Solutions to Problem Set 9

1. When possible, we want to write an equation with the quantity on the ordinate in
terms of the quantity on the abscissa for each pf the labeled curves.

-
-

A | pcrciz = Ky Xcrers

where Pcucis is the partial pressure of CHCls in the vapor of a solution obeying Henry’s

law with Henry’s law constant of Ky and Xcuciz is the mole fraction of CHCI3 in the liquid
solution.

B ptot = pacetone + pCHCIS

This is the equation of the total vapor pressure Pio; Over a real solution of acetone and
chloroform, which is a simple sum of the partial pressures of the individual components in
the vapor phase are Pacetone aNd PcHciz - That is, Dalton’s law of partial pressures still
holds in the vapor even though the liquid solutions do not behave ideally. pacetone iS @
function of (1-Xchciz) and yacetone Obtained experimentally as a function of 1-Xcuciz), and
Pcrciz IS a function of Xcyciz and ycuciz Obtained experimentally as a function of Xcpcis,

C | Prot = (I-Xcheiz) Pracetone + XcHeiz P*cHeis = Pracetone T (P*cHeis - P*acetone)XcHela

This is the equation of the total vapor pressure Pty Over a solution obeying Raoult’s law
throughout the range of compositions, where Xcpcizis the mole fraction of CHCI3
and the vapor pressures of the pure components are P*acetone aNd P*cHeiz




Pot = P*a P*8{ P*a + (P*A -P*B)YA}

This curve is the Equation of the total vapor pressure Pyt Over a solution in terms of the
mole fraction Y of component A in the vapor phase. We derive it as follows:

Piot = Pa /Ya This relates pyr and ya but we want an expression that is in terms of p*a
p*s and ya. So start with this:

Ya = pa/(Patpe) = p*aXa/{p*aXat(1-Xa)p*e}.

Now rearrange this so as to have xa in terms of ya :

Xa = p*sYal { P*a + (P*B — P*A)YA}

As in the Eq for E,

Piot = P*B + (P*A - P*B)XA

where we now substitute our expression for xa in order to have the desired equation in
terms of ya.

Prot = P*8 + (P*A - P*B)® P*8oYA/ { P*A *+ (P*8 — P*A)YA}

Regroup terms to get

Pt = P*a P*s/{ p*a + (P*A -P*8)Ya} Which is not a straight line

Prot = Xa P*a + (1-Xa)P*s = P*s + (P*A- P*B)XA

This is the equation (like Line C above) of the total vapor pressure Pt Over a solution
obeying Raoult’s law throughout the range of compositions, where the equation is
expressed and plotted in terms of the mole fraction X of component A and (1-Xa ) is the
mole fraction component B, and the vapor pressures of the pure liquids are p*a and p*g.

We know that the solution obeys Raoult’s law because the line is a straight line
connecting the vapor pressures of pure A and pure B.

Piot = CcONstant = Xa p*a + (1-Xa)P*s = Pa Ya

This tie line is a line of constant total vapor pressure Py (thus a horizontal line) which
extends between the values of xa on line E and ya on curve D.

Piot is @ function of the overall composition za, such that (za-xa) and (ya-za) are the two
line segments which are related to the relative amounts of liquid and vapor respectively.
(za-Xa) ®NL = (Ya-za) eny as derived in lecture notes part 8.
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dp/dt = (Ssoiia-Siiq) /(Vsaiia-Viig) = constant.

The constant (slope) is negative (unusual) in this example, indicating that for this
substance Vsgiig-Viig > 0.

This is the equation which describes the set of pressure p and temperature t values at

which solid and liquid can coexist in equilibrium. S and V are the molar entropies and
molar volumes for the solid and liquid phases.

Pure liquid

Solution

Chermical potential

danuid/dT = - Siiquid

where L jiguid Is the chemical potential (molar Gibbs free energy) of a pure liquid at a
given pressure, is a function of temperature such that the slope is the molar entropy

Sliquid . This follows directly from one of the fundamental equations of thermodynamics
dG = Vdp -SdT, when examined at constant p for one mole of a pure substance

divapo/dT = - Syapor  As above, except for the vapor phase.




