
Solutions to Problem Set 9 

1.   When possible, we want to write an equation with the quantity on the ordinate in 
terms of the quantity on the abscissa for each pf the labeled curves. 

 
A pCHCl3 = KH xCHCl3   

where pCHCl3 is the partial pressure of CHCl3 in the vapor of a solution obeying Henry’s 
law with Henry’s law constant of KH  and xCHCl3  is the mole fraction of CHCl3 in the liquid 
solution. 

B ptot =   pacetone + pCHCl3 

This is the equation of the total vapor pressure ptot over a real solution of acetone and 
chloroform, which is a simple sum of the partial pressures of the individual components in 
the vapor phase are pacetone and pCHCl3 . That is, Dalton’s law of partial pressures still 
holds in the vapor even though the liquid solutions do not behave ideally. pacetone is a 
function of (1-xCHCl3) and γacetone obtained experimentally as a function of 1-xCHCl3), and 
pCHCl3 is a function of xCHCl3 and γCHCl3 obtained experimentally as a function of xCHCl3, 

C ptot = (1-xCHCl3) p*acetone + xCHCl3 p*CHCl3 = p*acetone + (p*CHCl3 - p*acetone)xCHCl3 

This is the equation of the total vapor pressure ptot over a solution obeying Raoult’s law 
throughout the range of compositions, where xCHCl3 is  the mole fraction of CHCl3  
and the vapor pressures of the pure components are p*acetone and p*CHCl3 

 



 

D  ptot =  p*A p*B/{ p*A + (p*A -p*B)yA}   

This curve is the Equation of the total vapor pressure ptot over a solution in terms of the 
mole fraction yA of component A in the vapor phase. We derive it as follows: 
ptot =  pA /yA  This relates ptot and yA but we want an expression that is in terms of p*A 
p*B and yA. So start with this:  
yA = pA/(pA+pB) = p*AxA/{p*AxA+(1-xA)p*B}.  
Now rearrange this so as to have xA in terms of yA :  
xA = p*ByA/ { p*A + (p*B – p*A)yA} 
As in the Eq for E,  
ptot = p*B + (p*A - p*B)xA 
where we now substitute our expression for xA in order to have the desired equation in 
terms of yA. 
ptot = p*B + (p*A - p*B)• p*B•yA/ { p*A + (p*B – p*A)yA} 
Regroup terms to get 
ptot =  p*A p*B/{ p*A + (p*A -p*B)yA}  which is not a straight line 

E ptot = xA p*A + (1-xA )p*B = p*B + (p*A - p*B)xA 

This is the equation (like Line C above) of the total vapor pressure ptot over a solution 
obeying Raoult’s law throughout the range of compositions, where the equation is 
expressed and plotted in terms of the mole fraction xA of component A and (1-xA ) is the 
mole fraction component B, and the vapor pressures of the pure liquids are p*A and p*B. 
We know that the solution obeys Raoult’s law because the line is a straight line 
connecting the vapor pressures of pure A and pure B. 

F ptot = constant = xA p*A + (1-xA )p*B  = pA /yA   

This tie line is a line of constant total vapor pressure ptot (thus a horizontal line) which 
extends between the values of xA on line E and yA on curve D.  
ptot is a function of the overall composition zA, such that  (zA-xA) and (yA-zA) are the two 
line segments which are related to the relative amounts of liquid and vapor respectively. 
(zA-xA) •nL = (yA-zA) •nV  as derived in lecture notes part 8.. 



 

G dp/dt =  (Ssolid-Sliq) /(Vsolid-Vliq)  ≈  constant.   
The constant (slope) is negative (unusual) in this example, indicating that for this 
substance Vsolid-Vliq  > 0. 
This is the equation which describes the set of pressure p and temperature t values at 
which solid and liquid can coexist in equilibrium. S and V are the molar entropies and 
molar volumes for the solid and liquid phases. 

 

 

H dμliquid/dT = - Sliquid 

where μ liquid is the chemical potential (molar Gibbs free energy) of a pure liquid at a 
given pressure, is a function of temperature such that the slope is the molar entropy 
Sliquid  . This follows directly from one of the fundamental equations of thermodynamics 
dG = Vdp -SdT, when examined at constant p for one mole of a pure substance  

I dμvapor/dT =  - Svapor      As above, except for the vapor phase.  



