Solutions to Problem Set 7

1. (a) rhombic sulfur \rightarrow monoclinic sulfur

Equation	Basis for the equation	Eq. $\#$
$\mathrm{dG}=\mathrm{Vdp}-\mathrm{SdT}$	one of the four fundamental equations of thermodynamics	1
$\int \mathrm{dG}=\int \mathrm{Vdp}-\int \mathbf{S d T}$	integrate between (1 bar, 298 K) and (1 bar, T K)	2
$\mathbf{G}^{\ominus} \mathbf{T}-\mathbf{G}^{\ominus}{ }_{298}=0-\left[\mathbf{T} \mathbf{S}^{\ominus} \mathrm{T}-298 \mathbf{S}^{\ominus}{ }_{298}\right]$		3
$\begin{aligned} & \mathbf{G}^{\ominus}=\mathbf{G}^{\ominus}{ }_{298}-\left[\mathbf{T} \mathbf{S}^{\ominus}-298 \mathbf{S}^{\ominus}{ }_{298}\right] \\ & \mathbf{G}^{\ominus}=\mathbf{G}^{\ominus}{ }_{298}-[\mathbf{T}-298] \cdot \mathbf{S}^{\ominus}{ }_{298} \end{aligned}$	Assume that $\mathbf{S}^{\ominus}=\mathbf{S}^{\ominus}{ }_{298}$ since given that the entropies vary only slightly with temperature for sulfur	4
$\begin{aligned} & \mathbf{G}^{\ominus}{ }_{\mathrm{T}, \mathrm{r}}=\mathbf{G}^{\ominus}{ }_{298, \mathrm{r}}-[\mathbf{T}-298] \cdot \mathbf{S}^{\ominus}{ }_{298, \mathrm{r}} \\ & \mathbf{G}^{\ominus}{ }_{\mathrm{T}, \mathrm{~m}}=\mathbf{G}^{\ominus}{ }_{298, \mathrm{~m}}-[\mathrm{T}-298] \cdot \mathbf{S}^{\ominus}{ }_{298, \mathrm{~m}} \end{aligned}$	Write this for rhombic and monoclinic sulfur	5
$\mathbf{G}^{\ominus}{ }_{\mathrm{T}, \mathrm{r}}=\mathbf{G}^{\ominus}{ }_{\mathrm{T}, \mathrm{m}}$	At temperature T rhombic and monoclinic sulfur are in equilibrium at 1 bar	6
$\begin{aligned} \mathbf{G}^{\ominus}{ }_{298, r}- & {[\mathbf{T}-298] \cdot \mathbf{S}^{\ominus}{ }_{298, \mathrm{r}} } \\ & =\mathbf{G}^{\ominus}{ }_{298, \mathrm{~m}}-[\mathrm{T}-298] \cdot \mathbf{S}^{\ominus}{ }_{298, \mathrm{~m}} \end{aligned}$	Substituting Eq 5 into Eq 6	7
$0.0-[\mathrm{T}-298] \bullet 7.62=23-[\mathrm{T}-298] \bullet 7.78$	Substituting the numerical values into Eq. 7	8
$\mathrm{T}=441.8 \mathrm{~K} \quad$ Answer	Solving for T. At this temperature rhombic and monoclinic sulfur are in equilibrium at 1 bar	9
	Sketch μ^{\ominus} vs. T for rhombic and monoclinic sulfur. The slope of the $\mu^{\ominus}(\mathrm{T})$ vs. T plot is $-\mathbf{S}^{\ominus}$ By the way, this problem is an example in lecture notes part 6.	10

1. (b) For equilibrium to be established (no more net influx of water from the water side through the membrane to the glucose solution side), the chemical potential of water should be the same on both sides of the membrane.
On the solution side of the membrane there is an additional pressure π arising from the column of solution. The osmotic pressure is the additional pressure that needs to be applied to the solution side to achieve equilibrium with the pure solvent at pressure p.

For the ideal solution, we can use mole fraction instead of activity

Equation	Basis for the equation	Eq. \#
$\mu^{*}{ }_{\text {, }, \text { liquid }}=\mu^{*}{ }_{\text {A,vapor }}$	For pure liquid A in equilibrium with its own vapor at temperature T (* means pure)	1
$\mu_{\mathrm{A}, \text { liquid solution }}=\mu_{\mathrm{A}, \mathrm{vapor}}$	For A in solution of A and B, in equilibrium with the vapor containing both A and B	2
$\mu_{\mathrm{A}, \text { vapor }}=\mu^{\ominus}{ }_{\mathrm{A}, \mathrm{T}}+\mathrm{RT} \ln \left(\mathrm{p}_{\mathrm{A}} / 1\right)$	For an ideal gas at temperature T (We assume ideal vapor for this problem ; if non-ideal must use f_{A} instead of p_{A})	3
$\mu_{\mathrm{A}, \text { vapor }}=\mu^{\ominus} \mathrm{A}, \mathrm{T}+\mathrm{RT} \ln \left(\mathrm{p}_{\mathrm{A}} / 1\right)$	For ideal vapor over a solution of A and B	4
$\mu^{*}{ }_{\text {, vapor }}=\mu^{\ominus}{ }_{\text {A }, T}+\mathrm{RT} \ln \left(\mathrm{p}^{*}{ }_{\mathrm{A}} / 1\right)$	For ideal vapor over pure liquid A	5
$\begin{aligned} & \mu_{\mathrm{A}, \text { liquid solution }}-\mu_{\mathrm{A}, \text { liquid }}^{*} \\ & =\left\{\mu^{\ominus_{\mathrm{A}, \mathrm{~T}}}+\mathrm{RT} \ln \left(\mathrm{p}_{\mathrm{A}} / 1\right)\right\} \\ & \quad-\left\{\mu^{\ominus_{A}, \mathrm{~T}}+\mathrm{RT} \ln \left(\mathrm{p}^{*}{ }_{\mathrm{A}} / 1\right)\right\} \end{aligned}$	Eq 2 minus Eq 1	6
$\mu_{A, \text { liquid solution }}-\mu^{*}{ }_{A, \text { liquid }}=R T \ln \left(p_{A} / p^{*}{ }_{A}\right)$		7
$\left(p_{A} / p^{*}{ }_{A}\right)=x_{A}$	For an ideal solution, Raoult's law holds, where x_{A} is the mole fraction of A in the liquid solution	8
$\mu_{A, \text { liquid solution }}-\mu^{*}{ }_{\text {A, liquid }}=R T \ln \mathrm{X}_{\mathrm{A}}$		9
$\mu^{*}{ }_{\text {w, liquid }}(\mathrm{T}, \mathrm{p})$	For water in pure liquid water under pressure p and temperature T	10
$\begin{aligned} & \mu_{w, \text { liquid solution }}\left(T, p+\pi, x_{w}\right) \\ & \quad-\mu^{*}{ }_{w, \text { liquid }}(T, p+\pi)=R T \ln x_{w} \end{aligned}$	For water in solution in which its mole fraction is x_{w} under pressure $p+\pi$ and temperature T	11
$\mu^{*}{ }_{w, \text { liquid }}(T, p)=\mu_{w, \text { liquid solution }}\left(T, p+\pi, x_{w}\right)$	At equilibrium, chemical potential of water is the the same on both sides of the membrane	12

