Solutions to Problem Set 11

1. Starting from $\Delta_{\mathrm{rxn}} \boldsymbol{G}=-\mathrm{v} \mathcal{F} \mathcal{E}$

\begin{tabular}{|c|c|c|}
\hline Equation \& Basis for the equation \& Eq.
\(\#\)
\# \\
\hline (a)
\[
v \mathcal{F}(\partial \mathcal{E} / \partial T)_{\mathrm{p}}=\Delta_{\mathrm{rx}} \mathbf{S}
\] \& \begin{tabular}{l}
\(\mathrm{d} \mathbf{G}=\mathrm{Vdp}-\mathbf{S d T}\) Fundamental equation of thermodynamics \\
\((\partial \mathbf{G} / \partial \mathrm{T})_{\mathrm{p}}=-\mathbf{S}\) \\
\(\left(\partial \Delta_{\mathrm{rx}} \mathbf{G} / \partial \mathrm{T}\right)_{\mathrm{p}}=-\Delta_{\mathrm{rxn}} \mathbf{S}\) when Eq 2 is applied to products and reactants of a chemical reaction
\[
\Delta_{\mathrm{rxn}} \boldsymbol{G}=-v \mathcal{F} \mathcal{E}
\] \\
Substituting Eq 4 into Eq 3
\end{tabular} \& 1
2
3
4
5 \\
\hline (b)
\[
\nu \mathcal{F}\left(\partial \boldsymbol{E}^{\ominus}{ }_{\mathrm{T}} / \partial \mathrm{T}\right)_{\mathrm{p}}=\Delta_{\mathrm{rxn}} \mathbf{S}^{\ominus}
\] \& \(\left(\partial \Delta_{\mathrm{rxn}} \mathbf{G}^{\ominus} / \partial \mathrm{T}\right)_{\mathrm{p}}=-\Delta_{\mathrm{rx}} \mathbf{S}^{\ominus}\) Eq 3 at 1 bar \(\Delta_{\mathrm{rx}} \boldsymbol{G}^{\ominus}=-v \mathcal{F} \mathcal{E}^{\ominus}\) Eq 4 at 1 bar Substituting Eq 7 into Eq 6 \& 7
8 \\
\hline (c)
\[
\begin{aligned}
\& \Delta_{\mathrm{rxn}} \mathbf{H}=-v \mathcal{F} \mathcal{E}+\mathrm{T} \mathcal{F}(\partial \mathcal{E} / \partial \mathrm{T})_{\mathrm{p}} \\
\& \Delta_{\mathrm{rx}} \mathbf{H}=-v \mathcal{F}\left[\mathcal{E}-\mathrm{T}\left(\partial(\mathcal{E} / \partial \mathrm{T})_{\mathrm{p}}\right]\right.
\end{aligned}
\] \& \begin{tabular}{l}
\[
\mathbf{G}=\mathbf{H}-\mathrm{TS}
\] \\
\(\Delta_{\mathrm{rxn}} \mathbf{H}=\Delta_{\mathrm{rxn}} \mathbf{G}_{\mathrm{T}}+\mathrm{T} \Delta_{\mathrm{rxn}} \mathbf{S}\) when Eq 9 is applied to products and reactants of a chemical reaction Substituting Eq 4 \&5 into Eq 10
\end{tabular} \& 9
10
11
12 \\
\hline (d)
\[
\begin{aligned}
\Delta_{\mathrm{rxn}} \mathbf{H}^{\ominus} \& =-v \mathcal{F} \mathcal{E}^{\ominus}{ }_{\mathrm{T}}+\mathrm{T} v \mathcal{F}\left(\partial \mathcal{E}^{\ominus} / \partial \mathrm{T}\right)_{\mathrm{p}} \\
\& =-v \mathcal{F}\left[\mathcal{E}^{\ominus}{ }_{\mathrm{T}}-\mathrm{T}\left(\partial\left(\mathcal{E}^{\ominus}\right) / \partial \mathrm{T}\right)_{\mathrm{p}}\right]
\end{aligned}
\] \& \(\Delta_{\mathrm{rx}} \mathbf{H}^{\ominus}=\Delta_{\mathrm{rxn}} \mathbf{G}^{\ominus} \mathrm{T}+\mathrm{T} \Delta_{\mathrm{rxn}} \mathbf{S}^{\ominus}\) when Eq 9 is applied to products and reactants of a chemical reaction at 1 bar Substituting Eq 7 \&8 into Eq 13 \& 13
14 \\
\hline (e) \& \begin{tabular}{l}
\((\partial(\mathbf{G} / \mathrm{T}) / \partial \mathrm{T})_{\mathrm{p}}=-\mathbf{H} / \mathrm{T}^{2}\) Gibbs-Helmholtz equation \(\left(\partial\left(\Delta_{\mathrm{rx}} \mathbf{G}^{\ominus} / \mathrm{T}\right) / \partial \mathrm{T}\right)_{\mathrm{p}}=-\Delta_{\mathrm{rxn}} \mathbf{H}^{\ominus} / \mathrm{T}^{2}\) when Eq 15 is applied to products and reactants of a chemical reaction \\
Substituting Eq 7 into Eq 16 \\
Rearranging \\
Doing the differentiation \\
Same as Eq 14
\end{tabular} \& 15
16