 

 

J This is the equation of the freezing point of Sb which becomes depressed when solute Pb 
is introduced to form the solid solution of Sb and Pb. The equation of this curve of T vs 
xPb is a rearranged form of 

 
where xA is xPb, T* = 631 +273, ΔfusH = the molar enthalpy of fusion of Sb in J mol-1, R 
is the gas constant 8.3145 J mol-1 K-1. 

K T = constant 
At this specific temperature, the freezing point of the solution of Sb and Pb, pure Sb 
freezes out of a solid solution such that the mole fraction of Pb in the solution phase is 
given by the x coordinate of point c. The x coordinate of point a is of course zero mole 
fraction for Pb, that is, pure Sb  

 

 



L ln K(T2) – ln K(T1) = - (1/R) ΔrxnH (T1) { T2
-1 – T1

-1}               (Eq L ) 
This comes from  

 
When Gibbs-Helmholtz relation is used, (see problem 5 below) 

 

Integration gives     ∫ d ln K = (1/R)∫ ΔrxnH  (T)T-2dT   
When ΔrxnH  is nearly independent of T, then the integrations leads to this Eq (L). 
 

 

 

M dp/dT =  (Srhombic – Smonoclinic) /(Vrhombic-Vmonoclinic)                   
 
This curve is the equation for the set of (p,t) points for which 
 μsolid,rhombic(t,p) = μ solid ,monoclinic(t,p)  
that is, the Clapeyron equation for the pressure and temperatures at which monoclinic 
and rhombic solids are in equilibrium 
 

N dp/dT =  (Svap-Smono) /(Vvap-Vmono) 
 
This curve is the equation for the set of (p,t) points for which 
 μvapor(t,p) = μ solid ,monoclinic(t,p)  
that is, the Clapeyron equation for the vapor pressure of the monoclinic solid at various 
temperatures. 

 



 

O dp/dT =  (Sliquid –Ssolid) /(Vliquid-Vsolid) 
 
This curve is the equation for the set of (p,t) points for which 
 μliquid(t,p) = μ solid (t,p)  
that is, the Clapeyron equation for the freezing temperatures of the Eu at various 
temperatures 

 



 

P  μi,T = μ i ,T  +  RT lnx i  for a solute i in H2O for example 

For a ”non-volatile” solute in an ideal solution 
μsolute,T = μ solute,T + RT ln asolute 
where μ solute,T is the chemical potential of a fictitious Henry’s law solution having  psolute = 
KH . This is why the μ i ,T  in this plot is not on the real curve of data. On the other hand, 
as x i → 0,  ai→x i ,  γ i  = ai inH2O / xi inH2O →1 (ideal) 
and the real data in Q becomes the same as the ideal in the limit of the ultra-dilute 
solution (large negative values for the ln xi)   

Q μi,T = μ i ,T  +  RT lna i  for a solute i in H2O  
where ai = γ i • xi and γ i  changes with xi    as described above. 
This equation describes the real solution and becomes the same as the ideal equation P 
in the limit of the ultra-dilute solution at large negative values of ln xi 



 

R μacetone,T - μacetone,T* = RTln aacetone   

where aacetone = pacetone/p*acetone =   γ acetone • xacetone 
Incidentally, the other curve for chloroform is 
μCHCl3,T = μCHCl3,T* + RTlnaCHCl3   where aCHCl3 = pCHCl3/p*CHCl3 

 

S a CHCl3, ideal = xCHCl3   

T aCHCl3 = pCHCl3/  p*CHCl3 = x CHCl3 γ CHCl3  This is not a straight line because the activity 
coefficient γ is not a linear function of x 



U γ CHCl3  = a CHCl3 / x CHCl3 

At one end of the curve, in the limit of xacetone = 0, it is pure CHCl3  
so γ CHCl3  = a CHCl3 / x CHCl3 where x CHCl3 =1 and a CHCl3 =1, so γ CHCl3  = 1 here. 
At the other end of the curve, xacetone approaches 1, x CHCl3 approaches 0. At this limit, 
Henry’s law holds for CHCl3, so pCHCl3 = KHxCHCl3   

aCHCl3 = pCHCl3/  p*CHCl3  so  at this limit,   a CHCl3l = KHxCHCl3/  p*CHCl3  . 
Since γ CHCl3  = a CHCl3 /aideal , and aideal = 1, then at this limit,  
γCHCl3  =  KHxCHCl3/ p*CHCl3   , a value close to 0.5 

 

2.       