$\begin{gathered} \mu^{*}{ }_{w, \text { liquid }}(T, p)-\mu_{w, \text { liquid }}(T, p+\pi) \\ =R T \ln x_{w} \end{gathered}$	Substitute Eq 12 into Eq 11	13
$\begin{gathered} \mu_{w, \text { liquid }}(\mathrm{T}, \mathrm{p}+\pi)-\mu^{*} \mathrm{w}_{\text {, liquid }}(\mathrm{T}, \mathrm{p})= \\ -\mathrm{RT} \ln \mathrm{x}_{\mathrm{w}} \end{gathered}$	Rearrange	14
$\mathrm{dG}=\mathrm{Vdp}-\mathbf{S d T}$	one of the four fundamental equations of thermodynamics	15
$\begin{aligned} & \mathrm{d} \mu=(\partial \mu / \partial \mathrm{p})_{T} \mathrm{dp}+(\partial \mu / \partial \mathrm{T})_{\mathrm{p}} \mathrm{dT} \\ & \mathrm{~d} \mu=(\partial \mu / \partial \mathrm{p})_{T} \mathrm{dp}=\mathrm{Vdp} \end{aligned}$	$\mu=\mu(\mathrm{T}, \mathrm{p})$ apply it to constant temperature as in this problem and identify $(\partial \mu / \partial \mathrm{p})_{T}$	16
$\begin{aligned} & \mu_{{ }^{*} w, \text { liquid }}(T, p+\pi)-\mu^{*}{ }_{w, \text { liquid }}(T, p) \\ & \quad=\int_{p}^{p+\pi}(\partial \mu / \partial p)_{T} d p \\ & =\int_{p} p^{+\pi} V d p=V(p+\pi-p)=V \pi \end{aligned}$	Identify the integral which produced the LHS of Eq 14	17
$V \pi=-\mathrm{RT} \ln \mathrm{x}_{\mathrm{w}}$	From Eq 14 and 15	18
$\ln \mathrm{x}_{\mathrm{w}}=\ln \left(1-\mathrm{x}_{\mathrm{G}}\right) \approx-\mathrm{x}_{\mathrm{G}}-(1 / 2) \mathrm{x}_{\mathrm{G}}{ }^{2}-(1 / 3) \mathrm{x}_{\mathrm{G}}{ }^{3}$ $-\ldots$	Use the sum of mole fractions = 1 and expand the In in a series	19
$\mathrm{V} \pi=\mathrm{RT} \mathrm{x}_{\mathrm{G}}$	The relation between molar volume of liquid water the osmotic pressure and the mole fraction (of glucose in this problem).	20
$\begin{aligned} & \pi=\rho g \mathrm{~h} \\ & \\ & \rho=1 \mathrm{~g} \mathrm{~cm}^{-3} \\ & \pi=1 \mathrm{~g} \mathrm{~cm}^{-3} \times 980.66 \mathrm{~cm} \mathrm{~s}^{-2} \times \mathrm{h} \mathrm{~cm} \times \\ & 10^{-3} \mathrm{~kg} / \mathrm{g}_{2} 10^{2} \mathrm{~cm} / \mathrm{m} \\ & \pi=1 \times 98.066 \times \mathrm{h} \end{aligned}$	In this problem, the additional pressure is provided by the hydrostatic pressure exerted by the column of solution of height hcm and density ρ of the solution in the column Given $\begin{aligned} & \mathrm{g}=980.66 \mathrm{~cm} \mathrm{~s}^{-2} \\ & \text { Pascal }=\mathrm{kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2} \end{aligned}$ π is in Pascal and h in cm	
$\begin{aligned} & \mathrm{x}_{\mathrm{G}}=\mathrm{n}_{\text {glucose }} /\left(\mathrm{n}_{\text {glucose }}+\mathrm{n}_{\text {water }}\right) \\ & \mathrm{n}_{\text {glucose }}=1 \mathrm{~g} / 180 \mathrm{~g} \mathrm{~mol}^{-1}=0.0055 \mathrm{~mol} \end{aligned}$	definition of mole fraction molar mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is $(6 \times 12.01+12 \times 1.01+6 \times 15.99)=180$	
$\begin{aligned} & \mathrm{n}_{\text {water }}=\frac{(\mathrm{h} \bullet 1) \mathrm{cm}^{3} \bullet 1 \mathrm{~g} \mathrm{~cm}^{-3}}{18.0 \mathrm{~g} \mathrm{~mol}^{-1}} \\ & \mathrm{n}_{\text {total }} \approx \mathrm{n}_{\text {water }} \\ & \mathrm{x}_{\mathrm{G}}=\frac{(1 / 180) \cdot 18.0}{\mathrm{~h} \bullet 1 \bullet 1}=\frac{0.1}{\mathrm{~h}} \end{aligned}$	mass of water is volume of water $\times 1 \mathrm{~g} \mathrm{~cm}^{-3}$ volume of water in the column is $\mathrm{h} \mathrm{cm} \times 1 \mathrm{~cm}^{2}$ molar mass of $\mathrm{H}_{2} \mathrm{O}$ is $2 \times 1.01+15.99=18.0$ since we found $\mathrm{n}_{\text {glucose }}$ very small	
$\begin{aligned} \mathrm{V} & =18.0 \mathrm{~g} \mathrm{~mol}^{-1} /\left(1 \mathrm{~g} \mathrm{~cm}^{-3}\right) \\ & =18.0 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \\ & =18.0 \times 10^{-6} \mathrm{~m}^{3} \mathrm{~mol}^{-1} \end{aligned}$	molar volume of liquid water	
$\begin{aligned} & \mathrm{V} \pi=\mathrm{RT} \mathrm{x} \\ & 18.0 \times 10^{-6} \mathrm{~m}^{3} \mathrm{~mol}^{-1} \times 98.066 \mathrm{~h} \mathrm{~Pa}= \\ & 8.3145 \mathrm{~Pa} \mathrm{~m}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} 298 \mathrm{~K} \times(0.1 / \mathrm{h}) \end{aligned}$	$\begin{aligned} & \mathrm{T}=25+273 \text { given } \\ & \text { substituting } \mathrm{T}, \mathrm{~V}, \pi \text { and } \mathrm{x}_{\mathrm{G}} \end{aligned}$	

