0.025B - ln(2) +0.050B]		20
$= 300 \cdot (8.31451.1 \text{ mol}^{-1}\text{K}^{-1}) \cdot (8.31451.1 \text{ mol}^{-1}\text{K}^{-1})$		
[0.025B - In(2)] Answer		
(b) B is dependent on T		
$B = a + bT + cT^2$	Given	24
$(\partial p/\partial T)_V = \partial \{RT[V^{-1} + BV^{-2}]\}$	Just as in deriving Eq 5 but with the additional term	25
$= R[V^{-1} + BV^{-2}] + RV^{-2}(dB/dT)$	in (dB/dT)	
	Where $dB/dT = b + 2cT$	
$(\partial \mathbf{U}/\partial \mathbf{V})_{T} = T(\partial p/\partial T)_{V} - p$		
= RI[V + BV -] - RI[V + BV -]		
$\frac{\tau R V (uD/u1)}{(aU/a)/(a= PT)/^{2}(dP/dT)}$		
$(\partial \mathbf{U}/\partial \mathbf{V})_{f}^{+} = \mathbf{R} \mathbf{V} (\mathbf{U} \mathbf{U}/\mathbf{U})$	From Eq. 3 and 25	26
$= PT(dB/dT) \int V^2 d V$		20
$= RT(dB/dT)[(1/V_{f}) - (1/V_{f})]$		
$= (8.31451 \text{J mol}^{-1}\text{K}^{-1})(300)$	Note that $\Delta \mathbf{U} \neq 0$ when B is dependent on T	
$(b + 600c) \bullet [-0.025]$	·	
Answer		
$p = RT/V + BRT/V^2$	The equation for $\Delta(pV)$ is the same as when B is	27
$p_i = (0.0820578)(300)[(1/20.0) +$	independent of T	
(B/20.0 ²)]		
$p_f = (0.0820578)(300)[(1/40.0) + (0.020578)(300)](1/40.0) + (0.020578)(300)[(1/40.0) + (0.020578)(300)](1/40.0) + (0.020578)(300)[(1/40.0) + (0.020578)(300)](1/40.0) + (0.020578)(300)[(1/40.0) + (0.020578)(300)](1/40.0) + (0.020578)(300)[(1/40.0) + (0.020578)(300)](1/40.0) + (0.020578)(300)[(1/40.0) + (0.020578)(300)](1/40.0) + (0.020578)(300)[(1/40.0) + (0.020578)(300)](1/40.0) + (0.020578)(300)[(1/40.0) + (0.020578)(300)](1/40.0) + (0.020578)(300)[(1/40.0) + (0.020578)(300)](1/40.0) + (0.020578)(300)[(1/40.0) + (0.020578)(300)](1/40.0)](1/40.0) + (0.020578)(300)[(1/40.0) + (0.020578)(300)[(1/40.0) + (0.020578)(300)[(1/40.0) + (0.020578)(300)](1/40.0)](1/40.0) + (0.020578)(300)[(1/40.0) + (0.020578)]]$		
$ (B/4U.U^{-}) $		
$ \Delta(pv) = (0.0820578)(300)B(-0.025)$		

$\Delta \mathbf{H} = (8.31451 \text{J mol}^{-1} \text{K}^{-1})(300) \bullet$ (b + 600c) \ello(-0.025)	The same as in part (a) except that ΔU from Eq 26 and B = a + bT + cT ² are inserted.	28
• (-0.025)		
$= -(8.31451 \text{J mol}^{-1} \text{K}^{-1})(300)$		
0.025•[a+bT+cT ² + b + 600c] Answer		
$\Delta S = + (8.31451 \text{J mol}^{-1} \text{K}^{-1}) \bullet$	The equation is derived the same as in part (a)	29
[ln(2) -0.050B] Answer	except that $B = a + bT + cT^2$ is inserted	20
$\Delta \mathbf{A} = \Delta \mathbf{U} - I \Delta \mathbf{S}$	The same as in part (a) except that ΔU from Eq. 26 and B = a + bT + cT ² are inserted	30
$(b + 600c) \bullet (-0.025)$		
$-300 \bullet (8.31451 \text{J mol}^{-1} \text{K}^{-1}) \bullet$		
[ln(2) -0.050B] Answer		
$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$	Δ H from Eq 28 and B = a + bT + cT ² are inserted.	31
$\Delta \mathbf{G} = -(8.31451 \text{J mol}^{-1}\text{K}^{-1})(300) \bullet$		
$0.025 \bullet [a+b] + c1 + b + 600c]$ = 300e (8 31451 mol ⁻¹ K ⁻¹)e		
[ln(2) -0.050B]		
$\Delta \mathbf{G} = + (8.31451 \text{J mol}^{-1} \text{K}^{-1})(300) \bullet$		
[0.025•(a+bT+cT ²)		
- 0.025(b + 600c)- ln(2)]		
Answer		
temperature and the process is		
carried out <i>irreversibly</i>		
$\Delta \mathbf{U} = 0 \qquad \qquad \mathbf{Answer}$	All are exactly the same as in part (a) because these	
$\Delta \mathbf{H} = \mathbf{H}^{1} \mathbf{x}^{1} \mathbf$	are state functions and do not depend on the path	
- (8.31451J mol ⁻ 'K ^{-'})(300)(0.025)B	(reversible of otherwise).	
$\Delta S = + (8.31451 \text{ J mol}^{-1}\text{K}^{-1})$		
[ln(2) -0.050B] Answer		
$\Delta \mathbf{A} = -300 \bullet (8.31451 \mathrm{J mol}^{-1} \mathrm{K}^{-1}) \bullet$		
[ln(2) -0.050B] Answer		
$\Delta \mathbf{G} = 300 \bullet (8.31451 \text{J mol}^{-1}\text{K}^{-1}) \bullet$		
But diapety and Wippety are not the	What do we know about the non-state functions?	
same as in part (a).	what do we know about the non-state functions:	
$q_{IRREV} + W_{IRREV} = 0$	Because ∆U = 0 here	
q _{IRREV} < T∆S	because of Clausius inequality: $T\Delta S > q_{IRREV}$	
$W_{IRREV} > W_{REV}$	Algebraic relation! Remember W is a signed quantity.	
	Negative value means work is done by system on the surroundings. Less work then maximum work	
	appears in the surroundings for irreversible process	