17

\hline $$
\begin{aligned}
& (\mathrm{f}) \\
& \mathrm{d}\left(\operatorname{lnK} K_{\mathrm{p}}\right) / \mathrm{dT}=-v \mathcal{F}\left(\partial\left(\mathcal{E}^{\ominus} / \mathrm{T}\right) / \partial \mathrm{T}\right)_{\mathrm{p}}
\end{aligned}
$$ \& \[

\mathrm{d}\left(\ln _{\mathrm{p}}\right) / \mathrm{dT}=-\Delta_{\mathrm{rx}} \mathbf{H}^{\ominus} / \mathrm{T}^{2}
\]

$$
\text { Using Eq } 17 \text { into Eq } 18
$$ \& 18

19

\hline (g) \& | $\mu(\mathrm{T})=\mu^{\ominus}(\mathrm{T})+\mathrm{RT} \ln \mathbf{a}$ |
| :--- |
| $\Delta_{\mathrm{rxn}} \mathbf{G}_{\mathrm{T}}=\Delta_{\mathrm{rxn}} \mathbf{G}^{\ominus}+\mathrm{RT} \ln \boldsymbol{Q}$ when Eq 20 is applied to products and reactants of a chemical reaction where \mathbf{Q} is the expression containing activities of products and reactants raised to the powers which are the stoichiometric coefficients in the | \& \[

$$
\begin{array}{|l|}
\hline 20 \\
21 \\
\hline
\end{array}
$$
\]

\hline
\end{tabular}

	chemical reaction as written, Substituting Eq 4 and Eq 7 into Eq 21 This is the Nernst Equation	22
(h) $v \mathcal{F E}{ }_{\mathrm{T}}=\mathrm{RT} \ln K$	$\Delta_{\mathrm{rxn}} \mathbf{G}_{\mathrm{T}}=-\mathrm{RT} \ln \boldsymbol{K}$ when Eq 21 is applied to a system in equilibrium, for which $\Delta_{\mathrm{rxn}} \mathbf{G}_{\mathrm{T}}=0$, so that \boldsymbol{K} has the activity values at chemical equilibrium Substituting Eq 7 into Eq 23	23 24

2. The cell reaction is

Right electrode : $\quad \mathrm{AgCl}(\mathrm{s})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})+\mathrm{Cl}^{-}(\mathrm{aq})$
Left electrode $\quad \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow{ }^{1 / 2} \mathrm{H}_{2}(\mathrm{~g})$
Right - left =

$$
\mathrm{AgCl}(\mathrm{~s})+1 / 2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{Ag}(\mathrm{~s})+\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})
$$