$\mathrm{h}^{2}=\frac{8.3145 \cdot 298 \cdot 0.1}{18.0 \times 10^{-6} \bullet 98.066}$	Rearrange	
$\mathrm{h}=375 \mathrm{~cm}$	Solve for h	
$\pi=36700 \mathrm{~Pa}$	Substituting h into $\pi=1 \times 98.066 \times \mathrm{h}$	

2. Given a binary ideal solution

Equation	Basis for the equation	Eq. $\#$
$\mu^{*}{ }_{\text {A, liquid }}=\mu^{*}{ }_{\mathrm{A}, \text { vapor }}$	For pure liquid A in equilibrium with its own vapor at temperature T (* means pure)	1
μ_{A}, liquid solution $=\mu_{\mathrm{A}, \text { vapor }}$	For A in solution of A and B, in equilibrium with the vapor containing both A and B	2
$\mu_{\mathrm{A}, \text { vapor }}=\mu^{\ominus}{ }_{\mathrm{A}, \mathrm{T}}+\mathrm{RT} \ln \left(\mathrm{p}_{\mathrm{A}} / 1\right)$	For an ideal gas at temperature T (We assume ideal vapor for this problem ; if non-ideal must use f_{A} instead of p_{A})	3
$\mu_{\mathrm{A}, \text { vapor }}=\mu^{\ominus}{ }_{\mathrm{A}, \mathrm{T}}+\mathrm{RT} \ln \left(\mathrm{p}_{\mathrm{A}} / 1\right)$	For ideal vapor over a solution of A and B	4
$\mu^{*}{ }_{\text {, vapor }}=\mu^{\ominus}{ }_{\text {A,T }}+\mathrm{RT} \ln \left(\mathrm{p}^{*}{ }_{\mathrm{A}} / 1\right)$	For ideal vapor over pure liquid A	5
$\begin{aligned} & \mu_{\mathrm{A}, \text { liquid solution }-\mu^{*} \mathrm{~A}, \text { liquid }} \\ & =\left\{\mu^{\ominus}{ }_{\mathrm{A}, \mathrm{~T}}+\mathrm{RT} \ln \left(\mathrm{p}_{\mathrm{A}} / 1\right)\right\} \\ & \quad-\left\{\mu^{\ominus}{ }_{\mathrm{A}, \mathrm{~T}}+\mathrm{RT} \ln \left(\mathrm{p}^{*} \mathrm{~A} / 1\right)\right\} \end{aligned}$	Eq 2 minus Eq 1	6
$\mu_{A, ~ l i q u i d ~ s o l u t i o n ~}-\mu^{*}{ }_{A, \text { liquid }}=R T \ln \left(p_{A} / p^{*}{ }_{A}\right)$		7
$\left(p_{A} / p^{*} A\right)=x_{A}$	For an ideal solution, Raoult's law holds, where x_{A} is the mole fraction of A in the liquid solution	8
$\mathrm{p}_{\mathrm{A}}=\mathrm{x}_{\mathrm{A}} \mathrm{p}^{*}{ }_{\text {A }}$		9
$p_{B}=x_{B} p^{*}{ }_{B}{ }^{\text {a }}$		10
$\begin{aligned} & p_{\text {tot }}=x_{A} p^{*}{ }_{A}+x_{B} p^{*}{ }_{B}=x_{A} p^{*}{ }_{A}+\left(1-x_{A}\right) p^{*}{ }_{B} \\ & p_{\text {tot }}=p^{*}{ }_{B}+\left(p^{*}{ }_{A}-p^{*}\right) x_{A} \\ & p_{\text {tot }} \text { is a linear function of } x_{A} \quad \text { Q.E.D. } \end{aligned}$		11
Similarly can show $p_{\text {tot }}=p^{*}{ }_{A}+\left(p^{*}{ }_{B}-p^{*} A\right) x_{B}$		
$\mathrm{y}_{\mathrm{A}}=\mathrm{p}_{\mathrm{A}} / \mathrm{p}_{\text {tot }}$	Dalton's law in the vapor phase	12
$\begin{aligned} & y_{A}=\frac{x_{A} p^{*} A_{A}}{x_{A} p^{*} A_{-}+\left(1-x_{A}\right) p^{*}{ }_{B}} \\ & y_{A} \bullet\left\{x_{A} p^{*}{ }_{A}+\left(1-x_{A}\right) p_{B}^{*}\right\}=x_{A} p^{*} A_{A} \end{aligned}$	Substitute Eq $9 p_{A}=x_{A} p^{*}{ }_{A}$ into Eq 12	13
$x_{A}=\frac{y_{A} D^{*} B_{B}}{-y_{A} p^{*}{ }_{A}+y_{A} p^{*}{ }_{B}+p^{*}{ }_{A}}$	Solve for x_{A}	14