This is the equation of the freezing point of Sb which becomes depressed when solute Pb
is introduced to form the solid solution of Sb and Pb. The equation of this curve of T vs
Xpp IS a rearranged form of
InXa=Aus H/R[ -1+1 |

T T
where Xa is Xpp, T* = 631 +273, AqusH = the molar enthalpy of fusion of Sb in J mol™*, R
is the gas constant 8.3145 J mol™* K™,

T = constant

At this specific temperature, the freezing point of the solution of Sb and Pb, pure Sb
freezes out of a solid solution such that the mole fraction of Pb in the solution phase is
given by the x coordinate of point c. The x coordinate of point a is of course zero mole
fraction for Pb, that is, pure Sb
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P Ky




In K(T2) = In K(Ty) = - (/R) AxnH® (T2) { T2* = T4} (EqL)
This comes from

MG r=-RTIn K,

When Gibbs-Helmholtz relation is used, (see problem 5 below)

d InK/dT = A, H/RT?

Integration gives [ d In K = (1/R)] AnH® (T)T?dT
When AnH® is nearly independent of T, then the integrations leads to this Eq (L).
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dp/dT = (Sthombic — Smonociinic) /(Vrhombic=Vmonociinic)

This curve is the equation for the set of (p,t) points for which

Hsolidarhombic(t:p) = W solid ,monoclinic(tsp)
that is, the Clapeyron equation for the pressure and temperatures at which monoclinic
and rhombic solids are in equilibrium

dp/dT = (Svap'smono) /(Vvap'vmono)

This curve is the equation for the set of (p,t) points for which

Hvapor(typ) = W solid ,monoclinic(t;p)
that is, the Clapeyron equation for the vapor pressure of the monoclinic solid at various
temperatures.




Pfbar | Melting point
0 " of En

dp/dT = (Siiquid —Ssotid) /(Viiquid-Vsolid)

This curve is the equation for the set of (p,t) points for which

Wiquid(t,P) = W soiid (t,P)
that is, the Clapeyron equation for the freezing temperatures of the Eu at various

temperatures




for a typical
nonelectrolyte solate.

wir = u® 1 + RT Inx; for a solute i in H,O for example

For a "non-volatile” solute in an ideal solution

MUsolute, T = Mesolute,T + RT In asoiute

where u®soute 1 is the chemical potential of a fictitious Henry’s law solution having psoiute =
Ky . This is why the pu®; 1 in this plot is not on the real curve of data. On the other hand,
as xi— 0, ai—>Xi, Yi = AQjinH20 / Xiinb2o —1 (Ideal)

and the real data in Q becomes the same as the ideal in the limit of the ultra-dilute
solution (large negative values for the In x;)

wir=p® 1 + RTIna; for a solute i in H,O
where a; = y; ® X;and y; changes with X; as described above.

This equation describes the real solution and becomes the same as the ideal equation P
in the limit of the ultra-dilute solution at large negative values of In x;
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35°C and 1 atm.
Hacetone, T - Ivlacetone,T* = RTIn dacetone
where Qacetone = pacetone/ P*acetone = Y acetone ® Xacetone

Incidentally, the other curve for chloroform is
UcHeisT = Hereis T + RTInacnwcis where accis = PeHeis/P*cHels
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aceione-chloreform sul;.uiuus at 33°C

a cHCI3, ideal = XCHCI3

achciz = Pcreis! P*cHeiz = X cHeis Y cHaiz  This is not a straight line because the activity

coefficient y is not a linear function of x




YcHeiz = @cheis / X chers

At one end of the curve, in the limit of Xacetone = 0, it is pure CHCI3
SO ycHciz = acHeiz / X cHeiz where X cpciz =1 and acheiz =1, SO Y cHeizs = 1 here.

At the other end of the curve, Xacetone approaches 1, x cuyciz approaches 0. At this limit,
Henry’s law holds for CHCI3, S0 pchcis = KuXchers

achciz = Pcheis/ P*cheis so at this limit, & crcia = KuXcrcis! P*creis -
Since Y cHeiz = @cHeiz /Qideal » and @igea = 1, then at this limit,
Ycucis = KuXcrcis/ P*cheis , a value close to 0.5
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Assume simplest formula for compound A3;B which melts incongruently at 700°C
undergoing the peritectic reaction Az;B(s) — A(s) + LIQUID of composition xg = 0.57