 

 

Assume simplest formula for compound A3B which melts incongruently at 700°C 
undergoing the peritectic reaction A3B(s) → A(s) + LIQUID of composition xB = 0.57



3.                                      SO2(g) + ½O2(g) ⇔ SO3(g) 

 

   Equation Basis for the equation Eq. 
# 

After equilibrium is reached: 
pSO3/pSO2 = 104 

pO2 ≈ 2 atm 
p total ≈ 2 atm 
Kp =       pSO3   . 
        pSO2 pO2½ 
Kp = 104/1.414  = 7071. 

Since only a small amount of SO2 was introduced, 
the moles of O2 is nearly unchanged 
 
 
Note: actually every partial pressure in the Kp 
expression to the left is implicitly divided by 1 atm 
in order to keep the quantity Kp dimensionless. 

 
 
 
 
1 
 
2 

 7071 =      pSO3       .    =          pSO3       
                 pSO2 pO2½         pSO2 (2/9)½ 
            

Applying Eq 1 and new volume is 9V 3 

  pSO3/pSO2  = 3333               Answer 
           

Solving for pSO3/pSO2 4 

 

4.                           N2O4(g)   ⇔ 2NO2(g)        degree of dissociation? 

   Equation Basis for the equation Eq. 
# 

G (N2O4 ,g) = 98.296 kJ mol-1 

G (NO2,g) = 51.8456 kJ mol-1 

ΔrxnG   for N2O4(g) ⇔ 2NO2(g)    
           =  2 G (NO2,g) - G (N2O4 ,g) 
           = 5.3952 kJ mol-1 

 

Given at 298 K 
 
 
 
 
 
 

 

 
5395.2 J mol-1  

   = - (8.31451 J K-1 mol-1) 298 ln Kp 

Derived using μ = μ + RT ln(p/1atm) for ideal 
gases, applied to reactants and products and 
setting ΔG = 0 at equilibrium 
 

 



ln Kp = - 2.1775 
Kp = 0.1133 
 

As noted above, every partial pressure quantity in 
the Kp expression is implicitly divided by 1 atm or 
1 bar which insures that Kp is dimensionless 

(a)  ptot = 2 atm 
Let degree of dissociation is x 
pN2O4 = ptot•(1-x)/(1+x)  
pNO2 = ptot•(2x)/(1+x)  
Here Kp = (pNO2)2/pN2O4 
0.1133 = [2x/(1+x)]2 •2 
                (1-x)/(1+x) 
 
  0.1133    =    x2 
     8            (1-x2) 
     

given 
 
Assuming Dalton’s law of partial pressures is 
valid, as for ideal gases 
 
Note that the total moles of N2O4 at the start being 
any number n instead of 1 does not affect the 
degree of dissociation because all moles, 
including total moles are mutiplied by n, so n 
drops out in taking the mole fraction of each 
component. 

 

 x = 0.118        Answer Solving for x  
 (b) ptot = 2 atm including 5 mol Ar   
Let degree of dissociation is x 
This time we need to look at total 
moles since Ar contributes to it 
moles N2O4 = 2(1-x) 
moles NO2 = 2(2x) 
total moles = 2(1+x) + 5 = 7+2x 
 
pN2O4 = ptot•2(1-x)/(7+2x)  
pNO2 = ptot•2(2x)/(7+2x)  
Here Kp = (pNO2)2/pN2O4 
0.1133 = [4x/(7+2x)]2 •2 
                2(1-x)/(7+2x) 
   0.1133 = 16 x2    . 
                  7-5x-2x2    
16.2266x2 +0.5665x -0.7931 = 0 
x =  0.204                      Answer 
(the other root leads to negative and 
unphysical degree of dissociation so 
discard it) 