2. non-ideal gas, 2 mol 10 atm 600 K \rightarrow 5 atm 300 K *irreversible* Equation of state: pV = nRT + nBp B = 0.035 L mol⁻¹ $C_p = 52.675 + 1.561 \times 10^{-2} T$ J mol⁻¹ K⁻¹

Equation	Basis for the equation	Eq.
$Vb_{T}(V_{0} U_{0}) + Tb_{V}(T_{0} U_{0}) = Ub$	$\mathbf{U} = \mathbf{U}(\top, \mathbf{V})$	# 1
$(\partial \mathbf{U}/\partial \mathbf{V})_{\mathrm{T}} = \mathrm{T}(\partial \mathrm{p}/\partial \mathrm{T})_{\mathrm{V}} - \mathrm{p}$	Derived from first and second law of thermodynamics and using cross derivatives (see lecture notes Part 4)	2
p = nRT/(V-nB)	Given equation of state	3
$(\partial p/\partial T)_V = nR/(V-nB)$	Apply to this equation of state, where B (has units of volume) is independent of T	4
$(\partial \mathbf{U}/\partial \mathbf{V})_{T} = T(\partial p/\partial T)_{V} - p$ = nRT/(V-nB) - nRT/(V-nB) = 0		
$d\mathbf{U} = C_{V}dT + 0$	From Eq 1 and 4	5
$C_p - C_V = [p + (\partial U / \partial V)_T] (\partial V / \partial T)_p$	General relation derived from $U = U(T,V)$ and the first law of thermodynamics (see lecture notes Part 2)	6
V-nB = nRT/p $(\partial V/\partial T)_p = nR/p$	Rearrange equation of state and differentiate	7
$C_{p}-C_{V} = [p +0](nR/p) = nR$	From Eq 6, 7 and 4	8
$C_V = C_p - nR = n[52.675 + 1.561 \times 10^{-2} \text{T} - 8.31451] \text{ J mol}^{-1} \text{K}^{-1}$ $C_V = 2 \text{ mol} \cdot (44.361 + 1.561 \times 10^{-2} \text{T})$ $J \text{ mol}^{-1} \text{K}^{-1}$	From Eq 8 and given C _p	9
$\Delta U = 2 \text{ mol} \bullet$ $\int (44.361 + 1.561 \times 10^{-2} \text{T}) \text{dT}$	Integrating Eq 5 and using given C_V	10
$\Delta U = 2\{44.361(T_2-T_1) + (1/2)1.561 \times 10^{-2}(T_2^2-T_1^2)\}$ = 2\{(44.361(300 - 600) + (1/2)1.561 \times 10^{-2}(300^2-600^2)\} = 2\{-13308.3 - 2107.3\} = - 30830 J Answer	Integrating Eq 5 and using given $C_{\rm V}$	11
$d\mathbf{h}_{\tau}(\mathbf{q}_{0})\mathbf{H}_{0} + \mathbf{T}\mathbf{h}_{\tau}(\mathbf{T}_{0})\mathbf{H}_{0} + \mathbf{H}\mathbf{h}_{0}$	$\mathbf{H} = \mathbf{H}(\top \mathbf{p})$	12
$(\partial \mathbf{H}/\partial \mathbf{p})_{\mathrm{T}} = -\mathrm{T}(\partial \mathrm{V}/\partial \mathrm{T})_{\mathrm{p}} + \mathrm{V}$	Derived from first and second law of thermodynamics and using cross derivatives (see lecture notes Part 4)	13
$(\partial V/\partial T)_p = nR/p$ and V = nRT/p +nB	From Eq 7 and Equation of state substituted into Eq 13	
(∂ H /∂p) _T = nB		14
$d\mathbf{H} = C_p dT + nB dp$ $\Delta \mathbf{H} = \int n(52.675 + 1.561 \times 10^{-2} T) dT$ $+ \int nB dp$	From Eq 12 and 14	15