3. SO2(g) + ¥202(9) < SOs(g)

S0,/ SO,
= 104

+s0, D298

i 2 atm

1000°C
Equation Basis for the equation Eq.
#
After equilibrium is reached: Since only a small amount of SO, was introduced,
Psoa/Psoz = 10* the moles of O, is nearly unchanged
Poz = 2 atm
p total ~ 2 atm
Kp = Psos_. Note: actually every partial pressure in the K, 1
Pso2 Po2Y2 expression to the left is implicitly divided by 1 atm
Kp = 10%/1.414 = 7071. in order to keep the quantity K, dimensionless. 2
7071 = _ psos .= Pso3 Applying Eq 1 and new volume is 9V 3
Psoz Po2Y2 Pso2 (2/9)”
psoglpsoz = 3333 Answer Solving for pso3/psoz 4
4. N2O4(g) < 2NOy(g) degree of dissociation?
Equation Basis for the equation Eq.
#

G®(N,04,g) = 98.296 kJ mol™
G9(NO,,g) = 51.8456 kJ mol™*
ArxnG® for N2O4(g) < 2NO»(g)
=2 Ge(NOQ,g) - Ge(N204 ,9)
= 5.3952 kJ mol™*

Given at 298 K

MG r=-RTIn K,
5395.2 J mol™
= - (8.31451 J K™ mol™) 298 In K,

Derived using p = pu® + RT In(p/1atm) for ideal
gases, applied to reactants and products and
setting AG = 0 at equilibrium




InK,= - 2.1775
Kp = 0.1133

As noted above, every partial pressure quantity in
the K, expression is implicitly divided by 1 atm or
1 bar which insures that K is dimensionless

(@) Prot=2 atm

Let degree of dissociation is x
Pn204 = Prot®(1-X)/(1+X)

Prno2 = Prote(2X)/(1+X)

Here Kp = (Pno2)*/Pizoa

0.1133 = [2x/(1+x)]* 2
(1-x)/(1+x)

given

Assuming Dalton’s law of partial pressures is
valid, as for ideal gases

Note that the total moles of N,O, at the start being
any number n instead of 1 does not affect the
degree of dissociation because all moles,

0.1133 = x° including total moles are mutiplied by n, so n
8 (1-x9) drops out in taking the mole fraction of each
component.
x=0.118 Answer Solving for x

(b) ptot = 2 atm including 5 mol Ar
Let degree of dissociation is x
This time we need to look at total
moles since Ar contributes to it
moles N2O4 = 2(1-x)
moles NO, = 2(2x)
total moles = 2(1+x) + 5 = 7+2x

Pn204 = Prot®2(1-X)/(7+2X)
Prno2 = Prot®2(2X)/(7+2X)
Here Ky = (Pno2)?/Pn2oa
0.1133 = [4x/(7+2X)]* 2
2(1-x)/(7+2x)
0.1133=16 x> .
7-5x-2x°
16.2266x* +0.5665x% -0.7931 = 0
x= 0.204 Answer
(the other root leads to negative and
unphysical degree of dissociation so
discard it)

Substitute partial pressures into K,

Note that this is somewhat larger than in the
absence of added Ar

(c) original volume kept constant then
add 5 moles Ar
V =2 mol 298R /2 atm = 298 R
total moles = 7+2x as shown above,
also partial pressures as shown above
Pt (298 R) = (7+2x) 298 R
Prot = (7+2X)
0.1133 = [4x/(7+2X)]* o(7+2x)
2(1-x)/(7+2x)
0.1133 = 8x°
(1-x)

Using ideal gas law

Using ideal gas law

Substitute into K,




x=0.112 Answer
similarly discard unphysical negative
value of x

Note that this is less than in absence of added Ar
With the volume kept constant, LeChatelier’s
principle predicts that equilibrium will shift toward
fewer particles (fewer NO,) to relieve the stress of
additional non-reacting (Ar) particles introduced
into the same volume.

5. 2NOBr(g) < 2NO +Bry(g) Kesook = ?
Equation Basis for the equation Eq.
#
AmnH® for the reaction at 300 K and 1 | Given
bar pressure = 15.7 kcal
Kp =0.035 at 300 K Given
For any temperature T, we need to
correct this value by using (0H/oT), dT
integrated from 300 to T
ArnH® (T) = 15.7 kcal mol™ 1
+J300" [Cp( Br2) + 2C,(NO)
- 2 Co( NOBI)] dT
AnH® (T) = 15700 We were allowed to assume that all C, in this
+j300T[8_6 + 2(7.0) — 2(6.3)]dT | problem are almost independent of temperature in
AnnH® (T) = 15700 + 10(T-300) this temperature range. Ax,H® (600) = 18700 cal | 2
= 12700 + 10T mol ™
(&(AG /T) IoT), =- (AH/T?) | From the definition G = H -TS, or (G/T)= (H/T) -S, |3
we easily derive the Gibbs-Helmholtz relation.
Araner/ T=-RIn K Derived using p = pu® + RT In(p/1atm) for ideal 4
gases, applied to reactants and products and
setting AG = 0 at equilibrium
dInK/dT = A,,H/RT* | When we apply the Gibbs-Helmhotz relation to 5
AxnG® chemical reaction in Eq 4
RdInK = Ay H® (T)TAT Rearranging Eq 5 6
RJd In K = [ AxaH® (T)T2dT Substituting Eq 2 into Eq 6 and integrating 7

