Chemistry 342 September 25, 1998 First Exam | 1 J = 1 kg m ² s ⁻² k_B = 1.38066×10 ⁻²³ J K ⁻¹ $R = N_{Avogadro}k_B$
$R = 8.31441$ J mol ⁻¹ K ⁻¹ =1.98718 cal mol ⁻¹ K ⁻¹ = 0.082057 L atm mol ⁻¹ K ⁻¹ $p/p_0 = \exp[-(M/RT)gz]$ barometric formula $C_p - C_V = \{ p + (\partial U/\partial V)_T \} (\partial V/\partial T)_p$ $(\partial H/\partial p)_T = [p + (\partial U/\partial V)_T] (\partial V/\partial p)_T + V$ $\mu_{JT} = (\partial T/\partial p)_H$ $(\partial H/\partial p)_T = -C_p \mu_{JT}$ monatomic gas molar heat capacity: $C_V = (3/2)R$ | |--| | 1. Investigate some of the technicalities of ballooning using the perfect gas law. Suppose your balloon has a capacity of 10 ³ m ³ is filled with He at 20°C and 1 atm pressure. Assume that the volume of the baloon is constant, the atmosphere isothermal at 20°C and the molecular weight of air is 28.8 and the ground level pressure is 1 atm. The balloon itself is made of material whose mass may be neglected compared to the load. (a) What is the density of air at ground level? | | | | (b) What is the load that the balloon can lift at ground level? [Hint: Archimedes] | | | | (c) If the balloon is loaded with 80% of the load that it can lift at ground level, at what height will the balloon come to rest? | | | 2. When a system is taken from state A to state B along the path ACB in the figure below, 80 J of heat flows into the system and the system does 30 J of work. (a) How much heat flows into the system along path ADB if the work done is 10 J? (b) When the system is returned from state B to A along the curved path, the work done on the system is 20 J. Does the system absorb or liberate heat, and how much? (c) If U_D - U_A = +40 J, find the heat absorbed in each of the processes AD and DB. - 3. Assume that air behaves as an ideal gas with $C_p = (7/2)R$. - (a) In one experiment 1.00 mole of "air molecules" is compressed from 1.00 atm to 10.0 atm at 25°C by the following reversible process: (1) heating at constant volume to the final pressure, followed by (2) cooling at constant pressure to 25°C. Sketch these processes on a pV diagram. | p | o o o o o o o o o o o o o o o o o o o | (Initial) ₁ | (Final) ₁ & (Initial) ₂ | (Final) ₂ | |---|---------------------------------------|------------------------|---|----------------------| | | | | | | | | | | | | | 1 | V | | | | Calculate ΔU , ΔH , q, and W, in kJ for each step in the process and for the overall process. | process. | process. | | | | | |----------|----------|---------|--|--|--| | step 1 | step 2 | overall | | | | | q | q | q | | | | | W | W | W | | | | | ΔU | ΔU | ΔU | | | | | ΔΗ | ΔΗ | ΔΗ | | | | **4.** n moles of a gas obeying the equation of state p(V-nb) = nRT ($b = 10^{-1}$ L mol⁻¹) and has $(\partial U/\partial V)_T = 0$, $(\partial H/\partial p)_T = -b$ is subjected to an isothermal reversible expansion from an initial volume of 1.00 L to 24.8 L at 298 K. Calculate the values of ΔU , ΔH , q, and W, in kJ (in terms of n). | of ΔO , ΔH , Q , and VV , if KJ (in terms of H). | | | | | |---|----|--|--|--| | $\mid q \mid$ | W | | | | | • | $ \Delta U $ | ΔΗ | 1 | | | | | | | | | | | **5.** Calculate the standard enthalpy of formation $\Delta_f \mathbf{H}^{\ominus}$ of KClO₃ from the enthalphy of formation of KCl (-436.75 kJ mol⁻¹) together with the following information all at 298 K: $$2KClO_3(s) \rightarrow 2KCl(s) + 3O_2(g)$$ $\Delta \mathbf{H}^{\Theta} = -89.4 \text{ kJ mol}^{-1}$ **6.** A cylindrical container of fixed total volume is divided into three sections, S_1 , S_2 , and S_3 . The sections S_1 and S_2 are separated by an adiabatic piston, whereas S_2 and S_3 are separated by a diathermic (heat conducting) piston. The pistons can slide along the walls of the cylinder without friction. Each section of the cylinder contains 1.00 mole of a perfect diatomic gas $[C_V = (5/2)R]$. Initially the gas pressure in all three sections is 1.00 atm and the temperature is 298 K. The gas in S_1 is heated slowly until the temperature of the gas in S_3 reaches 348 K. Find the final temperature, pressure, and volume, as well as the change in internal energy for each section. | S ₁ | S_2 | S_3 | |----------------|-------|-------| | p_f | p_f | p_f | | V _f | V_f | V_f | | T_f | T_f | T_f | | ΔU | ΔU | ΔU | Determine the total energy supplied to the gas in S_1 .