$\Delta H = 2(52.675(T_2-T_1))$	Integrating and substituting known values	8
+ $(1/2)1.561 \times 10^{-2} (T_2^2 - T_1^2)$		
+2• 0.035 L mol ⁻¹ [p ₂ -p ₁]		
$= 2\{(52.675(300 - 600))$		
$(1/2)^{1.561 \times 10^{-2}(300^2 - 600^2)}$		
+2• 0.035[5-10]	We would have obtained the same answer by using	
•8.31451/0.0820578	H = U + pV	
$= 2\{-158025 - 21073 - 177\}$	$\Delta \mathbf{H} = \Delta \mathbf{U} + \Delta(\mathbf{pV})$ It happens that dV=0 here	
= - 35850 J Answer		
$d\mathbf{S} = (\partial \mathbf{S} / \partial T)_{p} dT + (\partial \mathbf{S} / \partial p)_{T} dp$	$\mathbf{S} = \mathbf{S}(T,p)$	12
$(\partial \mathbf{S}/\partial \mathbf{p})_T = -(\partial V/\partial T)_p$	Derived (see lecture notes Part 4) starting from	13
	$d\boldsymbol{U} = \delta q_{rev} - p dV = T d\boldsymbol{S} - p dV$	
	and use of cross derivatives	
$d\mathbf{S} = (C_p/T)dT - nRdp/p$	Using Eg 7 and 2 into Eg 12	14
$\Delta S = \ln(52.675/T + 1.561 \times 10^{-2}) dT$	Using Eq 7 and 2 into Eq 12	
- nR[dn/n		15
$\Delta \mathbf{S} = 2l$	Integrating and substituting given values	16
$52.675\ln(T_0/T_1)+1.561\times10^{-2}(T_0-T_1)$		
$-8.31451\ln(n_2/n_1)$		
$\Lambda S = 252 675 \ln(300/600)$		
$\pm 1.561 \times 10^{-2} (300-600)$	We would have obtained the same answer by using	
- 8 31451ln(5/10) \	$d\mathbf{S} = (\partial \mathbf{S} / \partial \mathbf{T})_V d\mathbf{T} + (\partial \mathbf{S} / \partial \mathbf{V})_T d\mathbf{V}$	
0.0140111(0/10)}	$(\partial \mathbf{S}/\partial \mathbf{V})_{T} = (\partial p/\partial T)_{V}$ but it happens that dV=0 here, so	
Λ S = -52 12 .1 K ⁻¹ Answer	$\Delta \mathbf{S} = \int C_{v} dT/T = \text{same answer}$	
$\mathbf{A} = \mathbf{U} - \mathbf{T}\mathbf{S}$	Definition	
$\Delta \mathbf{A} = \Delta \mathbf{U} - \Delta (\mathbf{TS})$		
$\mathbf{S}_{aba} \mathbf{f} = \mathbf{S}_{aba} \mathbf{f} + \mathbf{A}\mathbf{S}$	We already have ΔU . Since dT is not zero for this	
$\Lambda(TS) = 300S_{abc} - 600[S_{abc} + \Lambda S]$	problem, it requires that we know absolute entropy.	
$\Delta (10) = -30830 \text{ J}$	We have to have either the absolute entropy for the	
$-300S_{aba} = 600[S_{aba} = 52.12]$	gas at the initial state or at the final state in order to	
	calculate $\Delta \mathbf{A}$. If we are given data to calculate $\mathbf{S}_{abs,i}$,	
	then we can do it.	
G = H -⊺S	Definition	
$\Delta \mathbf{G} = \Delta \mathbf{H} - \Delta (T \mathbf{S})$	We already have ΔH .	
$\mathbf{S}_{\text{abs, f}} = \mathbf{S}_{\text{abs, i}} + \Delta \mathbf{S}$	As from above argument, we have to use the	
$\Delta(TS) = 300 S_{abs,i} - 600 [S_{abs,i} + \Delta S]$	absolute entropy for the gas at the initial state and at	
	the final state in order to calculate ΔG	
∆ G = - 35850 J		

3. non- ideal gas,	2 mol	p _i =1 atm T	_i =300 K	\rightarrow	$p_f = 11 \text{ atm } T_f = 300 \text{ K}$
		$V_i = a + f$	RT _i /p _i		V_f = a + RT_f/p_f
Equation of	state: p\	/ = RT +ap	a = a(T)		