= [[12700 + 10T] T2dT
= 12700 [T -300] +10 In (T/300)

R In(Keoo/K300) = 12700 [6007 -3007]
+10 In (600/300)
In (K500/0.035)
= [-21.1666 + 6.93)/1.9872
=-7.164
Ke00/0.035 = exp(-7.164) = 0.000774
Keoo = 2.709x107° Answer

Applying Eq 7 at upper limit of T =600 K




6. ideal gases 2NOs(g) — NoO4(g)
(a) AxnH® for the reaction at 298.15 K and 1 bar pressure = H® (N2O4)- 2H® (NO,)
= 9.16 - 2(33.18) kJ mol™, using values at 298.15 K and 1 bar pressure from
Appendix A (per instructions for this problem)
= - 57.20 kJ mol™

Arxnpt® for the reaction at 298.1 K and 1 bar pressure = pu® (N2O4)- 2u® (NOy)
= 97.89 - 2(51.31) kJ mol™, using values at 298.15 K and 1 bar pressure from
Appendix A (per instructions for this problem)
=-4.73 kJ mol™

(b)f/ p = 1 for an ideal gas, so fugacity is p for NO,(g) at 298.15 K and p = 1 to 400 bar
O _

(c) K, for the reaction can be obtained from AnG 7=~ RTIn KP

Arnpt®= - 4.73 kI mol™ = - RT In K,

Ko = exp [4730 J mol™ / (8.31451 J mol"K™)298.15K] = exp (1.908) = 6.740

For mixtures, the activity of a component of a gas, for example N>QOy4 is, anzo4 = Pn2oa/P®

Kp = ELOMJQGZ
(Pno2/P®)

Pno2 and pn2os are partial pressures. The inclusion of the terms in the standard pressure

p® =1 bar=10"Pa, 1 atm = 1.01325 bar, close enough to old standard p® =

(in this problem using 1 bar for standard pressure)

ensure that the activities are dimensionless, so that the equilibrium constant is also
dimensionless and it is okay to take its natural log in

MG r=-RTIn K,

For activities in terms of concentrations,

anzos = [N204] /c®
where the concentration [N,O,] is in mol L™,
and the standard concentration c® is 1 mol L*

Kc = | N>O4 /c®
(INO,)/c®)?

RT [N2O4] = pnzosa , RT[NO2] =pno2 forideal gases
per = T|N204| = c® Kc
(RT)’[NOJ RT

In general,
(RT p®) " Ky = (¢®) ™" Kc where An = products - reactants

In this problem, An = -1, RT p®Kp =¢c® Kc



Note that RT p®/c® = 0.0831451 L bar mol™ K'e298.15 Ke 1 bar/ 1 mol L™
is dimensionless, as is the general case (RT p®/ ¢®)*", and also K, and K¢ are
dimensionless, as they should be.

Kc = KpeRT = 6.740e 0.0831451298.15 = 167.08 at 298.15K

(d) AxH® for the reaction at 298.15K and 1 bar pressure = - 57.20 kJ mol™ from part (a)
For any temperature T, we need to correct this value by using (6H/0T), dT integrated
from 298.15t0 T

ArnH® (T) = -57.20 kJ mol™ + 208" [Cp( N2Oa) - 2 Cp( NO2)] dT

Cp=10.719 + 2.86x107°T = 8.726x10°T? cal mol” K for N30x(g)

Cp=6.37+ 1.01x107°T - 3.4':'5:-:]_'5"67-2 cal mol™ K for NOs(g)

4184 =1 cal
AnnH® (T) = -57.20x10°
+4.184{(10.719 - 26.37)(T-298.1) +(1/2) [2.86-2¢1.01]x10[T?- (298.15)]
- (1/3)[8.726-23.405]x10°° [T3- (298.15)°}

using

=-57.20x10% -8.456(T-298.1) + 1.757x10?[T? (298.15)°] - 2.674 x10°[T>- (298.15)°]
ArnH® (T) =-56.17x10°% - 8.456T +1.757x107°T?- 2.674 x10° T3 J mol*

ArnH® (1000 K) = - 56.17x10° -8.456x10°% +17.57x10°% -2.674x10° = -49.73x10° J mol*

(e) From the definition G = H -TS, or (G/T)= (H/T) -S, we easily derive the
Gibbs-Helmholtz relation:  (X(AG/T) I6T), =~ (AH/T")
When we apply this relation to K,
O _
3G/ T=-RINK 0 o0

d InK/dT = A, ,H /RT?

