Solutions to Problem Set 11

1. Starting from $\Delta_{rxn} \mathbf{G} = -v \mathcal{F} \mathcal{E}$

Equation	Basis for the equation	Eq. #
(a)	d G = Vdp - S dT Fundamental equation of thermodynamics	1
	$(\partial \mathbf{G} / \partial \mathbf{T})_{\mathbf{n}} = -\mathbf{S}$	2
	$(\partial \Delta_{rvn} \mathbf{G} / \partial \mathbf{T})_n = - \Delta_{rvn} \mathbf{S}$ when Eq 2 is applied to	3
	products and reactants of a chemical reaction	
	$\Delta_{\rm rxn} \mathbf{G} = - \mathbf{v} \mathcal{F} \mathcal{E}$	4
$\nu \mathcal{F} (\partial \mathcal{E} / \partial T)_{p} = \Delta_{rxn} \mathbf{S}$	Substituting Eq 4 into Eq 3	5
(b)	$(\partial \Delta_{rxn} \mathbf{G}^{\Theta} / \partial T)_{p} = - \Delta_{rxn} \mathbf{S}^{\Theta}$ Eq 3 at 1 bar	6
	$\Delta_{rxn} \mathbf{G}^{\Theta} = -v \mathcal{F} \mathcal{E}^{\Theta}$ Eq 4 at 1 bar	7
$\nu \mathcal{F} (\partial \mathcal{E}^{\ominus}_{T} / \partial T)_{p} = \Delta_{rxn} \mathbf{S}^{\ominus}$	Substituting Eq 7 into Eq 6	8
(C)	G = H-⊤S	9
	$\Delta_{rxn}\mathbf{H} = \Delta_{rxn}\mathbf{G}_{T} + T\Delta_{rxn}\mathbf{S}$ when Eq 9 is applied to	10
	products and reactants of a chemical reaction	
$\Delta_{\rm rxn}\mathbf{H} = -\nu\mathcal{F}\mathcal{E} + T\nu\mathcal{F} (\partial \mathcal{E} / \partial T)_{\rm p}$	Substituting Eq 4 &5 into Eq 10	11
$\Delta_{rxn}\mathbf{H} = -\nabla \mathcal{F} \left[\mathcal{E} - T(\partial (\mathcal{E}/\partial T)_{p} \right]$		12
(d)	$\Delta_{rxn} \mathbf{H}^{\ominus} = \Delta_{rxn} \mathbf{G}^{\ominus}_{T} + T \Delta_{rxn} \mathbf{S}^{\ominus}$ when Eq 9 is applied	13
	to products and reactants of a chemical reaction	
	at 1 bar	
$\Delta_{rxn} \mathbf{H}^{\ominus} = - \mathbf{v} \mathcal{F} \mathcal{E}^{\ominus} \mathbf{T} + T \mathbf{v} \mathcal{F} (\partial \mathcal{E}^{\ominus} / \partial T)_{p}$ $= - \mathbf{v} \mathcal{F} [\mathcal{E}^{\ominus} \mathbf{T} - T (\partial (\mathcal{E}^{\ominus}) / \partial T)_{p}]$	Substituting Eq 7 &8 into Eq 13	14
(e)	$(\partial (\mathbf{G} / \mathbf{T}) / \partial \mathbf{T})_{p} = - \mathbf{H} / \mathbf{T}^{2}$ Gibbs-Helmholtz equation	15
	$(\partial (\Delta_{rxn} \mathbf{G}^{\ominus} / \mathbf{T}) / \partial \mathbf{T})_{n} = - \Delta_{rxn} \mathbf{H}^{\ominus} / \mathbf{T}^{2}$ when Eq 15 is	16
	applied to products and reactants of a chemical	
	reaction	
- ν \mathcal{F} (∂(\mathcal{E}^{\ominus} /T)/∂T) _p	Substituting Eq 7 into Eq 16	
= - $T^{-2}\Delta_{rxn}$ H⊖		17
$v \mathcal{F} T^2(\partial (\mathcal{E}^{\ominus}/T)/\partial T)_{p} = \Delta_{rxn} H^{\ominus}$	Rearranging	
$\nabla \mathcal{F} T^{2}[T^{-1}(\partial(\mathcal{E}^{\ominus})/\partialT)_{p} \cdot T^{-2}\mathcal{E}^{\ominus}] = \Delta_{rxn} H^{\ominus}$	Doing the differentiation	
$- \nu \mathcal{F} \left[\mathcal{E}^{\ominus}_{T} - T(\partial (\mathcal{E}^{\ominus}) / \partial T)_{p} \right] = \Delta_{rxn} H^{\ominus}$	Same as Eq 14	
(f)	$d(InK_p)/dT = -\Delta_{rxn} H^{\Theta}/T^2$	18
$d(\ln K_p)/dT = -v\mathcal{F}(\partial(\mathcal{E}^{\ominus}/T)/\partial T)_p$	Using Eq 17 into Eq 18	19
(g)	$\mu(T) = \mu^{\Theta}(T) + RT \ln \boldsymbol{a}$	20
	$\Delta_{rxn}\mathbf{G}_{T} = \Delta_{rxn}\mathbf{G}^{\ominus}_{T} + RT \ln \mathbf{Q}$ when Eq 20 is applied	21
	to products and reactants of a chemical reaction	
	where Q is the expression containing activities of	
	products and reactants raised to the powers	
	which are the stoichiometric coefficients in the	
		1