Equation	Basis for the equation	Eq.
		#
$d\mathbf{U} = (\partial \mathbf{U} / \partial \mathbf{T})_{V} d\mathbf{T} + (\partial \mathbf{U} / \partial \mathbf{V})_{T} d\mathbf{V}$	$\mathbf{U} = \mathbf{U}(T, V)$	1
$(\partial \mathbf{U}/\partial \mathbf{V})_{\mathrm{T}} = \mathrm{T}(\partial \mathrm{p}/\partial \mathrm{T})_{\mathrm{V}} - \mathrm{p}$	Derived from first and second law of thermodynamics	2
	and using cross derivatives (see lecture notes Part 4)	
pV = RT +ap	Given equation of state	3
p = RT/(V-a), a=a(T)		
(∂p/∂T) _V	Apply to this equation of state	4
$= R/(V-a) + RT(da/dT)/(V-a)^{2}$		
$(\partial \mathbf{U}/\partial \mathbf{V})_{T} = T(\partial \mathbf{p}/\partial \mathbf{T})_{V} - p$	Using Eq 2	
$= p + RT^{2}(da/dT)/(V-a)^{2} - p$		F
$(\partial \mathbf{U}/\partial \mathbf{V})_{T} = RT^2(da/dT)/(V-a)^2$		5
Q.E.D.		0
$\mathbf{d}\mathbf{H} = (\partial \mathbf{H}/\partial \mathbf{I})_{p}\mathbf{d}\mathbf{I} + (\partial \mathbf{H}/\partial \mathbf{p})_{T}\mathbf{d}\mathbf{p}$	$\mathbf{H} = \mathbf{H}(1,\mathbf{p})$	6
$(\partial \mathbf{H}/\partial \mathbf{p})_{\mathrm{T}} = -1(\partial \mathbf{V}/\partial \mathbf{I})_{\mathrm{p}} + \mathbf{V}$	Derived from first and second law of thermodynamics	1
	and using cross derivatives (see lecture notes Part 4)	
V = RI/p + a	From Equation of state (Eq 3)	0
$(\partial V/\partial I)_p = R/p + da/dI$		ð
$(\partial \mathbf{H}/\partial \mathbf{p})_{\mathrm{T}} = -1(\partial \mathbf{V}/\partial \mathbf{I})_{\mathrm{p}} + \mathbf{V}$	Outotituting Fr. 0 into Fr. 7	
= -RI/p - I(da/dI) + RI/p + a	Substituting Eq 8 into Eq 7	0
$(\partial \mathbf{H}/\partial \mathbf{p})_{\mathrm{T}} = \mathbf{a} - \mathbf{I}(\mathbf{d}\mathbf{a}/\mathbf{d}\mathbf{I})$ Q.E.D.		9
$-200 + 0.005 + 0.0^{-2}$	We will need da/d1 in Eq 5 and Eq 9	10
$a = 0.02 + 0.005 \times 10^{-1} (1-300)$	1 ne given 3 values of a(1) changes linearly with 1 by	
L (III)		
$(da/d1) = 0.005 \times 10^{-1}$ L mol K		4
$d\mathbf{U} = (\partial \mathbf{U}/\partial \mathbf{I})_{V} d\mathbf{I} + (\partial \mathbf{U}/\partial \mathbf{V})_{T} d\mathbf{V}$	$\mathbf{U} = \mathbf{U}(1, \mathbf{V})$	
$d\mathbf{U} = C_V d\mathbf{I} + R\mathbf{I}^2 (da/d\mathbf{I})/(V-a)^2 dV$	Substituting Eq. 5 into Eq.1	11
In this problem $dT = 0$	Integrating Eq. 11	
$\Delta \mathbf{U} = 2 \text{ mole}$		
$RI^{-}(da/dI) J(V-a)^{-} dV$		10
$= 2 \text{ mol} \bullet \text{RI}^{-}(\text{da/dI}) \bullet (-1)(\text{V-a})^{-1}_{i}$	Using equation of state to express $(V_{-2})^{-1}$	12
= - 2 mole RI ² (da/dI) • p/RI $ _i$	Using equation of state to express (V-a)	13
$= -2 \operatorname{mol} \bullet I (\operatorname{da/d} I) \bullet [p_f - p_i]$	substituting values	10
$\Delta \mathbf{U} = -2 \text{ mol} \bullet (300 \text{ K})(0.005 \times 10^{-2} \text{ L})$		
moi 'K'') • [11 - 1] atm	Using conversion factor 8.31451 J / 0.0820578 L atm	
$\Delta U = -0.30 \text{ L atm} \text{ or } -30.4 \text{ J}$		14
Answer		
$\mathbf{d}\mathbf{H} = (\partial \mathbf{H}/\partial \mathbf{I})_{p}\mathbf{d}\mathbf{I} + (\partial \mathbf{H}/\partial \mathbf{p})_{T}\mathbf{d}\mathbf{p}$	$\mathbf{H} = \mathbf{H}(1,\mathbf{p})$	6
d H = 0 + {a - I (da/dI)}dp	Using a I = 0 and Eq 9 into Eq 6	15