$\mathrm{p}_{\mathrm{A}}=\frac{\mathrm{y}_{\mathrm{A}} \mathrm{p}^{*}{ }_{B} \mathrm{p}^{*}{ }^{\mathrm{A}}}{-\mathrm{y}_{\mathrm{A}} \mathrm{p}^{*}{ }_{A}+\mathrm{y}_{\mathrm{A}} \mathrm{p}^{*}{ }_{\mathrm{B}}+\mathrm{p}^{*}{ }_{\mathrm{A}}} .$	Substitute Eq 14 into Eq $9 \mathrm{p}_{\mathrm{A}}=\mathrm{x}_{\mathrm{A}} \mathrm{p}^{*}{ }_{\mathrm{A}}$	15
$\begin{aligned} & p_{\text {tot }}=p_{A} / y_{A} \\ & p_{\text {tot }}=\frac{p^{*}{ }_{B}-p^{*} A^{-y_{A} p^{*}}{ }_{A}+y_{A} p^{*}{ }_{B}+p^{*}{ }_{A}}{.} \end{aligned}$	Rearrange Eq. 12 Substitute Eq. 15 into Eq 16	16
$\left(1 / p_{\text {tot }}\right)$ is a linear function of y_{A} Q.E.D. We can show $1 / p_{\text {tot }}=1 / p_{A}^{*}+y_{B} \bullet\left(p^{*} A-p_{B}^{*}\right) / p^{*}{ }_{B} p^{*} A$	Taking the reciprocal By a similar series of steps	17

3. Given an ideal binary solution

Equation	Basis for the equation	Eq. $\#$
$p=p_{1}+p_{2}$	Given	1
$p_{1}=n_{1} R T / V$	Assume gases 1 and 2 are ideal gases	2
$p_{2}=n_{2} R T / V$		3
$p_{1}{ }^{*} V_{m, 1}{ }^{*}=R T$	Given, where subscript m means for 1 mol,	4
$p_{2}{ }^{*} V_{m, 2}=R T$	${ }^{*}$ means pure	5
$x_{1}=p_{1} / p^{*}{ }^{*}$	Given, Raoult's law applies	6
$x_{2}=p_{2} / p^{*} 2$		7
$x_{1}=\left(n_{1} R T / V\right) \bullet\left(V_{m, 1} 1^{*} / R T\right)=n_{1} V_{m, 1}{ }^{*} / V$	Substitute Eq 2 and 4 into Eq 6	8
$x_{2}=\left(n_{2} R T / V\right) \bullet\left(V_{m, 2}{ }^{*} / R T\right)=n_{2} V_{m, 2}{ }^{*} / V$	Substitute Eq 3 and 5 into Eq 7	9
$x_{1}+x_{2}=1$	Sum of molefractions is 1	10
$\left(n_{1} V_{m, 1}{ }^{*} / V\right)+\left(n_{2} V_{m, 2}{ }^{*} / V\right)=1$		11
$n_{1} V_{m, 1}{ }^{*}+n_{2} V_{m, 2}{ }^{*}=V$ Q.E.D.	Multiply Eq 11 by V	

4. Given an ideal binary solution

Equation	Basis for the equation	Eq. $\#$
$\mathrm{y}_{1}=\frac{\mathrm{x}_{1} \mathrm{p}^{*}{ }^{*}}{\mathrm{x}_{1} \mathrm{p}^{*}{ }_{1}+\left(1-\mathrm{x}_{1}\right)} \cdot \mathrm{p}^{*}{ }_{2}$	Derived in problem 2	1
$\mathrm{y}_{1}-\mathrm{x}_{1}=\frac{\mathrm{x}_{1} \mathrm{p}^{*}}{\mathrm{x}_{1} \mathrm{p}^{*}{ }_{1}+\left(1-\mathrm{x}_{1}\right) \mathrm{p}^{*}{ }_{2}} \cdot-\mathrm{x}_{1}$	Find expression for $\mathrm{y}_{1}-\mathrm{x}_{1}$	2

