Chemistry 342

September 25, 1998 First Exam

Answus

1 J = 1 kg m² s⁻²
$$k_B$$
 = 1.38066×10⁻²³ J K⁻¹ $R = N_{Avogadro}k_B$
 $R = 8.31441$ J mol⁻¹ K⁻¹ =1.98718 cal mol⁻¹ K⁻¹ = 0.082057 L atm mol⁻¹ K⁻¹ $p/p_0 = \exp[-(M/RT)gz]$ barometric formula $C_p - C_V = \{ p + (\partial U/\partial V)_T \}(\partial V/\partial T)_p$ $(\partial H/\partial p)_T = [p + (\partial U/\partial V)_T](\partial V/\partial p)_T + V$ $\mu_{JT} = (\partial T/\partial p)_H$ $(\partial H/\partial p)_T = -C_p \mu_{JT}$ monatomic gas molar heat capacity: $C_V = (3/2)R$

1. Investigate some of the technicalities of ballooning using the perfect gas law. Suppose your balloon has a capacity of 10³ m³ is filled with He at 20°C and 1 atm pressure. Assume that the volume of the baloon is constant, the atmosphere isothermal at 20°C and the molecular weight of air is 28.8 and the ground level pressure is 1 atm. The balloon itself is made of material whose mass may be neglected compared to the

(a) What is the density of air at ground level? use ideal gas law
$$Pair = \begin{pmatrix} P \\ RT \end{pmatrix} M = \frac{1 \text{ atm } 28.8 \text{ g mol}^{-1}}{0.082057 \text{ Latm mol}^{-1} \text{ K}^{-1} 293 \text{ K}} = 1.197 \text{ g/L}$$

(b) What is the load that the balloon can lift at ground level? [Hint: Archimedes]

The balloon can lift a load because the He ballom displaces an equal volume of air, but itself has a much somailer mass.

MHE + ML OAD = m displaced air

Mond = V (Pair - PHE). At ground level P= 1 atm,

He = (PT)M = (1)(4)

(C) If the balloon is loaded with 80% of the load that it can lift at ground level, at what

height will the balloon come to rest?

2. When a system is taken from state A to state B along the path ACB in the figure below, 80 J of heat flows into the system and the system does 30 J of work.

Use First Law in lach case

(a) How much heat flows into the system along path ADB if the work done is 10 J?

(b) When the system is returned from state B to A along the curved path, the work done on the system is 20 J. Does the system absorb or liberate heat, and how much?

From (a)
$$U_A - U_B = -SD = G_A + W_{A} U_B = G_A + 20$$
(Since U is a state function)

The system liberates heat to the surroundings

(c) If U_D - U_A = +40 J, find the heat absorbed in each of the processes AD and DB.

 $- : C_P - C_V = R$

3. Assume that air behaves as an ideal gas with $C_p = (7/2)R$.

(a) In one experiment 1.00 mole of "air molecules" is compressed from 1.00 atm to 10.0 atm at 25°C by the following reversible process: (1) heating at constant volume to the final pressure, followed by (2) cooling at constant pressure to 25°C. Sketch these processes on a pV diagram.

$$\frac{(Initial)_{1}}{(I)} = \frac{(Final)_{1} & (Final)_{2}}{(Initial)_{2}} = \frac{(Final)_{2}}{(I)}$$

$$\frac{P_{1} = 10 \text{ Atm}}{T = 24.45} = \frac{10 \text{ R} \cdot 248}{1} = 24.45$$

$$\frac{(Final)_{2}}{P_{2} = 100 \text{ Atm}} = \frac{(Final)_{2}}{P_{2} = 100 \text{ Atm}}$$

$$\frac{P_{1} = 100 \text{ Atm}}{T = 24.45} = \frac{1000 \text{ R} \cdot 248}{100} = \frac{1000 \text{ Atm}}{100} = \frac{10000 \text{ Atm}}{100} = \frac{1000 \text{ Atm}}{100} = \frac{10000 \text{ Atm}}$$

Calculate ΔU , ΔH , q, and W, in kJ for each step in the process and for the overall

process.