$\Delta H = 2 \text{ mol} \bullet$	Integrating Eq 15	
{0.02 L mol ⁻¹ - (300 K)(0.005×10 ⁻¹	² L	
$mol^{-1}K^{-1}$) • [p _f - p _i]		16
$\Delta H = 2 \text{ mol} \bullet 0.005 \text{ L mol}^{-1}$	Substituting values	
● [11 - 1] atm		
∆ H = +0.10 L atm or +10.1 J		
Answe	er 🛛	
W = -∫p _{op} dV	Maximum work is obtained by carrying out the	17
W _{max} = -∫p _{gas} dV	process reversibly, in which case $p_{op} = p_{gas}$	
= -2 mol ∫RT (V-a)⁻¹dV	Integrating	18
= -2 mol RT ln $[(V_f - a)/(V_i - a)]$	Using the equation of state	
= -2 mol RT ln $(p_i/(p_f))$	Substituting values	
$W_{max} = -2 \text{ mol} \bullet$		
(8.31451 J mol⁻¹ K⁻¹)(300K)ln(1/1	1)	
W _{max} = +11963 J Answe	r	
d G = Vdp - S dT	one of the fundamental equations of thermodynamics	19
-	(Lecture notes Part 5)	
dT = 0 for this process		
$\Delta \mathbf{G} = Vdp = 2 \text{ mol} \bullet (RT/p + a)$	p Using the equation of state	
$\Delta \mathbf{G} = 2 \mod \{ \operatorname{RTln}(p_f/p_i) + a[p_f-p_i] \}$] } Integrating	
= 2 mol•		
{(8.31451 J mol ⁻¹ K ⁻¹)(300K	•	
In(11/1) + 0.02 L mol ⁻ '[11-1		
atm • 8.31451J /0.0820578 L atm	1}	
∆ G = +11963 J + 20.26 J		
$\Delta \mathbf{G} = +11983 \mathbf{J} \qquad \mathbf{Answe}$	r	
$d\mathbf{A} = -pdV - SdI$	one of the fundamental equations of thermodynamics	
	(Lecture notes Part 5)	
dI = 0 for this process	Internetie e	
$\Delta \mathbf{A} = - \operatorname{JpdV} = - \operatorname{JRIdV}(V - a)$	Integrating	
$= -2 \mod R \prod [(v_f - a)/(v_i - a)]$	Using the equation of state	
$-$ - 2 mol RT m ($p_i/(p_f)$	Substituting the values	
$\begin{vmatrix} \Delta \mathbf{A} = -2 0 \bullet \\ (8.31451 mo ^{-1} k^{-1})(200 k) \circ (1/4) \end{vmatrix}$		
(0.3143131101 K)(300 K)(1/1)	Note that $\Delta \mathbf{A} = W_{\text{max}}$ as it should be	

4. 0.5 mol CH₄(g) at 298 K is burned in excess O_2 under adiabatic conditions. T_{final} = ?

The reaction at 298 K $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$

Standard enthalpy of combustion at 298 K = $\Delta_{comb}H_{298}^{\ominus}$ = $2\Delta_{form}H_{298}^{\ominus}(H_2O(I)) + \Delta_{form}H_{298}^{\ominus}(CO_2(g)) - \Delta_{form}H_{298}^{\ominus}(CH_4(g)) - 2\Delta_{form}H_{298}^{\ominus}(O_2(g))$

Equation	Basis for the equation	Eq. #
$\Delta_{\text{comb}} \mathbf{H}_{298}^{\ominus} = 2\Delta_{\text{form}} \mathbf{H}_{298}^{\ominus} (\mathbf{H}_2 \mathbf{O}(\mathbf{I})) $ + $\Delta_{\text{form}} \mathbf{H}_{298}^{\ominus} (\mathbf{CO}_2(\mathbf{g})) $ - $\Delta_{\text{form}} \mathbf{H}_{298}^{\ominus} (\mathbf{CH}_4(\mathbf{g}))$	$\Delta_{\text{form}} \mathbf{H}_{298}^{\ominus}$ for the elements in their standard state is defined as zero	1
= 2(-285.83)+(-393.51)-(-74.81) kJ mol ⁻¹	Using $\Delta_{form} H_{298}$ given in the provided table	
∆ _{comb} H ₂₉₈ [⊖] = - 890.36 kJ mol ⁻¹	for $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$ all at 298 K	2
(a) at constant pressure ~ 1 bar	q_p = 0 adiabatic (insulated container and piston)	
$ \begin{array}{c} 10 \mod O_2 \\ 298 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
$\mathbf{d}\mathbf{H} = (\partial \mathbf{H}/\partial \mathbf{I})_{p}\mathbf{d}\mathbf{I} + (\partial \mathbf{H}/\partial \mathbf{p})_{T}\mathbf{d}\mathbf{p}$	$\mathbf{H} = \mathbf{H}(1,\mathbf{p})$	3
$d\mathbf{H} = C_p d\mathbf{I} + 0$	Given $dp = 0$	4
$\Delta \mathbf{H} = \mathbf{q}_{\mathbf{p}}$	Civon adiabatia	5
$q_p = 0$		7
$\begin{array}{l} \Delta \mathbf{H} = \frac{1}{2} \Delta_{\text{comb}} \mathbf{H}_{298} \\ + 0.5 \int_{298} {}^{\text{Tf}} \mathbf{C}_{p} (\mathbf{CO}_{2} \mathbf{g}) d\mathbf{T} \\ + 9 \int_{298} {}^{\text{Tf}} \mathbf{C}_{p} (\mathbf{O}_{2} \mathbf{g}) d\mathbf{T} \\ + 1 \int_{298} {}^{373} \mathbf{C}_{p} (\mathbf{H}_{2} \mathbf{Oliq}) d\mathbf{T} \\ + 1 \bullet \Delta_{\text{vap}} \mathbf{H}_{373} (\mathbf{H}_{2} \mathbf{O}) \\ + 1 \int_{373} {}^{\text{Tf}} \mathbf{C}_{p} (\mathbf{H}_{2} \mathbf{Og}) d\mathbf{T} = 0 \end{array}$	Need to sum up all the contributions to ΔH	/

