
Solutions to Problem Set 7 

 

1. (a)                   rhombic sulfur  → monoclinic sulfur 

Equation Basis for the equation Eq. 
# 

dG = Vdp - SdT one of the four fundamental equations of 
thermodynamics 

1 

∫dG = ∫Vdp - ∫SdT integrate between (1 bar, 298 K) and (1 bar, T K)  2 
 
G T - G 298 = 0 - [TS T - 298 S 298] 
 

 3 

 
G T = G 298  - [TS T - 298 S 298] 
G T = G 298  - [T - 298 ]•S 298 
 

Assume that S T =  S 298 since given that the 
entropies vary only slightly with temperature for 
sulfur 

4 

 
G T,r = G 298,r  - [T - 298 ]•S 298,r 
G T,m = G 298,m  - [T - 298 ]•S 298,m 
 

Write this for rhombic and monoclinic sulfur 5 

 
G T,r = G T,m 

At temperature T rhombic and monoclinic sulfur 
are in equilibrium at 1 bar 

6 

 
G 298,r  - [T - 298 ]•S 298,r  
               = G 298,m  - [T - 298 ]•S 298,m 
 

Substituting Eq 5 into Eq 6 7 

0.0 - [T-298]•7.62= 23 - [T - 298 ]•7.78 Substituting the numerical values into Eq. 7 8 
 
T = 441.8 K           Answer 

Solving for T. At this temperature rhombic and 
monoclinic sulfur are in equilibrium at 1 bar 

9 

 

Sketch μ   vs. T for rhombic and monoclinic 
sulfur.  The slope of the  μ (T) vs. T plot  is -S  
 
 
 
 
 
 
 
 
By the way, this problem is an example in lecture 
notes part 6. 

10 

 



1. (b) For equilibrium to be established (no more net influx of water from the water side 
through the membrane to the glucose solution side), the chemical potential of water 
should be the same on both sides of the membrane.  
On the solution side of the membrane there is an additional pressure π arising from the 
column of solution.  The osmotic pressure is the additional pressure that needs to be 
applied to the solution side to achieve equilibrium with the pure solvent at pressure p. 

 

For the ideal solution, we can use mole fraction instead of activity  

Equation Basis for the equation Eq. 
# 

μ*A,liquid = μ*A,vapor For pure liquid A in equilibrium with its own vapor 
at temperature T (* means pure) 

1 

μA, liquid solution = μA,vapor For A in solution of A and B, in equilibrium with the 
vapor containing both A and B 

2 

μA,vapor  = μ A,T  + RT ln(pA/1) For an ideal gas at temperature T (We assume 
ideal vapor for this problem ; if non-ideal must use 
fA instead of pA ) 

3 

 μA,vapor  = μ A,T  + RT ln(pA/1) For ideal vapor over a solution of A and B 4 
μ*A,vapor  = μ A,T  + RT ln(p*A/1) For ideal vapor over pure liquid A  5 
μA, liquid solution - μ*A,liquid  
              = { μ A,T  + RT ln(pA/1)}  
                         - {μ A,T  + RT ln(p*A/1)}

Eq  2 minus Eq  1 6 

μA, liquid solution - μ*A,liquid =  RT ln(pA/p*A)  7 
(pA/p*A) = xA For an ideal solution, Raoult’s law holds , where 

xA is the mole fraction of A in the liquid solution 
8 

μA, liquid solution - μ*A,liquid =  RT lnxA  9 
μ*w, liquid (T,p) For water in pure liquid water under pressure p 

and temperature T 
10 

μw, liquid solution (T, p+π,xw)  
              - μ*w,liquid (T, p+π) =  RT ln xw 

For water in solution in which its mole fraction is 
xw under pressure p+π and temperature T 

11 

μ*w, liquid (T,p) = μw, liquid solution (T,p+π,xw) At equilibrium, chemical potential of water is the 
the same on both sides of the membrane 