process.			
step 1 constant vol.	step 2 Constant p	overall sum step 1 +2	
$q = q_V = \int_{248}^{2480} C_V dT$	$q = g_p = \int_{2980}^{298} CpdT$	9 55.748-78.047 =-22,3.KJ	
= 528.319[2480-248]	= - 70 017 1 5		
= 55.748KJ	= - 78.047 kJ		
$W=\int_{P_0} dV$, $dV=0$: $W=0$	W get from	W = D+22.3 kJ	
VV = 0	$W = \Delta U - q$	= 22,3 kJ	
	= -55.748 78.047		
	= +22.3 kJ		
DU du = CodT+ (4) dv	△U du=CvdT+0	$\Delta U = 0$ since back	
zeno.	A 11= 5 8.3144 [248-248	(21010)	
11=9v=55,748 KJ	= -55.748 kJ	and ideal	
AH dH= GpdT+(OH) dp	AH dH = CpdT+1014 dp	$\Delta H = D$ since	
Haro	AH = { 8.3144 [718-2980]	(same as above)	
SH= = 2 8.3144 [2980-298]	= -78.047 KJ		
= 78.047 kJ			
	•		

4. n moles of a gas obeying the equation of state $p(V-nb) = nRT(b = 10^{-1} \text{ L mol}^{-1})$ and has $(\partial U/\partial V)_T = 0$, $(\partial H/\partial p)_T = -b$ is subjected to an isothermal reversible expansion from an initial volume of 1.00 L to 24.8 L at 298 K. Calculate the values of $\Delta U = \Delta H = 0$ and M' in k L (in terms of n)

of ΔU , ΔH , q , and VV , in KJ (in terms of Π)	•
q get from q = SN-W = - W	W revensible $P_{op} = P_{gns}$ 24.RL W= $\int dW = -\int P_{op}dV = -nR 298 \int \frac{dV}{V-nb}$
	$W = -nR 298 ln \left(\frac{24.8 - 0.1n}{1.0 - 0.1n}\right)$
$\Delta U = C_V dT + (\partial U) dV$ $dT = 0$ $dT = 0$ $dV = 0$ dV	$\Delta H dH = Cpol + (\frac{\partial H}{\partial P}) dP$ $dT = 0 \frac{\partial H}{\partial P} \frac{\partial H}{\partial P$
AU=0 $AU=0$	$\Delta H = \int \frac{\partial H}{\partial p} dp = -b \int \frac{\partial P}{\partial p} = \frac{nR^{2}98}{24.8 - 0.1n}$ $= -b nR^{2}98 \left[\frac{1}{24.8 - 0.1n} - \frac{nR^{2}98}{1.0 - 0.1n} \right]$
	1.p-D, in

5. Calculate the standard enthalpy of formation $\Delta_f H^{\ominus}$ of KClO₃ from the enthalphy of formation of KCl (-436.75 kJ mol⁻¹) together with the following information all at 298 K:

$$2KClO_{3}(s) \rightarrow 2KCl(s) + 3O_{2}(g)$$

$$\Delta H^{\Theta} = -89.4 \text{ kJ mol}^{-1}$$

$$-89.4 \text{ kJ mol}^{-1} = 2 \times (-436.75) + 3 \times 0 - 2 \Delta_{f} + \kappa clo_{3}$$

$$\Delta_{f} H^{\Theta} \times \kappa clo_{3} = 2(-436.75) + 89.4 = -392.05 \text{ kJ mol}^{-1}$$

6. A cylindrical container of fixed total volume is divided into three sections, S_1 , S_2 , and S_3 . The sections S_1 and S_2 are separated by an adiabatic piston, whereas S_2 and S_3 are separated by a diathermic (heat conducting) piston. The pistons can slide along the walls of the cylinder without friction. Each section of the cylinder contains 1.00 mole of a perfect diatomic gas $[C_V = (5/2)R]$. Initially the gas pressure in all three sections is 1.00 atm and the temperature is 298 K. The gas in S_1 is heated slowly until the temperature of the gas in S_3 reaches 348 K.

see page

Find the final temperature, pressure, and volume, as well as the change in internal

energy for each section.

energy for each section.			
S_1	S_2	S_3	
p_f	ρ_f	ρ_f	
V_f	V_f	V_f	
T_f	T_f	\mathcal{T}_f	
ΔU	ΔU	ΔU	

		
l C :	1 0	
l 5₁ i	, S ₀	II 5a
J 71	02	
		<u> </u>
]	Į.	
		