0.5(- 890.36×10 ³)	Substitute values of $\Delta \mathbf{H}$ in J mol ⁻¹ from Eq 2 and into	8
+ 0.5(37.11)(T _f - 298)	Eq 7	
+ 9(29.355)(T _f - 298)	and look up C_p in J mol ⁻¹ K ⁻¹ for CO ₂ (g), O ₂ (g),	
+1(75.291)(373-298)	$H_2O(liq)$ and $H_2O(g)$ in given table	
+ 1(40.656×10 ³)		
$+ 1(33.58)(T_f - 373) = 0$		
T _f = 1567 K Answer	Solving Eq 8 for T _f	9
(b) at constant volume	adiabatic (insulated container) with rigid walls	
initial final		
0.5 mol CH₄ 0.5 mol CO2(g)		
10 mol O ₂ [10-0.5] mol O2(g)		
0.5(2) mol H ₂ O(g)		
298 K $T_f = ?$		
$d\mathbf{U} = (\partial \mathbf{U} / \partial \mathbf{T})_{V} d\mathbf{T} + (\partial \mathbf{U} / \partial V)_{T} d\mathbf{V}$	$\mathbf{U} = \mathbf{U}(1, \mathbf{V})$	10
d U = (∂ U /∂T) _V dT + 0	Given dV = 0	11
$\Delta \mathbf{U} = \mathbf{q}_{\mathbf{V}}$	Oiver adiabatia	12
$q_V = 0$	Given adiabatic	13
$\Delta \mathbf{U} = \frac{1}{2} \Delta_{\text{comb}} \mathbf{U}_{298} \Theta$	Need to sum up all the contributions to ΔU	14
$+ 0.5J_{298}$ C _V (CO ₂ g)dT		
$+9J_{298}^{"}C_{V}(O_{2}g)dT$		
+ 1 $J_{298}^{3/3}$ C _V (H ₂ Oliq)dT		
+ 1•∆ _{vap} U ₃₇₃ (H ₂ O)		
$+ 1 J_{373}$ C _V (H ₂ Og)dT = 0		1.5
$\mathbf{H} = \mathbf{U} + \mathbf{pV}$	Definition	15
$\Delta \mathbf{H} = \Delta \mathbf{U} + \Delta (\mathbf{pV})$		16
$\Delta_{\rm comb} \mathbf{H}_{298} \stackrel{\ominus}{=} \Delta_{\rm comb} \mathbf{U}_{298} \stackrel{\ominus}{=}$	Apply Eq 16 to the reaction $CH_4(g) + 2O_2(g) \rightarrow$	1/
$+(pV)_{products} - (pV)_{reactants}$	$CO_2(g) + 2H_2O(I)$ at 298 K	10
$(pV)_{products} = (298 R)^{-1}$	Assuming ideal gas benavior for reactants and	18
$(pV)_{reactants} = (290 \text{ K}) 3$ $(pV)_{reactants} = -2(298 \text{ R})$	products, neglecting pv for liquid	
= -2(298)(8.31451)		
$(pV)_{products} - (pV)_{reactants} =$		10
$\Delta_{\text{comb}} U_{200} = -890.36 \times 10^3$	Substituting the values from Eq. 2 & 19 into Eq. 17	20
- (-4955)		
$= -885.40 \times 10^3 \text{ J mol}^{-1}$		21

$\Delta_{vap}H_{373}^{\ominus} = \Delta_{vap}U_{373}^{\ominus}$	Apply Eq 16 to vaporization	22
+ $(pV)_{gas}$ - $(pV)_{liq}$		
$\Delta_{vap} \mathbf{U}_{373}^{\ominus} = \Delta_{vap} \mathbf{H}_{373}^{\ominus} - \Delta(pV)$		23
$\Delta(pV) = (373R) = 3101 \text{ J mol}^{-1}$	Assuming ideal gas behavior for gas and neglecting pV for liquid	24
$\Delta_{vap} \mathbf{U}_{373} \ominus = (40.656 \times 10^3) - 3101$	Substituting the values	
$= 37.554 \times 10^3 \text{ J mol}^{-1}$		25
$\Delta \mathbf{U} = \frac{1}{2} (-885.40 \times 10^3)$	Using values for Eq 21 & 25 into Eq 14 and looking	26
+ 0.5(28.8)(T _f - 298)	up C _V values in J mol ⁻¹ K ⁻¹ for CO ₂ (g), O ₂ (g), H ₂ O(liq)	
+ 9(21.0)(T _f - 298)	and $H_2O(g)$ in given table	
+1(75.2)(373-298)		
+ 1(37.554×10 ³)		
$+ 1(25.3)(T_f - 373) = 0$		
T _f = 2053 K Answer	Solving Eq 26 for T _f	
Note that this is a higher final	This is because all of the chemical energy released	
temperature than the final	by the reaction at <i>constant volume</i> went into raising	
temperature reached in doing the	the temperature of the products, whereas, some of	
combustion at constant pressure.	the chemical energy released by the reaction at	
	constant pressure went into Work against $p_{op} = 1$ bar.	