\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
\& \mathrm{y}_{1}-\mathrm{x}_{1}=\frac{\mathrm{x}_{1} \mathrm{p}^{*}}{\mathrm{x}_{1}-\mathrm{x}_{1}{ }^{2} \mathrm{p}^{*} \frac{1}{\mathrm{p}^{*}}{ }_{1}+\left(1-\mathrm{x}_{1}\left(1-\mathrm{x}_{1}\right) \mathrm{p}^{*} 2\right.} \\
\&=\frac{\left[\mathrm{p}^{*}{ }^{*}\right.}{\left.\mathrm{p}_{1}-\mathrm{p}^{*}{ }_{2}\right]\left[\mathrm{x}_{1}-\mathrm{x}_{1}{ }^{2}\right]} \\
\& \mathrm{x}_{1}\left[\mathrm{p}^{*}{ }_{1}-\mathrm{p}^{*}{ }_{2}\right]+\mathrm{p}^{*}{ }_{2}
\end{aligned}
\] \& \& 3 \\
\hline \begin{tabular}{l}
\[
\begin{array}{r}
\left(\mathrm{d} / \mathrm{x}_{1}\right)\left(\mathrm{y}_{1}-\mathrm{x}_{1}\right)=\left\{\mathrm{x}_{1}\left[\mathrm{p}^{*}{ }_{1}-\mathrm{p}^{*}{ }_{2}\right]+\mathrm{p}^{*}{ }_{2}\right\} \bullet \\
{\left[\mathrm{p}_{1}-\mathrm{p}^{*}{ }_{2}\right]\left[1-2 \mathrm{x}_{1}\right]} \\
-\left[\mathrm{p}^{*}{ }_{1}-\mathrm{p}^{*}{ }_{2}\right]\left[\mathrm{x}_{1}-\mathrm{x}_{1}{ }^{2}\right] \bullet\left[\mathrm{p}_{1}{ }_{1}-\mathrm{p}_{2}{ }_{2}\right]
\end{array}
\] \\
we leave out the denom \({ }^{-2}\) because we will set derivative to zero anyway.
\[
\begin{aligned}
\& \left\{x_{1}\left[p^{*}{ }_{1}-p^{*}{ }_{2}\right]+p^{*}{ }_{2}\right\} \bullet \\
\& {\left[p^{*}{ }_{1}-p^{*}{ }_{2}\right]\left[1-2 x_{1}\right]-\left[p^{*}{ }_{1}-p^{*}{ }_{2}\right]\left[x_{1}-x_{1}{ }^{2}\right]} \\
\& \bullet\left[p^{*}{ }_{1}-p^{*}{ }_{2}\right]=0
\end{aligned}
\] \\
Divide out \(\left[\mathrm{p}^{*}{ }_{1}-\mathrm{p}^{*}{ }_{2}\right.\)]
\[
\left\{\begin{array}{l}
\begin{array}{l}
\left\{x_{1}\left[p_{1}^{*}-p^{*}{ }_{2}\right]+p^{*}{ }_{2}\right\} \bullet\left[1-2 x_{1}\right]-\left[x_{1}-x_{1}{ }^{2}\right] \\
{\left[p^{*}-p^{*}{ }_{2}\right]}
\end{array}=0 \\
x_{1}^{2}\left[p^{*}{ }_{1}-p^{*}{ }_{2}\right]+2 x_{1} p^{*}{ }_{2}-p^{*}{ }_{2}=0 \\
x_{1}=\frac{-p^{*}{ }_{2} \pm\left[p^{*}{ }_{1} p^{*}\right]^{1 / 2}}{\left[p^{*}{ }_{1}-p^{*} \frac{2}{2}\right]} \quad \text { Answer }
\end{array}\right.
\]
\end{tabular} \& \begin{tabular}{l}
Find the extremum by differentiating the function \(\mathrm{y}_{1}-\mathrm{x}_{1}\) and then setting the derivative to zero. \\
Solve Eq 5 for \(\mathrm{x}_{1}\)
\end{tabular} \& 4

5

6
7

\hline | $\begin{aligned} \mathrm{p}_{\text {tot }} & =\mathrm{x}_{1} \mathrm{p}^{*}{ }_{1}+\left(1-\mathrm{x}_{1}\right) \mathrm{p}^{*}{ }_{2} \\ & =\mathrm{p}^{*}{ }_{2}+\mathrm{x}_{1}\left[\mathrm{p}^{*}{ }_{1}-\mathrm{p}^{*}{ }_{2}\right] \end{aligned}$ |
| :--- |
| At this value of x_{1}, $\begin{aligned} & p_{\text {tot }}=p^{*}{ }_{2}+\left\{-p^{*}{ }_{2} \pm\left[p^{*}{ }_{1} p^{*}\right]_{2}^{1 / 2}\right\} \\ & p_{\text {tot }}=\left[p^{*}{ }_{1} p^{*}{ }_{2}\right]^{1 / 2} \quad \text { Answer } \end{aligned}$ | \& | Total vapor pressure when Raoult's law holds |
| :--- |
| Substitute Eq 6 value of x_{1} at the extremum Extremum in $\mathrm{y}_{1}-\mathrm{x}_{1}$ for ideal solution at this $\mathrm{p}_{\text {tot }}$ | \& 8

\hline
\end{tabular}

5. For some non-ideal solution: Instead of Raoult's law: $p_{1}=x_{1} p^{*}{ }_{1} ; p_{1}=x_{1} p^{*}{ }_{1}$
we have $p_{1}=\left(x_{1}\right)^{a} p^{*}{ }_{1}$ and $p_{2}=\left(x_{2}\right)^{a} p^{*}{ }_{2}$