12 



μ*w, liquid (T,p) - μ*w,liquid (T, p+π)  
                       =  RT ln xw 

Substitute  Eq 12 into  Eq  11 13 

μ*w,liquid (T, p+π) - μ*w, liquid (T,p) =  
                       -  RT ln xw 

Rearrange 14 

dG = Vdp - SdT one of the four fundamental equations of 
thermodynamics 

15 

dμ =  (∂μ/∂p)Tdp +  (∂μ/∂T)pdT 
 
dμ =  (∂μ/∂p)Tdp = Vdp 

μ = μ(T,p) 
apply it to constant temperature as in this problem 
and identify (∂μ/∂p)T 

16 

μ*w,liquid (T, p+π) - μ*w, liquid (T,p)  
     = ∫p p+π (∂μ/∂p)Tdp  
   =  ∫p p+π Vdp = V(p+π-p) = Vπ 

Identify the integral which produced the LHS of Eq 
14  

17 

Vπ = -  RT ln xw From Eq 14 and 15 18 
ln xw = ln(1-xG) ≈ -xG -(1/2)xG

2 -(1/3)xG
3  

                                              - ... 
Use the sum of mole fractions = 1 and expand the 
ln in a series 

19 

Vπ = RT xG The relation between molar volume of liquid water 
the osmotic pressure and the mole fraction (of 
glucose in this problem). 

20 

 π = ρgh 
 
 
 
ρ =  1 g cm-3 
π = 1 g cm-3×980.66 cm s-2 × h cm ×  
                      10-3 kg/g ×102 cm/m 
 π = 1 ×98.066 × h   

In this problem, the additional pressure is provided 
by the hydrostatic pressure exerted by the column 
of solution of height h cm and density ρ of the 
solution in the column 
Given 
g =980.66 cm s-2 

Pascal =  kg m-1 s-2   
π is in Pascal and h in cm 

 

xG = nglucose/ (nglucose + nwater) 
nglucose = 1 g /180 g mol-1 = 0.0055 mol 
 
 
nwater = (h •1) cm3•1 g cm-3 

                    18.0 g mol-1  
 
ntotal  ≈ nwater 
 
xG =    (1 /180)•18.0        =  0.1 
              h •1 •1                    h 

 
 

definition of mole fraction 
molar mass of C6H12O6 is   
                      (6×12.01+12×1.01+6×15.99) = 180 
 
mass of water is volume of water × 1 g cm-3  
volume of water in the column is h cm × 1 cm2 

molar mass of H2O is       2×1.01+15.99 = 18.0 
since we found nglucose very small 

 

 V = 18.0 g mol-1/(1 g cm-3)  
    = 18.0 cm3 mol-1 

      =  18.0 ×10-6 m3 mol-1 

molar volume of liquid water   

 Vπ = RT xG 
18.0 ×10-6 m3 mol-1× 98.066 h Pa = 
8.3145 Pa m3 K-1 mol-1 298K×(0.1/ h)  

T= 25 +273 given 
substituting T, V,  π and xG 
 

 



 h2 =   8.3145•298•0.1 
         18.0×10-6•98.066 

Rearrange  

 h = 375 cm Solve for h   
π = 36700 Pa Substituting h into π = 1 ×98.066 × h  
 

2.  Given a binary ideal solution 

Equation Basis for the equation Eq. 
# 

μ*A,liquid = μ*A,vapor For pure liquid A in equilibrium with its own vapor 
at temperature T (* means pure) 

1 

μA, liquid solution = μA,vapor For A in solution of A and B, in equilibrium with the 
vapor containing both A and B 

2 

μA,vapor  = μ A,T  + RT ln(pA/1) For an ideal gas at temperature T (We assume 
ideal vapor for this problem ; if non-ideal must use 
fA instead of pA ) 

3 

 μA,vapor  = μ A,T  + RT ln(pA/1) For ideal vapor over a solution of A and B 4 
μ*A,vapor  = μ A,T  + RT ln(p*A/1) For ideal vapor over pure liquid A  5 
μA, liquid solution - μ*A,liquid  
              = { μ A,T  + RT ln(pA/1)}  
                         - {μ A,T  + RT ln(p*A/1)}

Eq  2 minus Eq  1 6 

μA, liquid solution - μ*A,liquid =  RT ln(pA/p*A)  7 
(pA/p*A) = xA 
 
pA = xA p*A 
pB = xB p*B 
ptot = xA p*A + xB p*B = xA p*A+ (1-xA) p*B
ptot  = p*B + (p*A - p*B) xA          
ptot  is a linear function of xA       Q.E.D. 
 