 4 4		

Initial:

$$p_1$$
 = 1atm

$$p_2$$
= 1atm

 p_3 = 1atm

$$T_1 = 298 \text{ K}$$
 $T_2 = 298 \text{ K}$

$$T_2 = 298 \text{ K}$$

$$T_3$$
 = 298 K

ideal:

$$V_1 = ?= 298R/1 = 24.4 I$$

$$V_1 = ?= 298R/1 = 24.4 L$$
 $V_2 = ?= 298R/1 = 24.4 L$ $V_3 = ?= 298R/1 = 24.4 L$

Since <u>fixed total volume</u>, total work = 0, $W_1 + W_2 + W_3 = 0$

Since <u>adiabatic piston</u> between S_1 and S_2 , $q_2+q_3=0$

$$q_2 + q_3 = 0$$

Since pistons are <u>free to slide</u>, then final $p_{f_1} = p_{f_2} = p_{f_3} = p_f$

Since <u>diathermic piston</u> between S_2 and S_3 , then T_{f2} is same as T_{f3} = 348 K

Since S_2 and S_3 are at same final p_f and T_f then $V_{f2} = V_{f3}$

What can we calculate?

 $d\mathbf{U} = C_V dT + (\partial \mathbf{U}/\partial V)_T dV$ but $(\partial \mathbf{U}/\partial V)_T = 0$ for an ideal gas. Therefore,

$$\Delta U_2 = C_V[348 - 298] = (5/2)R[348 - 298] = 250 \text{ cal}$$

$$\Delta U_3 = C_V[348 - 298] = (5/2)R[348 - 298] = 250 \text{ cal}$$

First law: $\Delta U_2 = q_2 + W_2$ and $\Delta U_3 = q_3 + W_3$

But since $q_2+q_3 = 0$ and $W_1 + W_2 + W_3 = 0$, then

$$W_1 = -(W_2 + W_3) = -(\Delta U_2 + \Delta U_3) = -(250 + 250) = -500$$
 cal

Ideal gases in S2 and S3 together went through an adiabatic reversible (infinitely slowly) compression brought about by expansion of S₁.

Therefore, $\ln\{ [T_{f_2}/T_2]^{CV/R} \} = \ln [V_2/V_{f_2}] \text{ holds.}$

$$\ln\{\ [348/298]^{5/2}\ \} = \ln\ [298R/V_{f2}]\ , \ {\rm solve\ for}\ V_{f2}\ = 16.59\ L\ = V_{f3}$$

Now ideal gas equation gives p_f from T_{f2} and V_{f2} : $p_f = R$ (348) $N_{f2} = 1.72$ atm Now we know also that fixed total volume is the same as total initial volume,

$$V_{f_1} + 2V_{f_2} = 3.R298/1$$
, solve for V_{f_1} , $V_{f_1} = 40.16$ L

In S₁ we know p_f and V_{f1} , apply ideal gas law: $p_f V_{f1} = R (T_{f1})$, solve for T_{f1}

$$T_{f1}$$
 = 1.72 atm(40.16 L) /.082057 = 841.8 K

In S₁ can now apply First Law: $\Delta U_1 = C_V[T_{f_1} - 298] = \dots = q_1 + W_1$, solve for q_1 $(5/2)R[841.8 - 298] = 2701.6 \text{ cal} = q_1 - 500 \text{ cal}$, $q_2 = 3202 \text{ cal which is the}$ total energy supplied to the gas in S₁.

S_1	S_2	S_3
p_f 1.72 atm	p_f 1.72 atm	<i>p_f</i> 1.72 atm
<i>V_f</i> 40.16 L	<i>V_f</i> 16.59 L	<i>V_f</i> 16.59 L
<i>T_f</i> 841.8 K	<i>T_f</i> 348 K	<i>T_f</i> 348 K
Δ <i>U</i> 2701.6 cal	ΔU 250 cal	∆ <i>U</i> 250 cal

The total energy supplied to the gas in S_1 = 3202 cal