5. The formation of $H_2O(g)$ at 298 K given $\Delta_{\text{form}} \mathbf{H}^{\Theta}_{298} = -241.82 \text{ kJ mol}^{-1}$ Initial

 $H_2(g) + {}^1\!\!/_2O_2(g) \rightarrow$

 $H_2O(g)$

Final 1 mol H₂(g)

(1-x) mol H₂(g) (10-1/2 x) mol O₂(g) $x \mod H_2O(g)$ T = 2000 K

T = 298 constant pressure

10 mol O₂(g)

Equation	Basis for the equation	Eq.
		#
set up the problem as shown above	Recognize that the reaction is that for the formation of $H_2O(g)$	
$d\mathbf{H} = (\partial \mathbf{H} / \partial \mathbf{T})_{p} d\mathbf{T} + (\partial \mathbf{H} / \partial p)_{T} dp$	$\mathbf{H} = \mathbf{H}(T,p)$	1
$d\mathbf{H} = C_{p}dT + 0$	Given dp = 0	2
$\Delta \mathbf{H} = \mathbf{q}_{\mathbf{p}}$		3
$q_p = 0$	Assume that all the Δ_{rxn} H is accounted for by the final temperature of 2000 K, i.e., as if H ₂ was burned in an insulated cylinder/piston at ~ 1 atm or 1 bar.	4
$\Delta \mathbf{H} = \chi \Delta_{\text{form}} \mathbf{H}_{298} \mathbf{\Theta}$	Need to sum up all the contributions to ΔH	5
+ (1- <i>x</i>) ∫ ₂₉₈ ²⁰⁰⁰ C _p (H₂g)dT		
+ (10-½ 𝒴) ∫ ₂₉₈ ²⁰⁰⁰ C _p (O₂g)dT		
+ $\chi \int_{298}^{2000} C_p(H_2Og) dT = 0$		

$x (-241.82 \times 10^{3}) + (1-x) (28.824)(2000 - 298) + (10 - \frac{1}{2}x)(29.355)(2000 - 298) + x (33.58)(2000 - 298) = 0$	Substitute value of $\Delta_{form} \mathbf{H}_{298}^{\Theta}$ in J mol ⁻¹ into Eq 5 and look up C_p in J mol ⁻¹ K ⁻¹ for H ₂ (g), O ₂ (g), and H ₂ O(g) in given table	6
x = 0.47Answerfraction of original H2 that hadundergone combustion	Solving Eq 6 for <i>x</i>	7

6. f/p of ethane as a function of pressure at 600 K

Equation	Basis for the equation	Eq.
		#
Z = 1.0000	Given at 600 K	1
- 0.000612 (p/1 bar)		
+ 2.661×10 ⁻⁶ (p/1bar) ²		
- 1.390×10 ⁻⁹ (p/1bar) ³		
- 1.077×10 ⁻¹³ (p/1bar) ⁴		
$\ln(f/p) = \int_0^p [(Z-1)/p]_T dp$	which we derived in class (see lecture notes Part 5)	2
(Z-1)/p = - 0.000612	From Eq 1	3
+ 2.661×10⁻ ⁶ (p/1 bar)		
- 1.390×10 ⁻⁹ (p/1bar) ²		
- 1.077×10 ⁻¹³ (p/1bar) ³		
$\ln(f/p) = \int_0^p [(Z-1)/p]_T dp$	Substituting Eq 3 into Eq 2 and integrating	4
= - 0.000612 (p/1 bar)		
+½• 2.661×10 ⁻⁶ (p/1bar) ²		
$-(1/3) \bullet 1.390 \times 10^{-9} (p/1 bar)^{3}$		
$-(1/4) \bullet 1.077 \times 10^{-13} (p/1bar)^4$		
(ƒ/p) =	Rearranging Eq 4	5
exp{- 0.000612 (p/1 bar)		
+½• 2.661×10 ⁻⁶ (p/1bar) ²		
- (1/3)•1.390×10 ⁻⁹ (p/1bar) ³		
$(1/4) \bullet 1.077 \times 10^{-13} (p/1bar)^{4}$		
at 600 K Answer		