Similarly can show  
ptot  = p*A + (p*B - p*A) xB 

For an ideal solution, Raoult’s law holds, where xA 
is the mole fraction of A in the liquid solution 
  

8 
 
9 
10 
  
11 

yA = pA /ptot Dalton’s law in the vapor phase 12 
yA =      xA p*A                    . 
           xA p*A + (1-xA) p*B 

 
yA •{ xA p*A + (1-xA) p*B } = xA p*A 

Substitute Eq 9 pA = xA p*A into Eq 12 
 

13 

 
 xA =         yAp*B               . 
         -yAp*A +yAp*B+p*A 
 

 
Solve for xA 

 
14 



pA      =           yA p*B  p*A           . 
              -yAp*A +yAp*B+p*A 
  

 
Substitute Eq 14  into Eq  9   pA = xA p*A 
 

 
15 

ptot = pA/yA 

 
ptot =        p*B  p*A           . 
            -yAp*A +yAp*B +p*A 
 

Rearrange Eq. 12 
 
Substitute Eq. 15  into Eq 16  

16 

 1      =      -yA p*A +yA p*B + p*A   
 ptot             p*B  p*A       
 
          = 1/p*B + yA •( p*B - p*A)/p*B p*A  
(1/ptot) is a linear function of yA   Q.E.D.
 
We can show 
1/ptot =1/p*A + yB •( p*A - p*B)/p*B p*A 

Taking the reciprocal 
 
 
 
 
 
By a similar series of steps 

 
 
 
17 

 

3.  Given an ideal binary solution   

Equation Basis for the equation Eq. 
# 

p = p1+p2 Given 1 
p1 = n1RT/V 
p2 = n2RT/V 

Assume gases 1 and 2 are ideal gases 2 
3 

p1*Vm,1* = RT 
p2*Vm,2* = RT 

Given, where  subscript m means for 1 mol,  
* means pure 

4 
5 

 x1 =  p1/p*1     
 x2 =  p2/p*2     

Given, Raoult’s law applies 6 
7 

  x1 = (n1RT/V)• (Vm,1*/RT) = n1 Vm,1*/V  Substitute  Eq 2 and 4 into Eq 6  8 
 x2 = (n2RT/V)• (Vm,2*/RT) = n2 Vm,2*/V  Substitute  Eq 3 and 5 into Eq 7  9 
 x1+x2 = 1  
(n1 Vm,1*/V) + (n2 Vm,2*/V) = 1 

 Sum of molefractions is 1 10 
11 

 n1 Vm,1*  + n2 Vm,2*  = V    Q.E.D.  Multiply Eq 11 by V   
 

4.  Given an ideal binary solution   

Equation Basis for the equation Eq. 
# 

 y1 =        x1 p*1                    . 
                         x1 p*1+ (1-x1) p*2 
 

 Derived in  problem 2 1 

y1-x1 =     x1 p*1                    .     - x1 

                    x1 p*1+ (1-x1) p*2 

Find expression for y1-x1 2 
 



y1-x1  = x1 p*1 - x1 
2p*1 - x1(1-x1)p*2 

                   x1 p*1+ (1-x1) p*2 
 
         =  [p*1 - p*2][x1 - x1 

2] 
             x1 [p*1 - p*2] + p*2 
 

 
 
 
 
3 

(d/x1) (y1-x1) = {x1 [p*1 - p*2] + p*2}• 
                                 [p*1 - p*2][1 - 2 x1 ] 
              - [p*1 - p*2][x1 - x1 

2] •[p*1 - p*2] 
we leave out the denom-2 because we 
will set derivative to zero anyway. 
 