 
 
 
 
 
 
 
 
 
 
 
 
Substitute partial pressures into Kp 
 
 
 
 
Note that this is somewhat larger than in the 
absence of added Ar 

 

(c) original volume kept constant then 
add 5 moles Ar 
V = 2 mol 298R /2 atm = 298 R 
total moles = 7+2x as shown above, 
also partial pressures as shown above 
ptot (298 R)   = (7+2x) 298 R 
ptot = (7+2x) 
0.1133 = [4x/(7+2x)]2 •(7+2x) 
                2(1-x)/(7+2x) 
0.1133 =  8x2 
               (1-x) 

 
 
Using ideal gas law 
 
 
Using ideal gas law 
 
Substitute into Kp 
 
 
 

 



x = 0.112                     Answer    
similarly discard unphysical negative 
value of x   

Note that this is less than in absence of added Ar 
With the volume kept constant, LeChatelier’s 
principle predicts that equilibrium will shift toward 
fewer particles (fewer NO2) to relieve the stress of 
additional non-reacting (Ar) particles introduced 
into the same volume. 

 
5.                          2NOBr(g)   ⇔ 2NO + Br2(g)     K600K = ? 

   Equation Basis for the equation Eq. 
# 

ΔrxnH  for the reaction  at 300 K and 1 
bar pressure = 15.7 kcal 
Kp = 0.035  at 300 K 

Given 
 
Given 

 

For any temperature T, we need to 
correct this value by using (∂H/∂T)p dT 
integrated from 300 to T 
ΔrxnH  (T) =  15.7 kcal mol-1   

                  + ∫300
T [Cp( Br2) + 2Cp(NO)  

                        - 2 Cp( NOBr)] dT    

   
 
 
1 

ΔrxnH  (T) = 15700  
              + ∫300

T[8.6 + 2(7.0) – 2(6.3)]dT 
ΔrxnH  (T) = 15700 + 10(T-300) 
                = 12700 + 10T 
                                      

We were allowed to assume that all Cp in this 
problem are almost independent of temperature in 
this temperature range.  ΔrxnH  (600) =  18700 cal 
mol-1 

 
 
2 

:       
  

From the definition G = H -TS, or (G/T)= (H/T) -S, 
we easily derive the Gibbs-Helmholtz relation.  

3 
 

              
Derived using μ = μ + RT ln(p/1atm) for ideal 
gases, applied to reactants and products and 
setting ΔG = 0 at equilibrium 

4 
 

              
 

When we apply the Gibbs-Helmhotz relation to 
ΔrxnG  chemical reaction in Eq 4  

5 
 

  R d lnK =  ΔrxnH  (T)T-2dT Rearranging Eq 5       6 
 R ∫d ln K = ∫ ΔrxnH  (T)T-2dT 
               =   ∫ [12700 + 10T] T-2dT 
       = 12700 [T-1 -300-1] +10 ln (T/300) 

Substituting Eq 2 into Eq 6 and integrating 7 

 R ln(K600/K300)  = 12700 [600-1 -300-1]    
                                   +10 ln (600/300) 
ln (K600/0.035)  
                  = [-21.1666 + 6.93]/1.9872 
                  = -7.164 
K600/0.035 = exp(-7.164) = 0.000774 
K600   = 2.709x10-5              Answer 

Applying Eq 7  at upper limit of  T = 600 K  

 



6.   ideal gases             

(a) ΔrxnH  for the reaction  at 298.15 K and 1 bar pressure = H  (N2O4)- 2H  (NO2) 
          = 9.16 - 2(33.18) kJ mol-1, using values at 298.15 K and 1 bar pressure from  
                                                                Appendix A  (per instructions for this problem) 
          = - 57.20 kJ mol-1 

      Δrxnμ  for the reaction  at 298.1 K and 1 bar pressure = μ  (N2O4)- 2μ  (NO2) 
          = 97.89 - 2(51.31) kJ mol-1, using values at 298.15 K and 1 bar pressure from  
                                                                 Appendix A  (per instructions for this problem) 
          = - 4.73 kJ mol-1 