\begin{tabular}{|c|c|c|}
\hline Equation \& Basis for the equation \& Eq. \\
\hline \[
\mathbf{Q}=\frac{\mathbf{a}_{A g} \mathbf{a}_{c l}}{\mathbf{a}_{A g C l} \mathbf{a}_{H+1} \mathbf{a}_{H 2} \mathbf{a}_{H+}^{1 / 2}}
\] \& Using the chemical reaction as written above \& 1 \\
\hline \[
\begin{aligned}
\& \mathbf{a}_{\mathrm{Ag}}=1 \\
\& \mathbf{a}_{\mathrm{AgCl}}=1 \\
\& \mathbf{a}_{\mathrm{HI}}=1 \\
\& \mathbf{Q}=\mathbf{a}_{\mathrm{Cl}}-\mathbf{a}_{\mathrm{HH}}
\end{aligned}
\] \& \begin{tabular}{l}
activity of pure solid is defined to be 1 \\
activity of \(\mathrm{H}_{2}\) gas \(=1\) at 1 atm (ideal gas) Substituting Eq 2,3,4 into Eq 1
\end{tabular} \& \[
\begin{array}{|l|}
\hline 2 \\
3 \\
4 \\
5 \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
\& -v \mathcal{F E}=-v \mathcal{F E} \Theta_{\mathrm{T}}+\mathrm{RT} \ln \mathbf{a}_{\mathrm{Cl}} \mathbf{a}_{\mathrm{H}+} \\
\& \text { Here } v=1 \\
\& \mathcal{E}-\mathcal{E}_{298}=-(\mathrm{RT} / \mathcal{F}) \ln \mathbf{a}_{\mathrm{cl}} \mathbf{a}_{\mathrm{H}+}
\end{aligned}
\] \& Using equation derived in problem 1 (Eq 22) \& 6
7 \\
\hline \[
\begin{aligned}
\& \mathbf{a}_{\mathrm{Cl}}=\mathrm{m}_{\mathrm{Cl}} \bullet \gamma_{\mathrm{Cl}} \\
\& \mathbf{a}_{\mathrm{H}+}=\mathrm{m}_{\mathrm{H}_{+}} \bullet \gamma_{\mathrm{H}^{+}} \\
\& \mathrm{m}_{\mathrm{cl}-}=\mathrm{m} \quad \mathbf{m}_{\mathrm{H}^{+}}=m \\
\& \mathbf{Q}=\mathbf{a}_{\mathrm{cl}-} \mathbf{a}_{\mathrm{H+}}=\mathrm{m}^{2} \bullet\left(\alpha_{ \pm}\right)^{2}
\end{aligned}
\] \& Definition of activity coefficient \(\gamma\) for solution of electrolyte using molality m as unit of concentration combine the activity coefficients into one mean ionic activity coefficient \& \[
\begin{aligned}
\& 8 \\
\& 9 \\
\& 10 \\
\& 11
\end{aligned}
\] \\
\hline \& \begin{tabular}{l}
Substituting Eq 11 into Eq 7 \\
voltocoulomb \(=\) Joule
\end{tabular} \& 12
13

14

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
What to do about the term in \(\log _{10} \gamma_{ \pm}\)? \(\log _{10} \gamma_{ \pm}=\mathrm{AI}^{1 / 2}\) \\
where the ionic strength, \(I=1 / 2 \sum c_{i} z_{i}\) \\
Here \(z_{+}=1 \quad z_{-}=1\) \\
and concentration is in terms of molality, \(\mathrm{I}=1 / 2\left\{\mathrm{~m}_{+}(1)+\mathrm{m}-(1)\right\}=\mathrm{m}\) \(\log _{10} \gamma_{ \pm}=\mathrm{AI}^{1 / 2}=\mathrm{Am}^{1 / 2}\) \\
Take the limit of \(\gamma_{ \pm}\)approaching 1 , or \(\log _{10} \gamma_{ \pm}\)approaching zero, that is, \(\mathrm{Am}^{1 / 2}\) approaching zero
\[
\begin{aligned}
\mathcal{E}+0.1183 \& \log _{10} \mathrm{~m} \\
\& =\mathcal{E} \ominus_{298}-0.1183 \mathrm{~A} \mathrm{~m}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
We make use of the fact that \(\gamma_{ \pm} \rightarrow 1\) at ideal limit Debye-Huckel limiting behavior \\
Substituting Eq 16 into Eq 13 \\
Infinitely dilute solution approaches ideality, that is, \(\gamma_{ \pm}\)approaching 1 \\
Eq 14 is of the form : \(\mathrm{y}=\mathrm{am}^{1 / 2}+\mathcal{E}^{\ominus_{298}}\) where \(\mathcal{E}^{\ominus}{ }_{298}\) is the intercept
\end{tabular} \& 15
16
17
18
19

