$\qquad$ Please put answers within boxes provided.

## Chemistry 342

December 8, 1998
Final Exam (3 hrs.)

```
\(1 \mathrm{~J}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2} \quad k_{B}=1.38066 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \quad R=N_{\text {Avogadro }} k_{B}\)
\(R \quad=8.31441 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=1.98718 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}=0.082057 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\)
\(\left[p+a(n / V)^{2}\right](V-n b)=n R T \quad\) van der Waal equation of state
\((\partial S / \partial V)_{T}=(\partial p / \partial T)_{V}\)
\((\partial \mathbf{S} / \partial p)_{T}=-(\partial V / \partial T)_{p}\)
\((\partial U / \partial V)_{T}=T(\partial p / \partial T)_{V}-p\)
\((\partial H / \partial p)_{T}=-T(\partial V / \partial T)_{p}+V=\left\{p+(\partial U / \partial V)_{T}\right\}(\partial V / \partial \mathrm{p})_{T}+V\)
\(C_{p}-C_{V}=\left\{\mathrm{p}+(\partial \boldsymbol{U} / \partial V)_{T}\right\}(\partial V / \partial T)_{p}\)
```

monatomic gas molar heat capacity: $\quad C_{V}=(3 / 2) R$
The limiting Debye-Hückel eqn: $\quad \ln \gamma_{ \pm}=z_{+} z I^{1 / 2}\left(\mathrm{e}^{2} / 10 \varepsilon \mathrm{k}_{\mathrm{B}} T\right)^{3 / 2}\left\{2 \pi \rho \mathrm{~N}_{\text {Avog }}\right\}^{1 / 2}$
for water at $25^{\circ} \mathrm{C}$ as the solvent, $\quad \ln \gamma_{ \pm}=z_{\neq} z I^{1 / 2}(1.17223)$
ionic strength $\equiv 1 / 2 \sum m_{i} z_{i}^{2}$

$$
\ln a_{A}=\Delta_{\text {Aus }} H / R\left[\frac{-1}{T}+\frac{1}{T^{*}}\right]
$$

 If insufficient information is provided, you may assume ideal behavior (and you must clearly state that you are doing so), provided that there is nothing in the problem that contradicts this assumption. Otherwise, you must assume that explicitly non-ideal systems are under consideration. Pace yourself with the suggested maximum times (out of total 180 min .) shown.

1. 15 min . The enthalpy of formation of $\mathrm{HBr}(\mathrm{g})$ from $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{Br}_{2}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$ is $9.0 \mathrm{kcal} \mathrm{mol}^{-1}$. Assume that all diatomic gases have a constant heat capacity at constant pressure of $7.0 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$.
(a) Determine what the enthalpy of formation of $\mathrm{HBr}(\mathrm{g})$ would be at $125^{\circ} \mathrm{C}$.
(b) If 1.0 mole of $\mathrm{H}_{2}$ and 99.0 moles of $\mathrm{Br}_{2}$ are exploded in an insulated bomb (of heat capacity $900 \mathrm{cal} \mathrm{K}^{-1}$ ) then calculate the final temperature (of calorimeter and gases) if the initial temperature was $25^{\circ} \mathrm{C}$.
2. 10 min . If a small amount of $\mathrm{SO}_{2}$ is introduced into oxygen gas at 2 atm pressure, the equilibrium molar ratio of $\mathrm{SO}_{3} / \mathrm{SO}_{2}$ is found to be $10^{4}$ at $1000^{\circ} \mathrm{C}$. If this gaseous mixture is now allowed to expand to a volume nine times the original one, still at $1000^{\circ} \mathrm{C}$, calculate what the new value of the $\mathrm{SO}_{3} / \mathrm{SO}_{2}$ ratio should be at equilibrium.
3. 15 min . Consider the dissociation of nitrogen tetroxide:

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})=2 \mathrm{NO}_{2}(\mathrm{~g})
$$

at $25^{\circ} \mathrm{C}$. The Gibbs free energies of formation at $25^{\circ} \mathrm{C}$ and 1 atm are:

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad 98.296 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

$$
\mathrm{NO}_{2}(\mathrm{~g}) \quad 51.845 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(a) Suppose 2 moles of $\mathrm{N}_{2} \mathrm{O}_{4}$ is confined in a vessel under 2 atm pressure.

Calculate the degree of dissociation, i.e., what fraction of the $\mathrm{N}_{2} \mathrm{O}_{4}$ dissociated?
(b) If 5 moles of argon are introduced and the mixture confined under 2 atm pressure, calculate the degree of dissociation.
(c) If the volume of the vessel, determined by the conditions specified in (a), is kept constant, and 5 moles of argon are introduced, calculate the degree of dissociation.
4. 20 min . (a) The enthalpy content of the vapor, liquid, and solid phases of water as a function of temperature is shown in the figure below:


Determine the enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at 298 K .