	chemical reaction as written, $\underline{a_P}^{p}\underline{a_R}^{r}$ $\underline{a_P}^{b}\underline{a_P}^{c}$	
$- \nabla \mathcal{F} \mathcal{E} = - \nabla \mathcal{F} \mathcal{E}^{\ominus} + RT \ln \frac{\mathbf{a}_{P}}{\mathbf{a}_{B}} \frac{\mathbf{a}_{R}}{\mathbf{a}_{B}} \frac{\mathbf{a}_{R}}{\mathbf{a}_{C}}$	Substituting Eq 4 and Eq 7 into Eq 21 This is the Nernst Equation	22
(h)	$\Delta_{rxn} \mathbf{G}^{\Theta}_{T} = - \operatorname{RT} \operatorname{In} \mathbf{K}$ when Eq 21 is applied to a system in equilibrium, for which $\Delta_{rxn} \mathbf{G}_{T} = 0$, so that \mathbf{K} has the activity values at chemical equilibrium Substituting Eq 7 into Eq 23	23
$v\mathcal{FE}^{\Theta}_{T} = RT \ln \mathbf{K}$		24

2. The cell reaction is

Right electrode :	AgCl(s) + $e^- \rightarrow Ag(s) + Cl^{-}(aq)$
Left electrode	$\underline{H^{+}(aq)} + \underline{e^{-}} \rightarrow \frac{1}{2} \underline{H_{2}(g)} \qquad $
Right - left =	$AgCl(s) + \frac{1}{2}H_2(g) \rightarrow Ag(s) + Cl^{-}(aq) + H^{+}(aq)$