20

\hline | $\mathcal{E}^{\prime}=\mathcal{E}+0.1183 \log _{10} \mathrm{~m}$ $\begin{aligned} \lim _{\mathrm{m}^{1 / 2} \rightarrow 0} \mathcal{E}^{\prime} & =\mathcal{E}+0.1183 \log _{10} \mathrm{~m} \\ & =\mathcal{E}_{298} \end{aligned}$ |
| :--- |
| The plot intercept $=0.2225$ volt, thus, $\mathcal{E}^{\ominus}{ }_{298}=0.2225$ volt Answer | \& | Given the function describing the experimental data. |
| :--- |
| This means that to get the value corresponding to $\gamma_{ \pm}=1$, as shown in Eq 19, we need to extrapolate the plot \mathcal{E}^{\prime} vs $\mathrm{m}^{1 / 2}$ of the given function (Eq 21) to the limit $\mathrm{m}^{1 / 2}=0$ |
| We can see now the reason why the function plotted was $\mathcal{E}+0.1183 \log _{10} \mathrm{~m}$ rather than \mathcal{E} itself and why the x axis is in terms of $\mathrm{m}^{1 / 2}$ rather than m positive $\mathcal{E}{ }_{298}$ means reaction is spontaneous as written | \& 21

\hline $$
\begin{aligned}
& \mathcal{E}^{\ominus}{ }_{298}=(\mathrm{RT} / v \mathcal{F}) \ln \boldsymbol{K} \\
& 0.2225=+(0.1183 / 2.303) \ln \boldsymbol{K} \\
& \ln \boldsymbol{K}=4.3315 \\
& \boldsymbol{K}=76.06 \\
& \hline
\end{aligned}
$$ \& Using Eq 24 from prob 1 Using $\mathcal{E}^{\ominus}{ }_{298}=0.2225$ volt from Eq 24 in this problem \&

\hline reactions at the electrodes (cathode) $\quad \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow 1 / 2 \mathrm{H}_{2}(\mathrm{~g})$ (anode): $\mathrm{Ag}(\mathrm{s})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{e}^{-}$ \& Cathode: where the reduCtion occurs Anode: where oxidAtion occurs \&

\hline
\end{tabular}

3. given cell reaction $\quad \mathrm{Cd}(\mathrm{s})+2 \mathrm{AgCl}(\mathrm{s}) \rightarrow \mathrm{CdCl}_{2}$ (satd solution) $+2 \mathrm{Ag}(\mathrm{s})$

Equation	Basis for the equation	Eq. $\#$
$\begin{aligned} & \mathcal{E}=0.6753 \text { volt } \\ & \mathrm{T}=298 \mathrm{~K} \\ & (\partial \mathcal{E} / \partial \mathrm{T})_{\mathrm{p}}=-0.00065 \text { volt }^{-1} \\ & \nu=2 \end{aligned}$	Given for the cell as written above	1 2 3 4
$\begin{aligned} \Delta_{\mathrm{rxn}} \mathbf{S} & =v \mathcal{F}(\partial \mathcal{E} / \partial \mathrm{T})_{\mathrm{p}} \\ & =2(96485)\left(-0.00065 \text { volt } \mathrm{K}^{-1}\right) \\ \Delta_{\mathrm{rxn}} \mathbf{S} & =-125.4 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \text { Answer } \end{aligned}$	Using Eq 5 derived in problem 1	$\begin{aligned} & 5 \\ & 6 \end{aligned}$
$\begin{aligned} & \Delta_{\mathrm{rxn}} \mathbf{H}=-v \mathcal{F}\left[\mathcal{E}-\mathrm{T}\left(\partial(\mathcal{E} / \partial \mathrm{T})_{\mathrm{p}}\right]\right. \\ & =-2(96485)[0.6753-298 \bullet-0.00065] \\ & \Delta_{\mathrm{rxn}} \mathbf{H}=-167686 \mathrm{~J} \mathrm{~mol}^{-1} \quad \text { Answer } \end{aligned}$	Using Eq 12 derived in problem 1	7 8
$\begin{aligned} & \Delta_{\mathrm{rxn}} \mathbf{G}=\Delta_{\mathrm{rx}} \mathbf{H}-\mathrm{T} \Delta_{\mathrm{rx}} \mathbf{S} \\ & \Delta_{\mathrm{rxn}} \mathbf{G}=-167686-298(-125.4) \\ & \Delta_{\mathrm{rxn}} \mathbf{G}=-130317 \mathrm{~J} \mathrm{~mol}^{-1} \quad \text { Answer } \\ & \text { we should get the same result from } \\ & \Delta_{\mathrm{rxn}} \mathbf{G}=-v \mathcal{F} \mathcal{E}=-2(96485)(0.6753) \\ & \text { and indeed we do. } \end{aligned}$	from $\mathbf{G}=\mathbf{H}-$ TS at constant T applied to a reaction	9 10
$\begin{aligned} \mathrm{q}_{\mathrm{REV}} & =\mathrm{T} \Delta_{\mathrm{rxn}} \mathrm{~S} \\ \mathrm{q}_{\mathrm{REV}} & =298\left(-125.4 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\ & =-37369 \mathrm{~J} \mathrm{~mol}^{-1} \quad \text { Answer } \end{aligned}$	Second law of thermodynamics Substituting Eq 6 into Eq 11	11 12
for the direct reaction, not in a cell, $\begin{aligned} & \mathrm{Cd}(\mathrm{~s})+2 \mathrm{AgCl}(\mathrm{~s}) \rightarrow \underset{\text { solution) })}{\mathrm{CdCl}_{2} \text { (satd }} \begin{array}{l} \text { sig(s) } \\ \mathrm{q}_{\mathrm{p}}=\Delta_{\mathrm{rxn}} \mathrm{H}=-167686 \mathrm{~J} \mathrm{~mol}^{-1} \end{array} . \end{aligned}$ Answer	$\begin{aligned} & \mathbf{H}=\mathbf{H}(\mathrm{T}, \mathrm{p}) \\ & \mathrm{dH}=\mathrm{C}_{\mathrm{p}} \mathrm{dT}+(\partial \mathbf{H} / \partial \mathrm{p})_{T} \mathrm{dp} \\ & \Delta \mathbf{H}=\mathrm{q}_{\mathrm{p}} \text { at constant } \mathrm{p} \end{aligned}$ From Eq 8 Heat released by the direct reaction is not as great as in the reversible reaction.	13
total energy change $=$energy available to do work $\Delta \mathbf{H}$energy not available to do work $\Delta \mathbf{H}$ $-167686=-130317$ As indeed it should be$+$$\mathrm{T} \Delta \mathbf{S}$	Using Eq 8 \& 10 \& 12	