(b) f / p = 1 for an ideal gas, so fugacity is p for NO2(g) at 298.15 K and p = 1 to 400 bar  

(c) Kp for the reaction can be obtained from  
Δrxnμ = - 4.73 kJ mol-1  = - RT ln Kp 
Kp = exp [4730 J mol-1  / (8.31451 J mol-1K-1)298.15K]  = exp (1.908) = 6.740 
 
For mixtures, the activity of a component of a gas, for example N2O4 is, aN2O4 = pN2O4/p  

 
Kp

  =       pN2O4/p  

            (pNO2/p )2 

 

pNO2 and pN2O4 are partial pressures. The inclusion of the terms in the standard pressure  
 

p   = 1 bar = 105 Pa,    1 atm = 1.01325 bar, close enough to old standard p   = 1  
(in this problem using 1 bar for standard pressure)   
ensure that the activities are dimensionless, so that the equilibrium constant is also 
dimensionless and it is okay to take its natural log in 

  
For activities in terms of concentrations, 
 aN2O4 = [N2O4] /c  

where the concentration [N2O4] is in mol L-1,  
and the standard concentration c  is 1 mol L-1 

KC
  =       [N2O4]/c  

            ([NO2]/c )2 

 
RT [N2O4] = pN2O4     , RT [NO2] = pNO2      for ideal gases 
p Kp = RT[N2O4]      =     c    KC  
          (RT)2[NO2]2              RT 
 
In general, 
                       (RT p ) -Δn Kp = ( c  ) -Δn  KC  where Δn = products - reactants 
 
In this problem, Δn = -1 ,         RT p Kp = c    KC 



Note that   RT p / c  = 0.0831451 L bar mol-1 K-1•298.15 K• 1 bar / 1 mol L-1 

is dimensionless, as is the general case (RT p / c )-Δn , and also Kp and KC are 
dimensionless, as they should be. 
 
KC = Kp•RT = 6.740• 0.0831451•298.15 = 167.08 at 298.15K  
  
 
(d) ΔrxnH  for the reaction  at 298.15K and 1 bar pressure = - 57.20 kJ mol-1 from part (a) 
For any temperature T, we need to correct this value by using (∂H/∂T)p dT integrated 
from 298.15 to T 
ΔrxnH  (T) = -57.20 kJ mol-1  + ∫298

T [Cp( N2O4) - 2 Cp( NO2)] dT 

using  

   
4.184 j = 1 cal 
ΔrxnH  (T) =  -57.20×103  
                    + 4.184{(10.719 - 2•6.37)(T-298.1)  +(1/2) [2.86-2•1.01]×10-2[T2- (298.15)2]  
                                                                 - (1/3)[8.726-2•3.405]×10-6 [T3- (298.15)3]} 
                 
 = - 57.20×103  -8.456(T-298.1) + 1.757×10-2[T2- (298.15)2] - 2.674 ×10-6 [T3- (298.15)3]                
ΔrxnH  (T)  = - 56.17×103  - 8.456T +1.757×10-2T2 - 2.674 ×10-6 T3  J mol-1   
 
ΔrxnH  (1000 K) = - 56.17×103 -8.456×103 +17.57×103 -2.674×103  = -49.73×103 J mol-1   
 
(e) From the definition G = H -TS, or (G/T)= (H/T) -S, we easily derive the  
Gibbs-Helmholtz relation:       
When we apply this relation to Kp 

     we get 

      
 
Using this equation & ΔrxnH  (T) = - 56.17×103  - 8.456T +1.757×10-2T2 - 2.674 ×10-6 T3 
from above,  
RdlnK =  ΔrxnH  (T)T-2dT = {- 56.17×103T-2  - 8.456T-1 +1.757×10-2  - 2.674 ×10-6 T}dT  
Integrating from 298.15 to T, we get for Kp as a function of temperature, 
 
R ln( KT/K298 ) = - 1(-56.17×103)[T-1 -298.15-1] - (8.456) ln (T/298)  
                    + (1.757×10-2)(T-298.15)  - (1/2)(2.674×10-6)(T2-298.152) 
ln( KT/K298 ) = - 23.275 +6.756×103T-1 -1.0170 ln (T/298) +0.00211T -0.1608×10-6 T2               
Note that although there are several powers of T here, the dominant term is that of T-1. 
Thus we expect that a plot of ln( KT/K298 ) vs T-1 should be approximately a straight line. 
 