Using this equation & AnnH® (T) = - 56.17x10° - 8.456T +1.757x107%T%- 2.674 x10° T3
from above,

RAINK = ApH® (T)T2dT = {- 56.17x10%T2 - 8.456T* +1.757x1072 - 2.674 x10° T}dT
Integrating from 298.15 to T, we get for K, as a function of temperature,

R In( K1/Kogg ) = - 1(-56.17x10%)[T* -298.15™] - (8.456) In (T/298)

+ (1.757x10%)(T-298.15) - (1/2)(2.674x107°)(T?-298.15%)
In( K1/Kags ) = - 23.275 +6.756x10°T ™ -1.0170 In (T/298) +0.00211T -0.1608x10° T?
Note that although there are several powers of T here, the dominant term is that of T™.
Thus we expect that a plot of In( K1/Kzes ) vs T should be approximately a straight line.



We had already found K¢ = KpeRT for this reaction

d In K/dT = dInKy/dT + dInT/dT

Integrating between the limits 298 K and T,

In( Ker/Keoos ) = In( KpT/szgg) +In (T/298)

That is, we need to add In(T/298) to the above expression, to get:

In( Ker/Kezos ) = - 23.275 + 6.756x10°T 1 - 0.0170 In(T/298) + 0.00211T - 0.1608x10° T2
Note that although there are several powers of T here, the dominant term is that of T™
Thus we expect that a plot of In( Kcr/Kezos ) vs T should be approximately a straight
line, too.

Ref.: Plots from L. M. Raff Solutions Manual Principles of Physical Chemistry
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Note that we chose to use K¢ to do the calculation rather than K, because the problem
said “sealed rigid container” (constant volume of 2 L) which means that the
concentrations can be determined from the number of moles.

At 298 K, 167.08 = [0.25- ] /4X*

Note that the very large Kc = 167.08 means that at 298 K nearly all the NO, goes to
N2Oy4, S0 it is easier to solve the equation if start closer to the final condition, since then
we can approximate (0.25 - x) ~ 0.25. At 298 K, 167.08 = [0.25- x] /4x* ~ 0.25/4x?
we find x ~ 0.0193

Using the quadratic formula: 167.08 = [0.25- x] /4x* gives x = 0.01861

[NO,] = 0.0372 mol L™, [N,O,4] = 0.25 - 0.01861 = 0.2314 mol L™, total mol L™ =0.2686

IN( Ker/Kezos ) = - 23.275 + 6.756x10°T ™ - 0.0170 In(T/298) + 0.00211T - 0.1608x10° T?

At 1000 K,

In( Kc1000/Ke2os ) =-23.275 +6.756 - 0.0207 +2.11 - 0.1608 = - 14.59

4.61><:|.O-7 = Kc;Looo/Kczgg

KClOOO = 773)(105

This is very small so equilibrium mixture has essentially zero N2O,.

Thus, N,O4 concentration drops from 0.2314 mol L™ at 298 K to almost zero at 1000 K.

Ref.: Plot from L. M. Raff, Solutions Manual Principles of Physical Chemistry
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(g) 2NO; < Nz04

Given: Dalton’s law of partial pressure holds. Then partial pressures add up to total
pressure and are related to molefractions: pnzos = Xn204®Prot | Prno2 = XNo2®Piot

How is total pressure involved?

K, is a constant at a fixed temperature, in terms of the partial pressures at equilibrium

Kp = Pn20a/P® = ProXn204/P® = Xn204 .
(Pno2/p®)? (ProtXno2/P©)? Xnoz2” (Prot! P)

Xno2 = 1- Xn2o4

Kp 208.15 k = 6.740
(Pro/ P©)#6.740 = Xnzoa / [1-X nzoal”

This is the relation between Xn204 @and piot - TO put it in @ more conventional form, we
need to solve for Xn204 as a function of pio .

pe =1 bar: Solve (ptotllbar) 6.740 = XN204 / [1-X1N204]2 for the unknown XN2oa
Xnzos = (13.48po +1) - [(13.48pio +1)° -4(6.740)pio’]”
13.48pt0t

Ref.: Plot from L. M. Raff, Solutions Manual Principles of Physical Chemistry
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7. Now do the same as problem 6 but for non-ideal gas

Given equation of state:
o pV=RT +B:(T)p + Bo(T) p'IRT
where By(T) =b—a/RT and B2(T) = b?
For NO,(g) @ = 5.354 L? bar mol™ b = 0.04424 L mol”, for N,0,(g) a = 6.550 L
bar mol”, b = 0.05636 L mol™. The heat capacities are
the same as in problem 6.