7. Distribution of a real gas in a gravity field

Equation	Basis for the equation	Ea.
1		#
F = ma	See lecture notes Part 1 for starting this problem	1
$F_{7+d7} + dF = F_7$	Pressure at any height z is determined by the column	2
	of fluid above that height. Start withforce arising from	-
	the weight of fluid in the column at z (F_{z}) and	
	compare that with the force arising from the weight of	
	the fluid in the column at z+dz.	
Let a be the density at height z		
The mass of fluid in the column		
between z and z+dz is aAdz	A is the cross sectional area of the column	
dE = (aAdz)a		3
The pressure:		•
n at height $z = F_{-}/\Delta$		4
$p = dr height 2 = r_2/A$ $p + dp = t = beight z + dz = F_{-1,1}/A$		5
A(n+dn) + dF = An	Substituting Eq.485 into Eq. 2	5
dF = -Adp	Rearranging	6
dp = - pqdz	Substituting Eg 6 into Eg 3	7
$\rho = M/V$	where M is the molar mass and V is the molar volume	-
dp = -(M/V) qdz	substituting for ρ in Eq.7	8
dp/p = -(M/ZRT) dz	Using $Z = pV/RT$ or $V = ZRT/p$ into Eq.8	9
$\int_{a}^{b} (dp/p) = -(M/ZRT) q \int_{a}^{z} dz$	Integrating between $z = 0$ and z	10
$\ln(n/n_{o}) = -(Mq/ZRT) z$		
$n = n_{1} \exp[-(Ma/7PT) z]$		11
$p = p_0 exp[-(mg/2KT)/2]$	Comparing with ideal case where $7 = 1$	
$(a) \parallel Z \geq 1$, exp[-(Ma/7RT)z] > exp[-(Ma/RT)z]	Companing with ideal case where Z = 1	
That is need to go to larger height		
to drop from p_{0} (at the surface) to		
the same pressure n it would have		
been had the gas been ideal		
This means the gas distribution is		
broader when $7 > 1$		
(b) if $7 < 1$		
$(0) \parallel \mathbb{Z} < 1$, evp[-(Ma/7RT)z] < evp[-(Ma/RT)z]		
That is don't need to go as high to		
dron from n_0 to the same pressure		
n it would have been had the das		
been ideal.		
This means the gas distribution is		
narrower Z < 1.		
If Z = 1+Bp		12
dp/p = - [M/(1+Bp)RT] gdz	Substitute this into Eq 9	
{(1+Bp)/p} dp = - [Mg/RT] dz	Rearranging	

$\int_{p0}^{p} (dp/p) + B \int_{p0}^{p} dp$	Integrating between $z = 0$ and z	
= - (Mg/RT) ∫₀ ^z dz		
$ln(p/p_0) + B(p-p_0)$	to be compared with the ideal case:	
= - (Mg/RT) z	$\ln(p/p_0) = -(Mg/RT) z$	
Answer		

8. Fugacity of a gas

Equation	Basis for the equation	Eq.
		#
Z = 1 + [b-(a/RT)](p/RT)	Given	1
(Z-1)/p = [b-(a/RT)]/RT	Rearranging	2
$\ln(f/p) = \int_0^p [(Z-1)/p]_T dp$	which we derived in class (see lecture notes Part 5)	3
In(ƒ́/p) = ∫₀ ^p {b-(a/RT)]/RT} _T dp	Substituting Eq 2 into Eq 3	
= [b-(a/RT)]/RT} _T p	Integrating	
(f/p) = exp[(p/RT)[b-(a/RT)]		
$f = p \exp[(p/RT)[b-(a/RT)]$		
Answer		

9.

		-
Equation	Basis for the equation	Eq.
		#
The actual chemical potential is	Recall that the standard state for a gas corresponds	1
$\mu(T n) = \mu^{\Theta}(T) + RTln (f/1har)$	to a fictitious state of an ideal gas at 1 bar and	
$\mu(1,p) = \mu(1) + 1(1) + 1(1) + 0(1)$	temperature T for which the chemical notential is	
	μ°(1)	
$\mu(T,p) = \mu^{\ominus}(T) + Rln(f/1bar)$	Dividing Eq 1 by T	2
ТТ		
$(1/n)$ <u>G</u> = $(1/n)$ <u><u>G</u>^{Θ} + Rln (f/1bar)</u>	Recall that for a substance $\mu = \mathbf{G}/n$ where n is the	3
	number of moles	
$(1/n)[\partial/\partial T(G/T)]_n =$	Take the derivative of both sides with respect to T at	4
	constant p	
+ R∂ln (<i>f</i> /1bar)/∂1] _p		
$\left[\partial/\partial T(\mathbf{G}/T) \right]_{p} = -\mathbf{H}/T^{2}$	The Gibbs-Helmholtz equation (see lecture notes	5
	Part 5)	
- H /T ² = - H ^{Θ} /T ² + R∂ln (<i>f</i> /1bar)/∂T] ₀	Substitute Eq 5 into Eq 4, where H and H ^e are now	6
y , 19	molar quantities	
H = H ^{Θ} - R T ² ∂ ln (<i>f</i> /1bar)/ ∂ Tl _n	\mathbf{H}^{Θ} is $\mathbf{H}_{ideal}^{\Theta}$ since the standard state at temperature T	7
	corresponds to a fictitious gas behaving ideally at 1	
Q.L.D.	har whereas H is the molar enthalow of the real day	
	bar, whereas it is the motal chinapy of the real gas.	