We had already found    KC = Kp•RT for this reaction 
d ln Kc/dT = dlnKp/dT +  dlnT/dT  
Integrating between the limits 298 K and T,  
ln( KcT/Kc298 ) = ln( KpT/Kp298 ) + ln (T/298).  
That is, we need to add ln(T/298) to the above expression, to get: 
ln( KcT/Kc298 ) = - 23.275 + 6.756×103T -1 - 0.0170 ln(T/298)  + 0.00211T - 0.1608×10-6 T2 
Note that although there are several powers of T here, the dominant term is that of T-1  
Thus we expect that a plot of ln( KcT/Kc298 ) vs T-1 should be approximately a straight 
line, too. 
Ref.: Plots from L. M. Raff Solutions Manual Principles of Physical Chemistry 

 
 

 
(f)                    2NO2   ⇔   N2O4 
 
initially:                   1 mol/2L         0 mol/2L      in a sealed rigid container 
Let all form N2O4                     0  mol L-1        0.25mol L-1 
concentrations  at equil                 2x             0.25-x   mol L-1              
KC =   0.25-x   . 
          4x2 



 
Note that we chose to use KC to do the calculation rather than Kp because the problem 
said “sealed rigid container” (constant volume of 2 L) which means that the 
concentrations can be determined from the number of moles.  
At 298 K, 167.08 = [0.25- x] /4x2     
Note that the very large KC =  167.08 means that at 298 K nearly all the NO2 goes to 
N2O4, so it is easier to solve the equation if start closer to the final condition, since then 
we can approximate (0.25 - x) ≈  0.25. At 298 K, 167.08 = [0.25- x] /4x2    ≈   0.25/4x 2       

we find x ≈ 0.0193  
Using the quadratic formula: 167.08 = [0.25- x] /4x2    gives x = 0.01861 
[NO2] = 0.0372 mol L-1, [N2O4] = 0.25 - 0.01861 = 0.2314 mol L-1 , total mol L-1 =0.2686 
  
ln( KcT/Kc298 ) = - 23.275 + 6.756×103T -1 - 0.0170 ln(T/298)  + 0.00211T - 0.1608×10-6 T2 
 
At 1000 K,    
 ln( KC1000/Kc298 ) = -23.275 +6.756 - 0.0207 +2.11 - 0.1608 = - 14.59 
4.61×10-7 = KC1000/KC298 
KC1000 = 7.73×10-5  
This is very small so equilibrium mixture has essentially zero N2O4. 
Thus, N2O4 concentration drops from 0.2314 mol L-1 at 298 K to almost zero at 1000 K. 
 
Ref.: Plot from L. M. Raff, Solutions Manual Principles of Physical Chemistry 
 

 



(g)                         2NO2   ⇔   N2O4 
 
 
Given: Dalton’s law of partial pressure holds.  Then partial pressures add up to total 
pressure and are related to molefractions:  pN2O4 = XN2O4•ptot   ,           pNO2 = XNO2•ptot 

How is total pressure involved?  

Kp is a constant at a fixed temperature, in terms of the partial pressures at equilibrium   

Kp
  =       pN2O4/p        =    ptotXN2O4/p            =    XN2O4                     . 

            (pNO2/p )2          (ptotXNO2/p )2            XNO2
2(ptot/ p )  

 

XNO2 = 1- XN2O4  
 
Kp 298.15 K = 6.740   
(ptot/ p )•6.740 = XN2O4  / [1-X N2O4]2 

This is the relation between XN2O4 and ptot  . To put it in a more conventional form, we 
need to solve for XN2O4 as a function of ptot  . 
 
p  = 1 bar:         Solve (ptot/1bar) 6.740 =  XN2O4  / [1-X N2O4]2            for the unknown XN2O4 
XN2O4  =  (13.48ptot +1) - [(13.48ptot +1)2 -4(6.740)2ptot

2]½ 
                                 13.48ptot 
 
Ref.: Plot from L. M. Raff, Solutions Manual Principles of Physical Chemistry 

 



7. Now do the same as problem 6 but for non-ideal gas  

Given equation of state:    

 
  the same as in problem 6. 