Equation	Basis for the equation	Eq. \#
$\mathrm{p}_{\text {tot }}=\mathrm{p}_{1}+\mathrm{p}_{2}$	Dalton's law of partial pressures	1
$\mathrm{p}_{1}=\left(\mathrm{x}_{1}\right)^{a} \mathrm{p}^{*}{ }_{1} ; \quad \mathrm{p}_{2}=\left(\mathrm{x}_{2}\right)^{\mathrm{a}} \mathrm{p}^{*}{ }_{2}$	Given	2
$\mathrm{p}_{\text {tot }}=\left(\mathrm{x}_{1}\right)^{a} \mathrm{p}^{*}{ }_{1}+\left(\mathrm{x}_{2}\right)^{a} \mathrm{p}^{*}{ }_{2}$	Substitute Eq 2 into Eq 1	
$p_{\text {tot }}=\left(x_{1}\right)^{a} p^{*}{ }_{1}+\left(1-x_{1}\right)^{a} p^{*}{ }_{2}$		3
$\begin{aligned} & \left(d p_{\text {tot }} / d x_{1}\right) \\ & =a\left(x_{1}\right)^{a-1} p^{*}{ }_{1}-a\left(1-x_{1}\right)^{a-1} p^{*}{ }_{2}=0 \end{aligned}$	Find the extremum	4
$\left[\mathrm{x}_{1} /\left(1-\mathrm{x}_{1}\right)\right]^{\mathrm{a}-1}=\mathrm{p}^{*}{ }_{2} / \mathrm{p}^{*}{ }_{1}$	Solve for x_{1} to find the composition where $\mathrm{p}_{\text {tot }}$ is an extremum	5

$\begin{aligned} & \left(d^{2} p_{\text {tot }} / d x_{1}{ }^{2}\right) \\ & =a\left(x_{1}\right)^{\text {a-1 }} p^{*} 1-a\left(1-x_{1}\right)^{a-1} p^{*}{ }^{*}{ }^{2} \\ & \left(d^{2} p_{\text {tot }} / d x_{1}^{2}\right)=a(a-1)\left(x_{1}\right)^{1-2} p^{*} 1 \\ & \quad+a(a-1)\left(1-x_{1}\right)^{a-2} p_{2}^{*} \end{aligned}$	Find the sign of the second derivative to see if minimum or maximum	6
$\left(d^{2} p_{\text {tot }} / d x_{1}^{2}\right)>0$ if $a>1$ (concave upwards or minimum) Q.E.D. $\left(d^{2} p_{\text {tot }} / \mathrm{dx}_{1}^{2}\right)<0$ if $\mathrm{a}<1$ (concave downwards or maximum) Q.E.D.	since $\mathrm{x}_{1}, 1-\mathrm{x}_{1}, \mathrm{p}^{*}{ }_{1}, \mathrm{p}^{*}{ }_{2}$ are all positive quantities, the sign of the second derivative will be determined by the sign of $(a-1)$	7

6.

$1=x_{\mathrm{b}} \bullet \exp (0.42785)$ $+\left(1-x_{\mathrm{b}}\right) \cdot \exp (-0.44795)$ $\mathrm{x}_{\mathrm{b}}=0.40$	Solve for x_{b}	

7. ideal dilute solution, Raoult's law holds for solvent and Henry's law holds for the solute

Equation		Basis for the equation	Eq. $\#$ $\#$
$\mathrm{p}_{2}=\mathrm{K}_{\mathrm{H}} \mathrm{x}_{2}$		Given Henry's law for the solute 2	1
$p_{1}=x_{1} p^{*}{ }_{1}=\left(1-x_{2}\right) p^{*}{ }_{1}$		Given Raoult's law holds for solvent	2
$\mathrm{p}_{\text {tot }}=\mathrm{p}_{1}+\mathrm{p}_{2}$		Assume Dalton's law of partial pressures holds for the vapor	3
$\mathrm{p}_{\text {tot }}=\left(1-\mathrm{x}_{2}\right) \mathrm{p}^{*}{ }_{1}+\mathrm{K}_{\mathrm{H}} \mathrm{x}_{2}$	Answer	Substituting Eq 1 and 2 into Eq 3	4
$y_{1}=p_{1} / p_{\text {tot }}$		Mole fraction in the vapor assuming Dalton's law holds	5
$\mathrm{y}_{1}=\frac{\left(1-\mathrm{x}_{2}\right) \mathrm{p}^{*} 1_{1}}{\left(1-\mathrm{x}_{2}\right) \mathrm{p}^{*}{ }_{1}+\mathrm{K}_{\mathrm{H}} \mathrm{x}_{2}}$ or else $y_{1}=\frac{x_{1} p^{*} \frac{1}{x_{1} p_{1}^{*}}+\frac{K_{H}\left(1-x_{1}\right)}{}}{\text { and }}$	Answer Answer		6

8. ideal dilute solutions of iodine in $\mathrm{H}_{2} \mathrm{O}$ and iodine in CCl_{4}