4. right electrode
$\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}(\mathrm{aq})$
left electrode
chemical reaction
$\mathrm{Cu}^{2+}(\mathrm{aq})+1 / 2 \mathrm{H}_{2}(\mathrm{~g}$, satd $) \rightarrow \mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$
Eq 1

Equation	Basis for the equation	Eq. $\#$
$\mathcal{E}^{\ominus}=-0.153$ volt for $\mathrm{Cu}^{+} \mid \mathrm{Cu}^{2+}$ half cell therefore	Given	2

\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
\& \hline \mathcal{E}^{\ominus}=-0.153 \text { for } \mathrm{Cu}^{2+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+} \\
\& v=1 \\
\& \mathrm{~T}=298 \mathrm{~K} \\
\& \mathrm{p}=1 \mathrm{~atm} \\
\& \mathrm{pH}=3, \mathrm{so}\left[\mathrm{H}^{+}(\mathrm{aq})\right]=10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \\
\& {\left[\mathrm{Cu}^{2+}(\mathrm{aq})\right]=0.01 \mathrm{~m}} \\
\& \text { Assume activity coefficients to be } \\
\& \text { ideal, can use } \mathrm{m} \text { instead of activity }
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \hline 3 \\
\& 4 \\
\& 5 \\
\& 6 \\
\& 7
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& \mathrm{Cu}^{2+}(\mathrm{aq})+1 / 2 \mathrm{H}_{2}(\mathrm{~g}, \text { satd }) \\
\& \quad \rightarrow \mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \\
\& \mathcal{E}^{\ominus}=\mathcal{E}^{\ominus}\left[\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}(\mathrm{aq})\right] \\
\& \\
\& -\mathcal{E}^{\ominus}\left[\mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow 1 / 2 \mathrm{H}_{2}(\mathrm{~g})\right] \\
\& \mathcal{E}^{\ominus}=-0.153-0.0 \text { volt }
\end{aligned}
\] \& \begin{tabular}{l}
As seen in Eq 1 \\
Using Eq 2 \& standard \(\mathcal{E}^{\ominus}\left[\mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow 1 / 2 \mathrm{H}_{2}(\mathrm{~g})\right]=0\)
\end{tabular} \& 8 \\
\hline \[
\begin{aligned}
\& v \mathcal{F} \mathcal{E}^{\ominus}{ }_{298}=\mathrm{RT} \ln \boldsymbol{K} \\
\& 1(96485)(-0.153)=(8.31451)(298) \ln \boldsymbol{K} \\
\& \ln \boldsymbol{K}=-5.96 \\
\& \boldsymbol{K}=\exp (-5.96)=2.58 \times 10^{-3}
\end{aligned}
\] \& Derived in problem 1 (Eq 24) substituting values from Eq 3 \& 8 \& 9
10 \\
\hline \[
\begin{aligned}
\& \text { For the reaction } \\
\& \mathrm{Cu}^{2+}(\mathrm{aq})+1 / 2 \mathrm{H}_{2}(\mathrm{~g}, \text { satd }) \\