{x1 [p*1 - p*2] + p*2}•                           
[p*1 - p*2][1 - 2x1 ] - [p*1 - p*2][x1 - x1 

2]     
                                     •[p*1 - p*2] = 0 
Divide out [p*1 - p*2] 
{x1 [p*1 - p*2]+p*2}•[1-2x1 ] -[x1 - x1 

2] •     
                                       [p*1 - p*2] = 0 
  
x1

2 [p*1 - p*2] +2x1 p*2   - p*2 =0 
x1 =   - p*2  ± [p*1 p*2 ] ½ 
             [p*1 - p*2]                Answer 
 

Find the extremum by differentiating the function 
y1-x1  and then setting the derivative to zero.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Solve Eq  5 for x1 

4 
 
 
 
 
 
 
 
5 
 
 
 
 
6 
 
7 

ptot     =  x1 p*1+ (1-x1) p*2  

            = p*2  + x1 [p*1 - p*2] 
 
At this value of  x1,  
ptot   =  p*2  + {- p*2  ± [p*1 p*2 ] ½}  
ptot   = [p*1 p*2 ] ½              Answer  

Total vapor pressure when Raoult’s law holds 
 
 
 
Substitute Eq 6 value of x1 at the extremum 
Extremum in y1-x1 for ideal solution at this ptot 

8 
 
 
 
 
9 

  

5. For some non-ideal solution:  Instead of Raoult’s law:  p1 = x1p*1 ;  p1 = x1p*1  

                                                                            we have p1 = (x1)ap*1 and p2 = (x2)ap*2 

Equation Basis for the equation Eq. 
# 

ptot     = p1 + p2 
p1 = (x1)ap*1 ;    p2 = (x2)ap*2 
ptot     = (x1)ap*1  +  (x2)ap*2 
ptot     = (x1)ap*1  +  (1-x1)ap*2 

Dalton’s law of partial pressures  
Given 
Substitute Eq 2 into Eq 1 
 

1 
2 
 
3 

(dptot   /dx1)  
= a (x1)a-1 p*1 - a (1-x1)a-1 p*2 = 0 
 

Find the extremum 
 
 

4 

[x1/(1-x1)]a-1 = p*2 / p*1 
 

Solve for x1 to find the composition where ptot is an 
extremum 

5 



(d2ptot   /dx1
2)  

= a (x1)a-1 p*1 - a (1-x1)a-1 p*2  
(d2ptot   /dx1

2) = a(a-1) (x1)a-2 p*1   
                            + a(a-1)(1-x1)a-2 p*2 
  
(d2ptot   /dx1

2) > 0 if a > 1  (concave       
             upwards or minimum)   Q.E.D. 
(d2ptot   /dx1

2) < 0 if a < 1  (concave  
         downwards or maximum) Q.E.D. 

Find the sign of the second derivative to see if 
minimum or maximum 
 
 
 
since x1 , 1-x1 , p*1 , p*2 are all positive quantities, 
the sign of the second derivative will be 
determined by the sign of (a-1) 
 

6 
 
 
 
 
7 

 

6.  

Equation Basis for the equation Eq. 
# 

dG = Vdp - SdT one of the four fundamental equations of 
thermodynamics 

1 

Vliqdp - SliqdT = Vvapdp - SvapdT To maintain equilibrium between the pure liquid 
under the equil. vapor pressure & the pure vapor  

2 

dp/dT =  (Svap-Sliq) /(Vvap-Vliq) 
We can replace  
(Svap-Sliq)= (Hvap-Hliq)/T  

 Clapeyron equation for pure substance 
 

vapor and liquid at equilibrium at T, ΔS = qREV/T 

3 

 dp/p = (Hvap-Hliq)dT/RT2  
ln(p/1atm) = [1/Tboil -1/T]•(Hvap-Hliq) /R 
 

ln(p/1atm)=(Hvap-Hliq) /RTboil]•[1-Tboil/T] 
                = [(Svap-Sliq)1/R] •[1-Tboil/T] 
(Svap-Sliq)1/R  
     =  21 cal K-1mol-1/1.987cal K-1mol-1 
     = 10.57 
ln(p/1atm)= 10.57[1-Tboil/T] 
(p/1atm) = exp{10.57[1-Tboil/T] } 