Equation	Basis for the equation	Eq. $\#$ $\#$
	For solvent in both solutions, where * means pure, $\mu^{\ominus}{ }_{\mathrm{H} 2 \mathrm{O}, \mathrm{T}}=\mu_{\mathrm{H} 20, \mathrm{~T}^{*}} ; \quad \mu^{\ominus}{ }_{\mathrm{CCI} 4, \mathrm{~T}}=\mu_{\mathrm{CCl} 4, \mathrm{~T}^{*}}$ For ideal aqueous solution, activity coefficient $\gamma=a_{\text {H2O }} / x_{\text {H2O }}=1 ; x_{\text {H2O }}=p_{\mathrm{H}_{2}} / \mathrm{p}^{*}{ }_{\mathrm{H} 2 \mathrm{O}}$ Similarly for a CCl_{4} solution $\mathrm{x}_{\mathrm{CC} 14}=\mathrm{p}_{\mathrm{CC} 14} / \mathrm{p}^{*} \mathrm{CCl}_{4}$	
for I_{2} in $\mathrm{H}_{2} \mathrm{O}$, μ_{12} in $\mathrm{H}_{20, \mathrm{~T}}=\mu_{12 \text { in } \mathrm{H} 2 \mathrm{O}, \mathrm{T}}+\mathrm{RT} \operatorname{In} \mathrm{a}_{12}$ in H2O for I_{2} in CCl_{4}, $\mu_{12}{ }^{\prime}$ in $\mathrm{CC} 14, \mathrm{~T}=\mu^{\ominus}{ }_{12 \text { in } \mathrm{CC} 14, \mathrm{~T}}+$ RT In a_{12} in CCl 14	For a "non-volatile" solute in an ideal solution $\mu_{\text {solute }, T}=\mu_{\text {solute }, T}+$ RT In $a_{\text {solute }}$ where μ^{\ominus} solute, T is the chemical potential of a fictitious Henry's law solution having $\mathrm{p}_{\text {solute }}=\mathrm{K}_{\mathrm{H}}$	1

\begin{tabular}{|c|c|c|}
\hline \& Eq 2 minus Eq 1 \& 3 \\
\hline \begin{tabular}{l}
\[
\begin{gathered}
\mu_{12}{ }^{\prime} \text { in } \mathrm{CCl4,T}=\mu_{12 \text { in } \mathrm{H} 2 \mathrm{O}, \mathrm{~T}} \\
0=\Delta \mathrm{G}_{\mathrm{T}}+\mathrm{RT} \ln \mathrm{a}_{12 \text { inCCl4 }} \\
-\mathrm{RT} \ln \mathrm{a}_{12 \text { inH2O }}
\end{gathered}
\] \\
where the standard free energy change is
\[
\Delta \mathrm{G}^{\ominus} \mathrm{T}=\mu_{12 \text { in } \mathrm{CCl4,T}-\mu^{\ominus}{ }_{12 \text { in } \mathrm{H} 2 \mathrm{O}, \mathrm{~T}} .}
\]
\end{tabular} \& When \(\mathrm{I}_{2}\) is in equilibrium \& 4
5

6

\hline $\frac{a_{12 ~ i n c C l 4}}{a_{12 \text { inH2O }}}=\operatorname{exp[-\Delta G^{\ominus }/RT]}$
$\frac{a_{12 \text { incCl4 }}}{a_{12 \text { inH2O }}}$
is the partition coefficient \& Note that $\exp \left[-\Delta \mathrm{G}^{\ominus} / \mathrm{RT}\right]$ does not depend on the concentration of I_{2}, only on temperature, therefore the partition coefficient does not depend on concentration of the solute. \& 7

\hline In the limit that $a_{12}=x_{12}$ for an ideal solution

\[
\frac{x_{12 \mathrm{inccl4}}}{\mathrm{x}_{\mathrm{l} 2 \mathrm{inH} \mathrm{H} 2 \mathrm{O}}}=\exp \left[-\Delta \mathrm{G}_{\mathrm{T}} / R T\right]

\] \& | Define $\gamma=\mathrm{a}_{12 \mathrm{inH} 2 \mathrm{O}} / \mathrm{x}_{12 \mathrm{inH} 2 \mathrm{O}}$ |
| :--- |
| As $\mathrm{x}_{12} \rightarrow 0, \mathrm{a}_{12} \rightarrow \mathrm{x}_{12}, \gamma_{12} \rightarrow 1$ ideal |
| In this limit, |
| $\underline{x}_{12 \text { inCCl4 }}$ is the partition coefficient |
| $\mathrm{X}_{12 \mathrm{inH} 2 \mathrm{O}}$ | \& 8

\hline For concentrations in terms of molality \& \&

\hline In the limit that $\mathrm{a}_{12}=\mathrm{m}_{12}$ for an ideal solution

\[
\frac{m_{12 \mathrm{inCCl} 4}}{\mathrm{~m}_{12 \mathrm{inH} 2 \mathrm{O}}}=\exp \left[-\Delta G^{\ominus} / R T\right]

\] \& | Define $\gamma=\mathrm{a}_{12} \mathrm{inH2O} / m_{12} \mathrm{inH} 2 \mathrm{O}$ |
| :--- |
| As $\mathrm{m}_{12} \rightarrow 0, \mathrm{a}_{12} \rightarrow \mathrm{~m}_{12}, \gamma_{12} \rightarrow 1$ |
| In this limit, |
| $\underline{m}_{12 \text { inCcl4 }}$ is the partition coefficient |
| $\mathrm{m}_{12 \text { inH2O }}$ | \& 8

\hline In this case, the standard free energy change is

\[
\Delta G^{\ominus}{ }_{T}=\mu^{\ominus}{ }_{12 in \mathrm{CCl4,T}-\mu^{\ominus}}^{12 in \mathrm{H} 2 \mathrm{O}, \mathrm{~T}}

\] \& | except that $\mu^{\theta_{\text {solute, }} \text { is }}$ is the chemical potential of a fictitious Henry's law solution having unit molality and obeys Henry's law: |
| :--- |
| $p_{\text {solute }}=m_{\text {solute }} K_{H}$ | \&