\& \boldsymbol{K}=\underline{\mathbf{a}_{\underline{C u+}}} \underline{a}_{\mathrm{a}^{+}} \\
\& \mathbf{a}_{\mathrm{Cu+}} \underline{a}_{\mathrm{H}^{1 / 2}}
\end{aligned} \rightarrow \mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})
\] \& \begin{tabular}{l}
Assume activity coefficients to be ideal, then can use \(m\) instead of activity. Use K value from Eq 10 , and Eq 7 gives \(10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}=10^{-3} \mathrm{~mol} / \mathrm{kg}\) water; \(\mathrm{m}_{\mathrm{H}+}=10^{-3}\) \\
For an ideal gas \(\mathbf{a}_{\mathrm{H} 2}=f_{\mathrm{H} 2}=\mathrm{p}_{\mathrm{H} 2}=1 \mathrm{~atm}\) \\
solve for \(\boldsymbol{m}_{\text {cu }+}\)
\end{tabular} \& 10 \\
\hline \& \begin{tabular}{l}
Derived in problem 1 (Eq 24) \\
Look up \(\mathcal{E}^{\ominus}=-0.52\) volt for the half cell \(\mathrm{Cu}^{+} \mid \mathrm{Cu}\) \\
for \(\mathrm{Cu}(\mathrm{s}) \boldsymbol{a}=1\), as for any pure solid \\
This is practically unrealizable.
\end{tabular} \& 11
12

13

\hline
\end{tabular}

5. Disproportionation of $\mathrm{Hg}_{2}{ }^{2+}(\mathrm{aq})$ ion: $\mathrm{Hg}_{2}{ }^{2+}(\mathrm{aq}) \rightarrow \mathrm{Hg}^{2+}(\mathrm{aq})+\mathrm{Hg}^{0}$ (liq) net reaction

$$
\begin{array}{rlr}
1 / 2 \mathrm{Hg}_{2}{ }^{2+}(\mathrm{aq})+\mathrm{e}^{-} & \rightarrow \mathrm{Hg}^{0} & \mathcal{E}^{\ominus}{ }_{298}=0.79 \\
\mathrm{Hg}^{2+}(\mathrm{aq})+\mathrm{e}^{-} & \rightarrow 1^{1 / 2 \mathrm{Hg}_{2}{ }_{2}^{2+}}(\mathrm{aq}) & \mathcal{E}^{\ominus}{ }_{298}=0.91
\end{array}
$$

Equation	Basis for the equation	Eq. $\#$
$\mathcal{E}^{\ominus}{ }_{298}=0.79-0.91=-0.12$ volt	Look up standard half cell potentials	
$\begin{aligned} & v \mathcal{F E}^{\ominus}{ }_{298}=\mathrm{RT} \ln \boldsymbol{K} \\ & 1(96485)(-0.12)=(8.31451)(298) \ln \boldsymbol{K} \\ & \ln \boldsymbol{K}=-4.673 \\ & \boldsymbol{K}=0.00934 \\ & \mathrm{Hg}_{2}{ }^{2+}(\mathrm{aq}) \rightarrow \mathrm{Hg}^{2+}(\mathrm{aq})+\mathrm{Hg}^{0} \\ & \boldsymbol{K}=\underline{\mathbf{a}}_{\mathbf{H g}} \boldsymbol{a}_{\mathbf{H g} 2+} \\ & \boldsymbol{a}_{\mathrm{Hg} 2++} \\ & 0.0093=\frac{(1) \boldsymbol{m}}{(\approx 0.01)} \\ & \boldsymbol{m}_{\boldsymbol{H g 2 +}}=0.00093 \\ & \text { degree of disproportionation is } \\ & 0.00093 /(0.01)=0.093 \text { or } 9.3 \% \end{aligned}$	Derived in problem 1 (Eq 24) $\boldsymbol{a}_{\mathrm{Hg}}=1$ for Hg^{0} (liq) as for any pure liquid	