What should we do differently for non-ideal gases?

(a) This is unchanged by the fact that the gases are assumed to be ideal because the
guantities used from the Appendix, H® and p® at 298.15 K and 1 bar, are experimental
values for real gases.

(b) Fugacity:

In_f£ = V-V dp
P o RT
Replace V by RT/p + b - a/RT +b® p/RT and Vig by RT/p
(V-Vig) = b - a/RT +b? p/RT
integral = [RT]™ [oP (b-a/RT)dp + (b*/RT)pdp = [RT]*{ (b-a/RT)p + (1/2)(b*/RT)p?}

for NO, : integral = [0.0831451 L bar mol™K™ 298K]*e0.04424 L mol™ p
+[0.0831451 L bar mol*K™ 298K]?e{ - 5.354 L? bar mol? p + 0.5[0.04424 L mol™]?p?}
Units all check out to leave dimensionless result, if p is in bars:
In(fip) = 0.0403600.04424p + 0.0016289¢{- 5.354p + 9.785x10*p’}

= -0.00693p + 1.594x10°p?
fip = exp[ - 0.00693p + 1.594x10°p*] for NO,

for NoO4: In(fip) = 0.040360.05636p + 0.0016289e{- 6.550p + 7.941x10"p?}
=-0.00839 p + 1.29x10°p?
fip = exp[- 0.00839 p + 1.29x10°p* ]

For p =1-400 bars, the negative term dominates andﬂp is less than 1 (see plot below
right).



Ref.: Plot from L. M. Raff, Solutions Manual Principles of Physical Chemistry
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(c) The value of K, derived from
S
AnGr=-RTIn K,
where K is in terms of activities does not depend on whether the gases are ideal.

e _
The choice is to keep the same general relation AxnG 7=-RTIn Kp but make sure

that the expression for K is constituted of activities, or fugacities in the case of gases.
To be more explicit, we could write

Arane (T) =-RTIn Kf
This relation comes from

w(T)=u°r + RTIn £ (real gas)
instead of 1

wWT) =" + RTIn p (ideal gas)
1
Use K = Pn2oa/p®  only for ideal gases
(Pno2/p®)°

Use K= faoodf®  for non-ideal gases

(fuo2l 2

Furthermore, the relation between K¢ and Ky used in problem 6 no longer holds for non-
ideal gases because we used p = nRT/V to derive it. Furthermore non-ideal gases do



not follow Dalton’s law of partial pressures, since mole fractions depend only on
numbers of molecules, but activities at a given mole fractions in a mixture also depend
on total pressure.

(d) The temperature dependence of An,H® (T) obtained in problem 6 does not depend
on assumed ideality of the gases, since the experimental heat capacities for real gases
are the quantities used. Therefore, the answer in problem 6 is the same here for real
gases.

(e) The temperature dependence of K, derived from the general relation
d InK/dT = A, ,H /RT?

is unchanged from problem 6 for the same reason as in (d), provided we mean to use
the fugacity expression for K, but the relation between K¢ and Kfis not the same as

found in problem 6 for the relation between K¢ and K, where the ideal gas assumption
was used to connect the two.

() The equilibrium concentration of N,O4 will be related to total pressure at each
temperature because partial pressures in a gas mixture will depend on total pressure
and composition in a way different from that for ideal gases.

(g9) The dependence of the mole fraction of N,O4 on total pressure will be different from
that obtained in problem 6. That is, we can no longer use the result

(p/1bar) 6.740 = Xnz04 ! [1-X n204]®

to find the desired pressure dependence of mole fraction of N,O, because we used
Dalton’s law of partial pressures for mixtures to derive this and when gases are non-
ideal, Dalton’s law strictly can no longer apply. The non-ideality comes from non-
negligible interactions between molecules and these interactions depend not only on
relative numbers of molecules of each kind but also the conditions (T and p) that these
molecules are subjected to.