	Basis for the equation	Eq.
Equation		#
Q = <u>a_{Ag} a_{Cl-} a_{H+}</u>	Using the chemical reaction as written above	1
$a_{AgCl} a_{H2}^{1/2}$		
$a_{Ag} = 1$	activity of pure solid is defined to be 1	2
<i>a_{AgCl}</i> = 1		3
a _{H2} = 1	activity of H_2 gas = 1 at 1 atm (ideal gas)	4
$\boldsymbol{Q} = \boldsymbol{a}_{CI} \boldsymbol{a}_{H+}$	Substituting Eq 2,3,4 into Eq 1	5
- ν ℱℰ = - ν ℱℰ ⇔ _T + RT In a_{CI-} a_{H+}	Using equation derived in problem 1 (Eq 22)	6
Here $v = 1$		
ε - ε [⇔] ₂₉₈ = - (RT/ℱ) In a_{CI-} a_{H+}		7
$a_{CI-} = m_{CI-} \bullet \gamma_{CI-}$	Definition of activity coefficient γ for solution of	8
<i>a_{H+}</i> = m _{<i>H+</i>} • γ _{<i>H+</i>}	electrolyte using molality m as unit of	9
$m_{CL} = m \qquad m_{H+} = m$	concentration	10
$Q = a_{Cl} a_{H+} = m^2 \bullet (\gamma_+)^2$	combine the activity coefficients into one mean	11
	ionic activity coefficient	
ε-ε⇔ ₂₉₈ = - (RT/ℱ) In a_{CI-} a_{H+}	Substituting Eq 11 into Eq 7	12
$\mathcal{E} - \mathcal{E}^{\ominus}_{298} = - (RT/\mathcal{F}) \ln\{m^2 \bullet_{(\gamma_{\pm})}^2\}$		
$\mathcal{E} - \mathcal{E}^{\ominus}_{298} = -(2RT/\mathcal{F}) \ln\{m \bullet \gamma_{\pm}\}$		
$\mathcal{E} - \mathcal{E}^{\ominus}_{298} = - (2RT/\mathcal{F}) 2.303 \log_{10} \{ m \bullet \gamma_+ \}$		
		13
where 2.303 (2RT/ <i>3</i>) =		
2 303•2(8 31451)(298) /96485 =	volt•coulomb = Joule	
0.1183 volt		
$\mathcal{E} = \mathcal{E}^{\ominus}_{208} - 0.1183 \log_{10} m$		
- 0,1183 log ₄₀ V ₊		
$\mathcal{E} + 0.1183 \log_{10} m$		
$= \mathcal{E}^{\Theta_{000}} - 0.1183 \log_{10} \sqrt{2}$		14
	1	

What to do about the term in $\log_{10} \gamma_{\pm}$? $\log_{10} \gamma_{\pm} = AI^{\frac{1}{2}}$ where the ionic strength, $I = \frac{1}{2}\sum c_i z_i$	We make use of the fact that $\gamma_{\pm} \rightarrow 1$ at ideal limit Debye-Huckel limiting behavior	15 16
Here $z_+ = 1$ $z = 1$ and concentration is in terms of		17
$\begin{array}{l} \text{motality, } I = \frac{\gamma_2}{2} \left\{ m_+(1) + m(1) \right\} = m \\ \log_{10} \gamma_{\pm} = AI^{\frac{\gamma_2}{2}} = Am^{\frac{\gamma_2}{2}} \end{array}$	Substituting Eq 16 into Eq 13	19
Take the limit of γ_{\pm} approaching 1, or log ₁₀ γ_{\pm} approaching zero, that is, Am ^{1/2} approaching zero	Infinitely dilute solution approaches ideality, that is, γ_{\pm} approaching 1	
\mathcal{E} + 0.1183 log ₁₀ m = $\mathcal{E}^{\ominus}_{298}$ - 0.1183A m ^{1/2}	Eq 14 is of the form : $y = am^{\frac{1}{2}} + \mathcal{E}_{298}^{\ominus}$ where $\mathcal{E}_{298}^{\ominus}$ is the intercept	20
$\mathcal{E}' = \mathcal{E} + 0.1183 \log_{10} m$	Given the function describing the experimental data.	21
0.234		22
£' 0.228 - 0.2		
0.226	This means that to get the value corresponding to	
0 0.1 0.2 0.3 	$\gamma_{\pm} = 1$, as shown in Eq 19, we need to extrapolate the plot \mathcal{E}' vs m ^{1/2} of the given function (Eq 21) to the limit m ^{1/2} = 0	
$\lim_{m_{1/2} \to 0} \mathcal{E}' = \mathcal{E} + 0.1183 \log_{10} m \\ = \mathcal{E}^{\ominus}_{298}$	We can see now the reason why the function plotted was $\mathcal{E} + 0.1183$ log \mathcal{E} m rather than \mathcal{E}	22
The plot intercept = 0.2225 volt, thus, $\mathcal{E}^{\ominus}_{298} = 0.2225$ volt Answer	itself and why the x axis is in terms of $m^{\frac{1}{2}}$ rather than m	24
	written	
$\mathcal{E}_{298} = (\mathcal{R} 1 / \mathcal{V} \mathcal{F}) \text{ in } \mathcal{K}$ $0.2225 = + (0.1183/2.303) \text{ in } \mathcal{K}$ $\mathcal{K} = 4.3315$	Using $\mathcal{E}^{\Theta}_{298} = 0.2225$ volt from Eq 24 in this problem	
$\mathbf{n} = 70.00$		
(cathode) $H^+(aq) + e^- \rightarrow \frac{1}{2}H_2(g)$ (anode): Ag(s) + Cl ⁻ (aq) \rightarrow AgCl(s) + e ⁻	Cathode: where the reduCtion occurs Anode: where oxidAtion occurs	