Vvap-Vliq  ≈  Vvap ≈ RT/p 
Another form of the Clausius-Clapeyron eq when 
(Hvap-Hliq) ≈ indep of T 
 
 
Given 
 
 
 
relates vapor pressure of pure liquid to boiling T 

4 
 
 
 
 
5 
 
 
 
6 

 
(p*b/1atm) = exp{10.57[1-353.2/T] } 
(p*t/1atm) = exp{10.57[1-383.7/T] } 

Applying Eq 6 
Vapor pressure of pure benzene as a function of T
Vapor pressure of pure toluene as a function of T 

 
7 
8 

ptot = pb+pt Dalton’s law of partial pressures for the vapor 9 
pb = xbp*b 
pt = xtp*t  = (1-xb)p*t 

If Raoult’s law holds for the solution 10 

ptot = xbp*b + (1-xb)p*t  Total vapor pressure of this ideal solution 11 
(ptot/1 atm) = xb•exp{10.57[1-353.2/T]} 
             + (1-xb)•exp{10.57[1-383.7/T]} 
1 = xb•exp{10.57[1-353.2/T]}  
             + (1-xb)•exp{10.57[1-383.7/T]}   
                                                Answer 

Subtituting Eq  7 & 8 into Eq  11  
 
Boiling temperature of the liquid solution is T at 
which ptot = 1 atm. This Eq relates the boiling point 
T of the mixture with mole fraction of benzene. 

12 
 
13 

1= xb•exp{10.57(1-353.2/368.1)}  
+  (1-xb)• exp{10.57(1-383.7/368.1)}       

Substitute boiling temperature is 95 °C or 368.1 K 
 

14 



1 = xb•exp(0.42785) 
       +(1-xb)•exp(-0.44795) 
xb = 0.40                              Answer  

Solve for xb   

 

7. ideal dilute solution, Raoult’s law holds for solvent and Henry’s law holds for the 
solute 

Equation Basis for the equation Eq. 
# 

p2 = KHx2 Given Henry’s law for the solute 2  1 
p1 = x1p*1 = (1-x2) p*1   Given Raoult’s law holds for solvent  2 
ptot = p1 + p2 Assume Dalton’s law of partial pressures holds for 

the vapor 
 3 

ptot = (1-x2)p*1 + KHx2         Answer Substituting Eq  1 and 2 into Eq 3  4 
y1 = p1/ptot Mole fraction in the vapor assuming Dalton’s law 

holds 
 5 

y1 =   (1-x2) p*1                .   
         (1-x2)p*1 + KHx2           Answer 
or else 
y1 =        x1 p*1                .   
         x1p*1 + KH(1-x1)           Answer 

  6 

 

8.  ideal dilute solutions of iodine in H2O and iodine in CCl4 

 
 
Equation Basis for the equation Eq. 

# 
μH2O,T = μH2O,T* + RTlnaH2O 
μCCl4,T = μCCl4,T* + RTlnaCCl4 
where aH2O = pH2O/p*H2O 
           aCCl4 = pCCl4/p*CCl4 

For solvent in both solutions, where * means pure, 
μ H2O,T = μH2O,T*  ;   μ CCl4,T = μCCl4,T* 
For ideal aqueous solution,  activity coefficient  
γ = a H2O / x H2O = 1  ;    xH2O = pH2O/p*H2O  
Similarly for a CCl4 solution    xCCl4 = pCCl4/p*CCl4 

  

  
for I2 in H2O, 
μI2 in H2O,T = μ I2 in H2O,T + RT ln aI2 in H2O 
for I2 in CCl4, 
μI2′ in CCl4,T = μ I2 in CCl4,T +RT ln aI2 in CCl4
 

For a ”non-volatile” solute in an ideal solution 
μsolute,T = μ solute,T + RT ln asolute 
where μ solute,T is the chemical potential of a 
fictitious Henry’s law solution having  psolute = KH 
 