6. $\mathrm{K}_{\text {sp }}$ for $\mathrm{Ag}_{2} \mathrm{SO}_{4}(\mathrm{~s})$ at 298 K

Equation	Basis for the equation	Eq. $\#$
$\begin{aligned} & \text { cell: } \quad \mathrm{Ag}\left\|\mathrm{Ag}_{2} \mathrm{SO}_{4}\right\|\left\|\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{~m})\right\| \mathrm{H}_{2} \mid \mathrm{Pt} \\ & \mathcal{E}^{\ominus}{ }_{298}=+0.80 \text { volt } \\ & \mathrm{Ag}_{2} \mathrm{SO}_{4}+2 \mathrm{e}^{-} \rightarrow \mathrm{Ag}^{0} \mathcal{E}^{\ominus}{ }_{298}=+0.80 \text { volt } \\ & \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow 1 / 2 \mathrm{H}_{2}(\mathrm{~g}) \mathcal{E}^{\ominus}{ }_{298}=0.0 \text { volt } \end{aligned}$	Given	1
$\begin{aligned} & \mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}^{0} \mathcal{E}^{\ominus}{ }_{298}=-0.627 \text { volt } \\ & \mathrm{Ag}_{2} \mathrm{SO}_{4}=2 \mathrm{Ag}^{+}+\mathrm{SO}_{4}^{2-} \\ & \mathcal{E}^{\ominus}{ }_{298}=0.80-(-0.627)=-0.173 \text { volt } \end{aligned}$	Look up standard half-cell potential Taking Eq (1) minus $2 \bullet \mathrm{Eq}(2)$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$
$\begin{aligned} & \nu \mathcal{F} \mathcal{E} \ominus_{298}=\mathrm{RT} \ln \boldsymbol{K} \\ & 2(96485)(-0.173)=(8.31451)(298) \ln K \\ & \ln \boldsymbol{K}=-13.47 \\ & \boldsymbol{K}_{s p}=1.4 \times 10^{-6} \quad \text { Answer } \\ & \hline \end{aligned}$	Derived in problem 1 (Eq 24) Apply to solubility Eq 3, using value from Eq 4	

7. $\mathrm{Pt}\left|\mathrm{H}_{2}(1 \mathrm{~atm})\right| \mathrm{m} \mathrm{Ba}(\mathrm{OH})_{2} \mid \mathrm{Ba}($ amalgam $)\left|0.1200 \mathrm{~m} \mathrm{Ba}(\mathrm{OH})_{2}\right| \mathrm{H}_{2}(1 \mathrm{~atm}) \mid \mathrm{Pt}$

Equation	Basis for the equation	Eq. $\#$
half cell reactions:	A concentration cell acts to dilute the more concentrated solution and concentrate the more dilute solution, creating a voltage as the cell	

