| Name | | |------|--| | | | Please put answers within boxes provided. ## Chemistry 342 October 23, 1998 Second Exam 1 J = 1 kg m² s ⁻² $$k_B$$ = 1.38066×10⁻²³ J K⁻¹ $R = N_{Avogadro}k_B$ $R = 8.31441 \text{ J mol}^{-1} \text{ K}^{-1} = 1.98718 \text{ cal mol}^{-1} \text{ K}^{-1} = 0.082057 \text{ L atm mol}^{-1} \text{ K}^{-1}$ $C_p - C_V = \{ p + (\partial U/\partial V)_T \} (\partial V/\partial T)_p$ $(\partial U/\partial V)_T = T(\partial p/\partial T)_V - p$ $(\partial H/\partial p)_T = -T(\partial V/\partial T)_p + V$ $\mu_{JT} = (\partial T/\partial p)_H$ $(\partial H/\partial p)_T = -C_p \mu_{JT}$ monatomic gas molar heat capacity: $C_V = (3/2)R$ - 1. Consider the following cycle using 1 mole of an ideal gas, initially at 25°C and 1 atm pressure. - Step (1) Isothermal expansion against zero pressure to double the volume (Joule expansion). - Step (2) Isothermal, reversible compression from 1/2 atm to 1 atm. I | (a) Calculate the value of | Ϋ́ dq/T. | |----------------------------|----------| (b) Calculate ΔS for Step (2) | | |---------------------------------------|--| (c) Calculate Δ S for Step (1) | | | () | 2. Given the following data for benzene, C_6H_6 : At the normal boiling point, 80.1°C , $\Delta_{\text{vap}}\boldsymbol{H}$ is $7.353 \text{ kcal mol}^{-1}$, and C_p for the liquid is $31 \text{ cal mol}^{-1} \text{ K}^{-1}$ C_p for the vapor is $-0.409 + 77.621 \times 10^{-3} \text{ T} - 264.29 \times 10^{-7} \text{ T}^2 \text{ cal mol}^{-1} \text{ K}^{-1}$ | |--| | Assume that benzene vapor behaves ideally. Calculate ΔS for the process: C_6H_6 (liq, 82.1°C, 1 atm) $\rightarrow C_6H_6$ (g, 82.1°C, 0.5 atm) | continue 2. here | |------------------| 3. (a) Derive $(\partial \mathbf{S}/\partial p)_T$ for an ideal gas by making use of the First and Second Law and the fact that $d\mathbf{G}$ is an exact differential. | |--| | | | | | | | | | | | | | | | | | (b) One mole of liquid water (density = 1 g/mL) is allowed to expand into an | | evacuated flask of volume such that the final pressure is 0.3 atm. The bulb containing the liquid and the flask are thermostated so that a constant temperature of | | 100 °C is maintained. It is found that 11,000 cal of heat are absorbed when this | | process occurs. Calculate the values for $\Delta \boldsymbol{U}$, $\Delta \boldsymbol{H}$, $\Delta \boldsymbol{S}$, and $\Delta \boldsymbol{G}$. Assume vapor is ideal. | | $\Delta oldsymbol{U}$ | | | | | | | | | | | | | | ΔH | | | |------------|------|------| 1 | ļ | | | | | | | |] | | | | |
 |
 | | | | | | |
 |
 | | |
 |
 | | ΔS |
 | | | ΔS |
 | | | ΔS | |
 | | ΔS | | | | ΔS | | | | ΔS | | | | Δ\$ | | | | ΔS | | | | Δ\$ Δ S continue here | | |--|--| Marie Carlotte Carlot | | | | | | ΔG | **4.** The heat capacity of sulfur dioxide at a constant pressure of 1 atm at different temperatures is shown below. At 15 K the heat capacity at constant pressure of $SO_2(s)$ is 0.90 cal mol^{-1} K⁻¹. Solid SO_2 melts at 197.64 K, $\Delta_{fus} \boldsymbol{H}$ is 1769 cal mol^{-1} . At this pressure, liquid SO_2 vaporizes at 263.08 K and the $\Delta_{vap} \boldsymbol{H}$ is 5960 cal mol^{-1} . The heat capacity of SO_2 gas between 300 K and 1500 K is $\{6.15 + 13.8 \times 10^{-3} \ T - 91.0 \times 10^{-7} \ T^2 + 2.06 \times 10^{-9} \ T^3 \}$ cal $mol^{-1}K^{-1}$. Calculate the molar entropy value for SO_2 gas at 298.1 K. Heat capacity in cal K⁻¹ mol⁻¹ of sulfur dioxide at a constant pressure of 1 atm at different temperatures. | continue here | | |---------------|--| 5. Two moles of a gas whose equation of state is pV = RT + ap where $a = 0.020 \text{ L mol}^{-1}$ at 300 K, 0.025 L mol^{-1} at 400 K, 0.030 L mol^{-1} at 500 K, undergoes isothermal compression at 300 K from 1 atm to 11 atm. Calculate ΔU , ΔG , ΔS , ΔA , and ΔH for the gas. First, derive the expressions that are appropriate for this *non-ideal* equation of state. In this space, derive the expressions that are appropriate for this *non-ideal* equation of state, that you will need in the calculations of the changes in thermodynamic quantities. | continue here derivations, as needed | |--------------------------------------| $\Delta oldsymbol{U}$ | Δ G | | | |-------------------|--|--| | IAG | | | | 1 | | | | 1 | | | | | | | | | | | | | | | | 1 | | | | 1 | 1 | ļ | 1 | | | | | | | | | | | | 1 | | | | | | | | 1 | ΔS | | | | 43 | | | | | | | | | | | | 1 | | | | 1 | | | | I . | A A | | | | |------------|----------|---------------------------------------|------| | ΔA | ; | L | <u> </u> | ΔH | | · · · · · · · · · · · · · · · · · · · |
 | | Δ H | | |
 | | ΔH | | | | | ΔH | | | | | Δ H ΔΗ | | | | | Δ H ΔΗ | | | | | ΔΗ | | | | | ΔΗ | | | |