3. given cell reaction

 $Cd(s) + 2AgCI(s) \rightarrow CdCI_2 \text{ (satd solution)} + 2Ag(s)$

	Basis for the equation	Eq.
Equation		#
$\mathcal{E} = 0.6753 \text{ volt}$	Given for the cell as written above	1
T = 298 K		2
$(\partial \mathcal{E} / \partial T)_{p} = -0.00065 \text{ volt K}^{-1}$		3
v = 2		4
$\Delta_{rxn} \mathbf{S} = v \mathcal{F} (\partial \mathcal{E} / \partial T)_{p}$	Using Eq 5 derived in problem 1	5
= 2(96485)(-0.00065 volt K ⁻¹)		
Δ_{rxn} S = -125.4 J K ⁻¹ mol ⁻¹ Answer		6
$\Delta_{rxn}\mathbf{H} = -\nu \mathcal{F} \left[\mathcal{E} - T(\partial (\mathcal{E} / \partial T)_{p} \right]$	Using Eq 12 derived in problem 1	7
= - 2(96485)[0.6753 -298• - 0.00065]		
∆ _{rxn} H = - 167686 J mol ⁻¹ Answer		8
$\Delta_{rxn}\mathbf{G} = \Delta_{rxn}\mathbf{H} - T\Delta_{rxn} \mathbf{S}$	from G = H - T S at constant T applied to a	9
$\Delta_{rxn}\mathbf{G} = -167686 - 298 (-125.4)$	reaction	
Δ_{rxn} G = - 130 317 J mol ⁻¹ Answer		10
we should get the same result from		
$\Delta_{rxn} \mathbf{G} = -v \mathcal{F} \mathcal{E} = -2(96485)(0.6753)$		
and indeed we do.		
$q_{REV} = T\Delta_{rxn} S$	Second law of thermodynamics	11
$q_{REV} = 298(-125.4 \text{ J K}^{-1} \text{ mol}^{-1})$	Substituting Eq 6 into Eq 11	
= - 37369 J mol ⁻¹ Answer		12
for the direct reaction, not in a cell,	$\mathbf{H} = \mathbf{H}(T,p)$	
$Cd(s) + 2AgCl(s) \rightarrow CdCl_2$ (satd	$d\mathbf{H} = \mathbf{C}_{\mathbf{p}} d\mathbf{T} + (\partial \mathbf{H} / \partial \mathbf{p})_{T} d\mathbf{p}$	
solution)+ 2Ag(s)	$\Delta \mathbf{H} = \mathbf{q}_{\mathbf{p}}$ at constant p	40
$q_p = \Delta_{rxn} H = -167686 \text{ J mol}^{-1}$	From Eq 8	13
Answer	Heat released by the direct reaction is not as	
total anarmy anarmy not	great as in the reversible reaction.	
lotal energy energy hol		
change to do work to do work		
$\Delta H = \Delta G + T \Delta S$		
-167686 = -130317 + -37369	Using Eg 8 & 10 & 12	
As indeed it should be		
		<u> </u>
4 right electrode Cu^{2+} (ag)	$+e^{-} \rightarrow Cu^{+}(aq)$	

4. right electrode $Cu^{2+}(aq) + e^{-} \rightarrow Cu^{+}(aq)$ left electrode $H^{+}(aq) + e^{-} \rightarrow \frac{1}{2}H_{2}(g)$ chemical reaction $Cu^{2+}(aq) + \frac{1}{2}H_{2}(g, satd) \rightarrow Cu^{+}(aq) + H^{+}(aq)$ Eq 1

	Basis for the equation	Eq.
Equation		#
\mathcal{E}^{\ominus} = -0.153 volt for Cu ⁺ Cu ²⁺ half cell	Given	2
therefore		