What should we do differently for non-ideal gases?  

(a) This is unchanged by the fact that the gases are assumed to be ideal because the 
quantities used from the Appendix, H  and  μ  at 298.15 K and 1 bar, are experimental 
values for real gases. 

(b) Fugacity: 

 

Replace V by RT/p + b - a/RT +b2 p/RT  and Vid by RT/p 
(V-Vid) = b - a/RT +b2 p/RT  

integral = [RT]-1 ∫0p  (b-a/RT)dp + (b2/RT)pdp = [RT]-1 { (b-a/RT)p + (1/2)(b2/RT)p2 } 
 

for NO2 :  integral = [0.0831451 L bar mol-1K-1 298K]-1•0.04424 L mol-1 p  

+ [0.0831451 L bar mol-1K-1 298K]-2•{ - 5.354 L2 bar mol-2 p + 0.5[0.04424 L mol-1]2 p2 } 
Units all check out to leave dimensionless result, if p is in bars: 

ln(f/p) =  0.04036•0.04424p + 0.0016289•{- 5.354p + 9.785×10-4p2}  

           =  - 0.00693p + 1.594×10-6p2 

f/p = exp[ - 0.00693p + 1.594×10-6p2 ]  for NO2 

 

for N2O4:  ln(f/p)  = 0.04036•0.05636p + 0.0016289•{- 6.550p + 7.941×10-4p2}   

                             = - 0.00839 p + 1.29×10-6p2 

f/p = exp[- 0.00839 p + 1.29×10-6p2 ] 

For p =1-400 bars, the negative term dominates and f/p is less than 1 (see plot below 
right).  



Ref.: Plot from L. M. Raff, Solutions Manual Principles of Physical Chemistry 
 

 

(c) The value of Kp derived from  

 

where K is in terms of activities does not depend on whether the gases are ideal. 

The choice is to keep the same general relation but make sure 
that the expression for K is constituted of activities, or fugacities in the case of gases. 
To be more explicit, we could write 

ΔrxnG  (T) = - RT ln K
f
 

This relation comes from  

instead of  

 

Use K  =       pN2O4/p         only for ideal gases 
                   (pNO2/p )2   

Use K  =       fN2O4/f           for non-ideal gases 
                   (fNO2/f )2  

Furthermore, the relation between KC and Kp used in problem 6 no longer holds for non-
ideal gases because we used p = nRT/V to derive it. Furthermore non-ideal gases do 



not follow Dalton’s law of partial pressures, since mole fractions depend only on 
numbers of molecules, but activities at a given mole fractions in a mixture also depend 
on total pressure.   

(d) The temperature dependence of  ΔrxnH  (T)  obtained in problem 6 does not depend 
on assumed ideality of the gases, since the experimental heat capacities for real gases 
are the quantities used. Therefore, the answer in problem 6 is the same here for real 
gases. 

(e) The temperature dependence of Kp derived from the general relation 

 

is unchanged from problem 6 for the same reason as in (d), provided we mean to use 
the fugacity expression for K, but the relation between KC and K

f
 is not the same as 

found in problem 6 for the relation between KC and Kp where the ideal  gas assumption 
was used to connect the two. 

(f) The equilibrium concentration of N2O4 will be related to total pressure at each 
temperature because partial pressures in a gas mixture will depend on total pressure 
and composition in a way different from that for ideal gases.  

(g) The dependence of the mole fraction of N2O4 on total pressure will be different from 
that obtained in problem 6. That is, we can no longer use the result 

(p/1bar) 6.740 =  XN2O4  / [1-X N2O4]2     

to find the desired pressure dependence of mole fraction of N2O4 because we used 
Dalton’s law of partial pressures for mixtures to derive this and when gases are non-
ideal,  Dalton’s law strictly can no longer apply. The non-ideality comes from non-
negligible interactions between molecules and these interactions depend not only on 
relative numbers of molecules of each kind but also the conditions (T and p) that these 
molecules are subjected to. 

 

 