\hline
\end{tabular}

9. water(liquid) \Leftrightarrow ice

Equation	Basis for the equation	Eq. $\#$
$\mathbf{G}=\mathbf{H}-\mathbf{T S}$	Definition	1
$\mathbf{G} / \mathrm{T}=\mathbf{H} / \mathrm{T}-\mathbf{S}$	Divide Eq 1 by T	2
$(\partial[\mathbf{G} / \mathrm{T}] / \partial \mathrm{T})_{p}=(\partial[\mathbf{H} / \mathrm{T}] / \partial \mathrm{T})_{p}-(\partial \mathbf{S} / \partial \mathrm{T})_{p}$ $=-\left(\mathbf{H} / \mathrm{T}^{2}\right)+(1 / \mathrm{T})(\partial \mathbf{H} / \partial \mathrm{T})_{p}$ $-(\partial \mathbf{S} / \partial \mathrm{T})_{p}$	Differentiating Eq 3	3
		4
$(\partial[\mathbf{G} / \mathrm{T}] / \partial \mathrm{T})_{p}=-\left(\mathbf{H} / \mathrm{T}^{2}\right)$	Applying $(\partial \mathbf{H} / \partial \mathrm{T})_{p}=\mathrm{C}_{\mathrm{p}}$ and $(\partial \mathbf{S} / \partial \mathrm{T})_{p}=\mathrm{C}_{\mathrm{p}} / \mathrm{T}$ to	5

| This is the Gibbs-Helmholtz equation | Eq 4. Note that this expression was derived using
 the temperature dependence of both \mathbf{H} and \mathbf{S}, just
 that the two terms are equal and opposite in sign. |
| :--- | :--- | :--- |

10. To find the heat capacity of a vapor heated along such a path that its pressure is always equal to p_{T}, the equilibrium vapor pressure at that temperature
$\operatorname{vapor}\left(\mathrm{p}_{\mathrm{T} 1}, \mathrm{~T}_{1}\right) \rightarrow \operatorname{vapor}\left(\mathrm{p}_{\mathrm{T} 2}, \mathrm{~T}_{2}\right)$

Equation	Basis for the equation	Eq. \#
(a)		1
$\mathrm{C}=\mathrm{C}_{\mathrm{p}}-\mathrm{T}(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{p}} \mathrm{dp} / \mathrm{dT}$	Given	
$\mathrm{dp} / \mathrm{dT}=\left(\mathrm{S}_{\text {vap }}-\mathrm{S}_{\text {liq }}\right) /\left(\mathrm{V}_{\text {vap }}-\mathrm{V}_{\text {liq }}\right)$	Given Clapeyron Eq (derived above in prob 6)	2
$\mathrm{C}=\mathrm{C}_{\mathrm{p}}-\mathrm{T}(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{p}}\left(\mathbf{S}_{\text {vap }}-\mathrm{S}_{\text {liq }}\right) /\left(\mathrm{V}_{\text {vap }}-\mathrm{V}_{\text {liq }}\right)$	Substituting dp/dT from Eq 2 into Eq 1	3
$\left(\mathbf{S}_{\text {vap }}-\mathbf{S}_{\text {liq }}\right)=\left(\mathrm{H}_{\text {vap }}-\mathrm{H}_{\text {liq }}\right) / \mathrm{T}$	vapor and liquid at equilibrium at $\mathrm{T}, \Delta \mathbf{S}=\mathrm{q}_{\mathrm{REV}} / \mathrm{T}$	4
$\mathrm{C}=\mathrm{C}_{\mathrm{p}}-(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{p}}\left(\mathrm{H}_{\text {vap }}-\mathrm{H}_{\text {liq }}\right) /\left(\mathrm{V}_{\text {vap }}-\mathrm{V}_{\text {liq }}\right)$ Q.E.D.		5
(b) $\left(\mathrm{V}_{\text {vap }}-\mathrm{V}_{\text {liq }}\right) \approx \mathrm{V}_{\text {vap }}$	For $\mathrm{V}_{\text {liq }} \ll \mathrm{V}_{\text {vap }}$ (given)	6
$\mathrm{V}_{\text {vap }}=\mathrm{RT} / \mathrm{p}$	Vapor is an ideal gas (given)	7
$(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{p}}=\mathrm{R} / \mathrm{p}$	Differentiating Eq 7	8
$\begin{align*} & \mathrm{C}=\mathrm{C}_{\mathrm{p}}-\left(\mathrm{H}_{\text {vap }}-\mathrm{H}_{\text {liq }}\right) \mathrm{R} / \mathrm{p} \mathrm{~V}_{\text {vap }} \\ & \mathrm{C}=\mathrm{C}_{\mathrm{p}}-\left(\mathrm{H}_{\text {vap }}-\mathrm{H}_{\text {liq }}\right) / \mathrm{T} \end{align*}$	Substituting Eq 7 \& 8 into Eq 5	$\begin{array}{\|l\|} \hline 9 \\ 10 \end{array}$
(c) $\begin{aligned} & \mathrm{C}=9-9720 / 373 \\ & =-17.06 \mathrm{cal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \end{aligned}$ Answer	Given: $\mathrm{T}=373 \mathrm{~K} ; \mathrm{C}_{\mathrm{p}}=9 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$, $\Delta_{\mathrm{vap}} \mathbf{H}=\left(\mathbf{H}_{\mathrm{vap}}-\mathrm{H}_{\text {liq }}\right)=9720 \mathrm{cal} \mathrm{~mol}^{-1}$ Substitute these into Eq 10 C_{p} and C_{V} are always positive, that is, for constant p (and constant V) processes, \mathbf{H} (and \mathbf{U}) increase when the temperature of the system is increased by adding heat ($\mathrm{q}_{\text {sys }}>0$). On the other hand, this negative value of C means that (dq/dT) < 0 , that is, as the temperature increases, the amount of input heat required to maintain equilibrium between the liquid and vapor decreases.	