$\mathcal{E}^{\ominus} = -0.153 \text{ for } \mathrm{Cu}^{2+} + \mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}$		3
v = 1		4
T = 298 K		5
p = 1 atm		6
$pH = 3$, so $[H^+(aq)] = 10^{-3} \text{ mol } L^{-1}$		7
[Cu ²⁺ (aq)] = 0.01 m		
Assume activity coefficients to be		
ideal, can use m instead of activity		
Cu^{2+} (aq) + $\frac{1}{2}H_2(g, satd)$	As seen in Eq 1	
\rightarrow Cu ⁺ (aq) + H ⁺ (aq)		
$\mathcal{E}^{\ominus} = \mathcal{E}^{\ominus} [Cu^{2+} (aq) + e \rightarrow Cu^{+} (aq)]$		
$- \mathcal{E}^{\ominus} [H^{+}(aq) + e^{-} \rightarrow \frac{1}{2} H_{2}(g)]$		•
$\mathcal{E}^{\ominus} = -0.153 - 0.0 \text{ volt}$	Using Eq 2 & standard \mathcal{E}^{\ominus} [H ⁺ (aq)+e ⁻ \rightarrow $\frac{1}{2}$ H ₂ (g)]= 0	8
$v\mathcal{F}\mathcal{E}^{\ominus}_{298} = RT \ln \mathbf{K}$	Derived in problem 1 (Eq 24)	9
$1(96485)(-0.153) = (8.31451)(298) \ln \mathbf{K}$	substituting values from Eq 3 & 8	
$\ln K = -5.96$		10
$K = \exp(-5.96) = 2.58 \times 10^{-5}$		10
For the reaction $O(x^2 + (x - x)) = 1/(1 + (x - x - x + 1))$		
Cu^{-1} (aq) + $\frac{1}{2}H_2(g, satd)$		
\rightarrow Cu [*] (aq) + H [*] (aq)		
$\mathbf{A} = \frac{\mathbf{a}_{Cu+}}{2} \frac{\mathbf{a}_{H+}}{2}$		
$a_{Cu++}a_{H2}$	Assume activity coefficients to be ideal, then can	
$\mathbf{K} = \frac{\mathbf{III}_{Cu+} \mathbf{III}_{H+}}{\mathbf{m}_{e}}$	use m instead of activity Use K value from Fo	
$10C_{u++}a_{H2}$	10 and Eq.7 gives 10^{-3} mol L ⁻¹ = 10^{-3} mol/kg	
$2.50 \times 10 = \frac{m_{Cu+10}}{m_{cu+10}}$	water: $m_{\mu_1} = 10^{-3}$	
$m_{cut} = 2.58$	For an ideal gas, $a_{\mu_2} = f_{\mu_2} = p_{\mu_2} = 1$ atm	10
m_{curr} = 2.00	$\int dr $	
$m_{cut}/(0.01 - m_{cut}) = 2.58$		
$m_{Cut} = 0.0072$	solve for m cut	
Cu^+ (aq) + e ⁻ \rightarrow Cu (s)		
$H^+(aq) + e^- \rightarrow \frac{1}{2}H_2(q)$		
Cu^+ (ag) + $\frac{1}{2}H_2(g) \rightarrow Cu(s) + H^+(ag)$		11
$v\mathcal{F}\mathcal{E}^{\ominus}_{298} = RT \ln \mathcal{K}$	Derived in problem 1 (Eq 24)	
1(96485)(0.52) =(8.31451)(298)ln <i>K</i>	Look up $\mathcal{E}^{\ominus} = -0.52$ volt for the half cell Cu ⁺ Cu	12
$\ln K = -20.25$		
$K = 1.6 \times 10^{-9}$		
$K = \underline{a_{Cu}} \underline{a_{H+}}_{\frac{1}{2}}$		13
$1.6 \times 10^{-9} = (1) 10^{-3}$		
$m_{Cu+}(1)^{\frac{1}{2}}$	for Cu(s) $\boldsymbol{a} = 1$, as for any pure solid	
$m_{Cu+} = 0.6 \times 10^{\circ}$ Answer	This is practically unrealizable.	