 

  
 
1 
 
2 



   μI2′ in CCl4,T - μI2 in H2O,T 
              = μ I2 in CCl4,T -μ I2 in H2O,T 
                     + RT ln aI2 inCCl4 

                                - RT ln aI2 inH2O 
 

Eq 2 minus Eq 1  
 
 
 
 

 3 

  μI2′ in CCl4,T = μI2 in H2O,T 

 0 = ΔG T + RT ln aI2 inCCl4 

              - RT ln aI2 inH2O 
where the standard free energy 
change is 
ΔG T =  μ I2 in CCl4,T -μ I2 in H2O,T 

When I2 is in equilibrium   
 
 
 
 
 

4 
5 
 
 
 
6 

aI2 inCCl4     =  exp[-ΔG T/RT] 
aI2 inH2O                                      Q.E.D. 
aI2 inCCl4     is the partition coefficient 
aI2 inH2O 

Note that exp[-ΔG T/RT] does not depend on the 
concentration of I2 , only on temperature, therefore 
the partition coefficient does not depend on 
concentration of the solute. 

7 

In the limit that  a I2 = x I2 for an ideal 
solution 
 
 xI2 inCCl4     =  exp[-ΔG T/RT] 
 xI2 inH2O 
 

Define γ = aI2 inH2O / xI2 inH2O 
As x I2 → 0,  a I2→x I2 ,  γ I2 →1 ideal 
  
In this limit, 
 xI2 inCCl4     is the partition coefficient 
 xI2 inH2O 

 8 

 For concentrations in terms of molality     
In the limit that  a I2 = m I2 for an ideal 
solution 
 
 mI2 inCCl4     =  exp[-ΔG T/RT] 
 mI2 inH2O 
 

Define γ = aI2 inH2O / mI2 inH2O 
As m I2 → 0,  a I2→m I2 ,  γ I2 →1 
  
In this limit, 
 mI2 inCCl4     is the partition coefficient 
 mI2 inH2O 

 8 

In this case,  the standard free energy 
change is 
ΔG T =  μ I2 in CCl4,T -μ I2 in H2O,T 

except that μ solute,T is the chemical potential of a 
fictitious Henry’s law solution having unit molality 
and obeys Henry’s law:   psolute = msoluteKH 

  

 
9.                                             water(liquid)    ⇔     ice 
 

Equation Basis for the equation Eq. 
# 

G = H -TS Definition 1 
G/T = H/T - S Divide Eq 1 by T 2 
(∂[G/T] /∂T)p =  (∂ [H/T] /∂T)p - (∂S/∂T)p 

 
                     = - (H/T2) + (1/T)(∂H/∂T)p   

                                            - (∂S/∂T)p 
 

Taking (∂/∂T)p of Eq  2 
 
Differentiating  Eq 3 
 

3 
 
4 

(∂[G/T] /∂T)p = - (H/T2) Applying (∂H/∂T)p = Cp   and   (∂S/∂T)p = Cp/T to 5 



This is the Gibbs-Helmholtz equation Eq 4. Note that this expression was derived using 
the temperature dependence of both H and S, just 
that the two terms are equal and opposite in sign.  

(∂[ΔG/T] /∂T)p = - (ΔH/T2) 
(∂[ΔfusG/T] /∂T)p = - (ΔfusH/T2) 

Applying Eq 5 to both Ginitial and Gfinal 
Apply it to fusion 

6 
7 

[ΔfusG/T]2 - [ΔfusG/T]1 =ΔfusH {T2
-1 - T1

-1} If we integrate Eq  7over a range of temperatures 
AND assume that ΔfusH is independent of 
temperature in this temperature range. 