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{Ba}(\mathrm{OH})_{2} 0.1200 \mathrm{~m}+2 \mathrm{e}-=\mathrm{Ba}^{0}+2 \mathrm{OH}^{-} \\
\& \mathrm{Ba}(\mathrm{OH})_{2} \mathrm{~m}+2 \mathrm{e}-=\mathrm{Ba}^{0}+2 \mathrm{OH}^{-} \\
\& \text {net cell reaction (right -left): } \\
\& \mathrm{Ba}(\mathrm{OH})_{2} 0.1200 \mathrm{~m}=\mathrm{Ba}(\mathrm{OH})_{2} \mathrm{~m} \\
\& \mathcal{E}^{\ominus}{ }_{298}=0
\end{aligned}
\] \\
For \(\mathrm{m}<0.1200 \mathrm{~m}\) in \(\mathrm{Ba}(\mathrm{OH})_{2}\), the left compartment will form more \(\mathrm{Ba}(\mathrm{OH})_{2}\), while the right compartment will form more \(\mathrm{Ba}^{0}\) until equilibrium is reached, at which point \(\mathcal{E}\) goes to zero.
\end{tabular} \& \begin{tabular}{l}
reaches an equilibrium. This is achieved by transferring the electrons from the cell with the lower concentration to the cell with the higher concentration. \\
Since both half cells are the same, the difference between the half-cell standard potentials is zero,
\end{tabular} \& 1
2
3 \\
\hline \& \begin{tabular}{l}
Nernst equation \\
Using a mean ion activity coefficient for both anion and cation \\
Remember that \(\gamma_{ \pm}\)depends on concentration \(m\) \\
Substituting Eq 7,8,9,10 into Eq 4 \\
When \(\mathrm{m}_{2}=\mathrm{m}_{1}\), then \(\mathcal{E}=0\) \\
How to find C ? \\
We make use of the fact that \(\gamma_{ \pm} \rightarrow 1\) at ideal limit Given table of data: \(\mathcal{E}\) vs \(\mathrm{m}_{2}\) \\
In the limit that \(\mathrm{m}^{1 / 2}\) goes to zero, \(\log _{10}\left(\gamma_{ \pm}\right)\)is zero As in problem 2, make use of Debye Huckel limit Substitute C in Eq 14 to calculate \(\left(\gamma_{ \pm}\right)_{m}\) at every \(m\)
\end{tabular} \& 4
5
6

7
7
8
9
10

11
12
13
14

\hline Plot $\left(\gamma_{ \pm}\right)_{m}$ vs m and read off value for $\mathrm{m}=0.1000$ molal to get 0.47 Answer \& See two plots \& table below for numerical calculations. \&

\hline
\end{tabular}

\mathcal{E}	-0.1245	-0.0840	-0.0630	-0.0254	0.0144	Given
$\mathrm{m}=\mathrm{m}_{2}$	0.00245	0.00793	0.01509	0.04970	0.1996	Given
$\mathrm{m}^{1 / 2}$	0.04950	0.08905	0.1228	0.2229	0.4468	
$\log _{10} \mathrm{~m}$	-2.6108	-2.1007	-1.8213	-1.303	-0.6998	
$0.08871 \cdot \log _{10} \mathrm{~m}$	-0.23160	-0.18635	-0.16157	-0.11559	-0.06208	
$\begin{aligned} & \mathcal{E}^{\prime}= \\ & \mathcal{E}-0.08871 \log _{10} \mathrm{~m} \end{aligned}$	0.1071	0.10235	0.09857	0.09019	0.07648	$\begin{aligned} & =0.08871 \log _{10}\left(\gamma_{ \pm}\right)_{\mathrm{m}} \\ & +0.08871 \mathrm{C} \end{aligned}$
Plot $\mathcal{E}^{\prime} / 0.08871=\left(\log _{10}\left(\gamma_{ \pm}\right)_{\mathrm{m} 2}+\mathrm{C}\right) \quad$ vs m${ }^{1 / 2}$. When $\left(\gamma_{ \pm}\right)$approaches 1. Find the intercept C						
[$\left.\mathcal{E}^{\prime} / 0.08871\right]$	1.2073	1.1538	1.1111	1.0166	0.8621	$=\log _{10}\left(\gamma_{ \pm}\right)_{\mathrm{m}}+\mathrm{C}$
$\log _{10}\left(\gamma_{ \pm}\right)_{\mathrm{m}}$	-0.0827	-0.1362	-0.1789	-0.2734	-0.4279	Using value of $C=1.29$
$\left(\gamma_{ \pm}\right)_{\mathrm{m}}$	0.827	0.731	0.662	0.533	0.373	take the antilog
compare with $\left(\gamma_{ \pm}\right)_{\mathrm{m}}$ published	0.820	0.726	0.657	0.531	0.370	Harned \& Mason
From $2^{\text {nd }}$ plot read off the value $\left(\gamma_{ \pm}\right)=0.47$ at $\mathrm{m}=0.1000$						

Plot $\mathcal{E}^{\prime} / 0.08871=\left(\log _{10}\left(\gamma_{ \pm}\right)_{\mathrm{m} 2}-\mathrm{C}\right) \quad$ vs $\mathrm{m}^{1 / 2}$. Find intercept $=1.29$

Plot $\left(\gamma_{ \pm}\right)$vs $m \quad$ Read off 0.47 as the value of $\left(\gamma_{ \pm}\right)$at $m=0.1000$