5. Disproportionation of Hg_2^{2+} (aq) ion: Hg_2^{2+} (aq) \rightarrow Hg^{2+} (aq) + Hg^0 (liq) net reaction

1/2Hg2 ²⁺ (aq) + e ⁻	$ ightarrow Hg^0$	$E^{\ominus}_{298} = 0.79$
Hg ²⁺ (aq) + e ⁻	$\rightarrow \frac{1}{2}Hg_2^{2+}$ (aq)	$E^{\ominus}_{298} = 0.91$

	Basis for the equation	Eq.
Equation		#
	Look up standard half cell potentials	
$\mathcal{E}^{\ominus}_{298} = 0.79 - 0.91 = -0.12$ volt		
v ℱℰ[⊖]₂₉₈ = RT In <i>K</i>	Derived in problem 1 (Eq 24)	
1(96485)(- 0.12) =(8.31451)(298)In <i>K</i>		
In K = - 4.673		
K = 0.00934		
$Hg_2^{2+}(aq) \rightarrow Hg^{2+}(aq) + Hg^0$		
K = <u>а_{Нд} а_{Нд2+}</u>	$a_{Hg} = 1$ for Hg ^o (liq) as for any pure liquid	
а_{Нg2++}		
$0.0093 = (1) m_{Hg2+}$		
(≈0.01)		
m _{Hg2+} = 0.00093		
degree of disproportionation is		
0.00093/(0.01) = 0.093 or 9.3%		

6. K_{sp} for $Ag_2SO_4(s)$ at 298 K

	Basis for the equation	Eq.
Equation		#
cell: Ag Ag ₂ SO ₄ H ₂ SO ₄ (m) H ₂ Pt	Given	
ε ₂₉₈ = +0.80 volt		
$Ag_2SO_4 + 2e^- \rightarrow Ag^0 \mathcal{E}_{298} = +0.80 \text{ volt}$		1
$H^{+}(aq) + e^{-} \rightarrow \frac{1}{2}H_{2}(g) \mathcal{E}^{\ominus}_{298} = 0.0 \text{ volt}$		
$Ag^+ + e^- \rightarrow Ag^0 \mathcal{E}_{298} = -0.627$ volt	Look up standard half-cell potential	2
$Ag_2SO_4 = 2Ag^+ + SO_4^{2-}$	Taking Eq (1) minus 2• Eq(2)	3
$\mathcal{E}_{298} = 0.80 - (-0.627) = -0.173$ volt		4
v 3€ [⊖] 298 = RT In K	Derived in problem 1 (Eq 24)	
2(96485)(- 0.173) =(8.31451)(298)ln <i>K</i>	Apply to solubility Eq 3, using value from Eq 4	
In <i>K</i> = - 13.47		
$K_{sp} = 1.4 \times 10^{-6}$ Answer		

7. $Pt|H_2(1atm)|m Ba(OH)_2|Ba(amalgam)|0.1200 m Ba(OH)_2| H_2(1atm)|Pt$

	Basis for the equation	Eq.
Equation		#
half cell reactions:	A concentration cell acts to dilute the more concentrated solution and concentrate the more dilute solution, creating a voltage as the cell	