  

A phase(T1, p1) → B phase(T1, p1)  (a) 
A phase(T2, p2) → A phase(T1, p1)  (b) 
B phase(T1, p1) → B phase(T2, p2)   (c)
 
A phase(T2,p2) → B phase(T2, p2)   (d) 
 
ΔH(d) = ΔH(a) +ΔH(b) +ΔH(c)  
 
For water(liquid)    ⇔     ice 
ΔfusH(270,1 atm)  
   = ΔfusH(273,1 atm)  
               + ∫270

273Cp(liq,1 atm)dT  
               + ∫273

270Cp(ice,1 atm)dT 
  = 79.7 + 1.00(273-270)  
                       + 0.48(270-273) cal g-1 
  = 81.3  cal g-1                   Answer 
ΔfusS(270,1 atm)  
   = qREV(273,1 atm)/273  
               + ∫270

273Cp(liq,1 atm)dT/T  
               + ∫273

270Cp (ice,1 atm)dT/T 
   = ΔfusH(273,1 atm)/273 
             + 1.00 ln(273/270) 
             + 0.48 ln(270/273) 
    = 79.7/273 
             +(1.00-0.48)(0.011) 
   = 0.298 cal K-1 g-1               Answer 
ΔfusG(270,1 atm)  
   = ΔfusH(270,1 atm)  
                - 270ΔfusS(270,1 atm) 
   = 81.3  - 270 (0.298) cal g-1  
   = 0.84 cal g-1                     Answer 

The temperature or pressure dependence of the 
change in a thermodynamic property H, S, A, G 
for any phase transformation can be obtained by 
doing the transformation in steps and summing up 
the thermodynamic property changes for each 
step. 
 
 
 
H = H(T,p) 
dH = CpdT + (∂H/∂p)Tdp 
Here dp = 0 so just need to integrate over CpdT 
for steps (b) and (c) 
 
 
 
 
S = S(T,p) 
dS = CpdT/T + (∂S/∂p)Tdp 
Here dp = 0 so just need to integrate over CpdT/T 
for stgeps (b) and (c). This phase change is 
reversible at (273, 1 atm)    
qREV = ΔfusH(273,1 atm)/273 
 
 
 
 
G = H - TS definition 
at constant T,  ΔG = ΔH- TΔS 

  
 
 
 
 
 
8 



10.   To find the heat capacity of a vapor heated along such a path that its pressure is  
        always equal  to pT, the equilibrium vapor pressure at that temperature  

vapor (pT1,T1) → vapor (pT2,T2) 
Equation Basis for the equation Eq. 

# 
(a) 
C = Cp - T(∂V/∂T)pdp/dT 

 
Given 

1 

dp/dT =  (Svap-Sliq) /(Vvap-Vliq) Given Clapeyron Eq (derived above in prob 6) 2 
C = Cp - T(∂V/∂T)p(Svap-Sliq) /(Vvap-Vliq) Substituting  dp/dT from Eq 2 into Eq 1 3 
(Svap-Sliq)= (Hvap-Hliq)/T vapor and liquid at equilibrium at T, ΔS = qREV/T  4 
C = Cp - (∂V/∂T)p(Hvap-Hliq) /(Vvap-Vliq) 
                                                 Q.E.D. 

  5 

(b) (Vvap-Vliq) ≈ Vvap For Vliq << Vvap  (given) 6  
Vvap = RT/p Vapor is an ideal gas (given) 7  
(∂V/∂T)p = R/p Differentiating  Eq  7 8 
C = Cp -  (Hvap-Hliq)R/pVvap  
C = Cp - (Hvap-Hliq)/T                  Q.E.D. 

Substituting Eq  7 & 8  into Eq 5  9 
10 

(c)  
 
C = 9 - 9720/373 
 = - 17.06 cal K-1 mol-1           Answer 
  

Given:    T = 373 K; Cp = 9 cal K-1 mol-1,  
              ΔvapH = (Hvap-Hliq) = 9720 cal mol-1 

Substitute these into Eq  10 
Cp and CV are always positive, that is, for constant 
p (and constant V) processes, H (and U) increase 
when the temperature of the system is increased 
by adding heat (qSYS > 0). On the other hand, this 
negative value of C means that (dq/dT) < 0, that 
is, as the temperature increases, the amount of 
input heat required to maintain equilibrium 
between the liquid and vapor decreases.  

 

 