$Ba(OH)_2 0.1200 \text{ m} + 2e = Ba^0 + 2OH^2$	reaches an equilibrium. This is achieved by	1
$Ba(OH)_2 m + 2e - = Ba^0 + 2OH$	transferring the electrons from the cell with the	
net cell reaction (right -left):	lower concentration to the cell with the higher	
$Ba(OH)_2 0.1200 \text{ m} = Ba(OH)_2 \text{ m}$	concentration.	2
$\mathcal{E}^{\ominus}_{298} = 0$	Since both half cells are the same, the difference between the half-cell standard potentials is zero,	3
For m < 0.1200 m in Ba(OH) ₂ , the left		
compartment will form more Ba(OH) ₂ ,		
while the right compartment will form		
more Ba ^o until equilibrium is reached,		
at which point \mathcal{E} goes to zero.		
$\mathcal{E} - 0 = - (RT/2\mathcal{F}) \ln \frac{a_{Ba++} a_{OH^{-}}}{a_{Ba++} a_{OH^{-}}^2}$	Nernst equation	4
$a_{Ba++} = m \gamma_{\pm}$	Using a mean ion activity coefficient for both	5
$a_{OH-} = 2m \gamma_{\pm}$	anion and cation	6
Let $m_1 = 0.01200$	Remember that γ_{\pm} depends on concentration m	
m ₂ = variable		
Q numerator has		7
$a_{Ba++} = m_1(\gamma_{\pm})_{m1}$		/ Q
$a_{OH-} = 2m_1(\gamma_{\pm})_{m1}$		g
denominator has		10
$a_{Ba++} = m_2(\gamma_{\pm})_{m2}$		
$a_{OH-} = 2 \text{m}_2(\gamma_{\pm})_{\text{m}2}$		
$\mathcal{E} = - (RT/2\mathcal{F}) \ln [(\gamma_{\pm})_{m1}]^3 4 m_1^3$	Substituting Eq. 7.8.9.10 into Eq. 4	11
$[(\gamma_{\pm})_{m2}]^{3} 4 m_{2}^{3}$		
$(RT/2\mathcal{F})2.303(3) =$		
(8.31451)(298)(2.303)(3)/(2•96485) = 0.08871		
$\mathcal{E} = -0.08871 \bullet$		12
$[\log_{10} m_1(\gamma_{\pm})_{m1}$ - $\log_{10} m_2(\gamma_{\pm})_{m2}]$	When $m_2=m_1$, then $\mathcal{E}=0$	
<i>E</i> - 0.08871 log ₁₀ m ₂ =		
0.08871 log ₁₀ (γ _±) _{m2} + 0.08871C		13
where C = $-\log_{10}m_1 (\gamma_{\pm})_{m1}$, which is a	How to find C?	
constant since $m_1 = 0.1200$	We make use of the fact that $\gamma_{\pm} \rightarrow 1$ at ideal limit	
	Given table of data: \mathcal{E} vs m ₂	
Calculate $\mathcal{E}' = \mathcal{E} - 0.08871 \log_{10} m_2$	1/	4.4
$\mathcal{E}'/ 0.08771 = \log_{10} (\gamma_{\pm})_{m2} + C$	In the limit that m^{γ_2} goes to zero, $\log_{10}(\gamma_{\pm})$ is zero	14
Plot <i>€</i> ′/0.08771 vs m ^½ .	As in problem 2, make use of Debye Huckel limit	
The intercept is C	Substitute C in Eq 14 to calculate $(\gamma_{\pm})_m$ at every m	
Plot $(\gamma_{\pm})_m$ vs m and read off value for	See two plots & table below for numerical	
m = 0.1000 molal to get 0.4/ Answer	calculations.	

8	-0.1245	-0.0840	-0.0630	-0.0254	0.0144	Given		
$m = m_2$	0.00245	0.00793	0.01509	0.04970	0.1996	Given		
m ^½	0.04950	0.08905	0.1228	0.2229	0.4468			
log₁₀ m	-2.6108	-2.1007	-1.8213	-1.303	-0.6998			
0.08871∙log ₁₀ m	-0.23160	-0.18635	-0.16157	-0.11559	-0.06208			
<i>E</i> ′ =	0.1071	0.10235	0.09857	0.09019	0.07648	=0.08871log ₁₀ (γ _±) _m		
<i>E</i> -0.08871log ₁₀ m						+ 0.08871C		
Plot $\mathcal{E}'/0.08871 = (\log_{10}(\gamma_{\pm})_{m2} + C)$ vs m ^{1/2} . When (γ_{\pm}) approaches 1. Find the intercept C								
[<i>E</i> ′/0.08871]	1.2073	1.1538	1.1111	1.0166	0.8621	$= \log_{10}(\gamma_{\pm})_{m} + C$		
log ₁₀ (γ _±) _m	-0.0827	-0.1362	-0.1789	-0.2734	-0.4279	Using value of		
						C= 1.29		
$(\gamma_{\pm})_{m}$	0.827	0.731	0.662	0.533	0.373	take the antilog		
compare with	0.820	0.726	0.657	0.531	0.370	Harned & Mason		
$(\gamma_{\pm})_{m}$ published								
From 2 nd plot read off the value (γ_{\pm}) = 0.47 at m=0.1000								

Plot $\mathcal{E}'/0.08871$ = (log₁₀ (γ_{\pm})_{m2} - C) vs m^{1/2}. Find intercept = 1.29