## Determine $\Delta_{\text {vip }} \boldsymbol{H}$ of water at $200^{\circ} \mathrm{C}$.

(b) Calculate $\Delta \boldsymbol{H}, \Delta \boldsymbol{S}, \Delta \boldsymbol{G}$ for the conversion of liquid water at $25^{\circ} \mathrm{C}$, subjected to its equilibrium vapor pressure of 0.0313 atm , to steam at $100^{\circ} \mathrm{C}$ and 1 atm .
Take the heat capacity of liquid water at 1 atm to be constant at $75.4 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ and $\boldsymbol{S}^{\ominus}{ }_{298}=69.9 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. The heat capacity of water vapor at 1 atm is $30.54+$ $10.29 \times 10^{-3} \mathrm{~T} \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.

## $\Delta H$

answer space continued on next page
$\square$
$\Delta S$
$\square$
5. 10 min . (a) Derive $(\partial[\mathbf{G} / T] / \partial T)_{p}$.
(b) For the all-gas reaction $\mathrm{CO}_{2}+\mathrm{H}_{2}=\mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$ the temperature dependence has been measured.


The temperature dependence of the equilibrium constant for the reaction $\mathrm{CO}_{2}+\mathrm{H}_{2} \rightleftarrows \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$

Determine $\Delta_{\mathrm{rx}} H^{\ominus}$ for this reaction at $600^{\circ} \mathrm{C}$.
Describe the states that this $\Delta_{\mathrm{rxn}} H^{\ominus}$ corresponds to.
6. 30 min . Two moles of a gas that obeys the van der Waals equation of state undergoes isothermal expansion from $1 \mathrm{~atm}, 200 \mathrm{~K}$ to ten times its initial volume against a constant pressure of 0.1 atm . The parameters for this gas are $a=1.4 \mathrm{~L}^{2}$ $\mathrm{atm} \mathrm{mol}{ }^{-2}, b=0.39 \mathrm{~L} \mathrm{~mol}^{-1} C_{V}=(5 / 2) R-0.370 \times 10^{-3} T+25.46 \times 10^{-7} T^{2} \mathrm{cal}$ $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$.
For this problem, final numerical answers are not required. However, each answer must have all numbers and units such that only the operation of a simple $\$ 2$. calculator is required to arrive at the numerical result. That is, $10 \mathrm{R} \ln 2$ is not acceptable but $10(1.987) \ln 2 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ is acceptable. Hint: Avoid $(\partial \mathrm{V} / \partial T)_{p}$. Find $V_{i}, W, \Delta \boldsymbol{U}, q, \Delta \boldsymbol{H}, \Delta \boldsymbol{S}, \Delta \boldsymbol{A}, \Delta \boldsymbol{G}$.
$v_{i}$ :

W:
$\square$
$q:$
$\Delta H$ :
$\Delta \boldsymbol{S}$ :
$\Delta A$ :
$\Delta \mathbf{G}$ :
7.15 min . Some properties of $\mathrm{N}_{2}$ are given below:

| density $\left(0^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right)$ | 1.25 g L |
| :--- | :--- |
| normal boiling point | $-195.8^{\circ} \mathrm{C}$ |
| normal melting point | $-210.01^{\circ} \mathrm{C}$ |
| vapor density (at boiling point) | $4.61 \mathrm{~g} \mathrm{~L}^{-1}$ |
| liquid density (at boiling point) | $804 \mathrm{~g} \mathrm{~L}^{-1}$ |
| solid density (at melting point) | $820 \mathrm{~g} \mathrm{~L}^{-1}$ |
| vapor pressure of solid (at melting point) | 96.4 mm Hg |
| enthalpy of vaporization (at boiling point) | $47.6 \mathrm{cal} \mathrm{g}^{-1}$ |
| enthalpy of fusion (at melting point) | 6.1 cal g |
| critical temperature | 126.0 K |
| critical pressure | 33.5 atm |

At 1 atm there is a transition from crystalline solid II to the more closely packed crystalline solid ( which is stable at lower temperatures) at 35.61 K . Plot specific points on the phase diagram of $\mathrm{N}_{2}$. Lahel the numerical coordinates of all such points along the axes. Calculate slopes of curves from available data.
Show all calculations on the next page.
Plot here

Temperature, $\mathrm{K} \rightarrow$
Label all lines, special points, and areas in the diagram.

Calculations here: (Plot $p$ versus $T$ on the previous page)
8. 10 min. For the reaction $2 \mathrm{NOBr}=2 \mathrm{NO}+\mathrm{Br}_{2}$, the equilibrium constant $K_{p}=$ 0.35 and $\Delta_{\mathrm{rxx}} \boldsymbol{H}^{\ominus}=15.7 \mathrm{kcal}$ at 300 K . Calculate the equilibrium constant for this reaction at 600 K . You may consider the heat capacities of the gases to be constant in the temperature range considered here. $C_{p} \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}=6.3$ for $\mathrm{NOBr}, 7.0$ for NO , and 8.6 for $\mathrm{Br}_{2}$.
9. 15 min . Consider the following systems. In each one calculate the pressure $p$ which must be applied in order that equilibrium be established between A and B at the given temperature.
rhombic sulfur monoclinic sulfur
$p$ atm $p$ atm $\Delta_{f} \boldsymbol{G}^{\ominus}=0$ $\Delta_{f} \boldsymbol{G}^{\ominus}=0.023 \mathrm{kcal} \mathrm{mol}^{-1}$ densities:
$1.5 \mathrm{~g} \mathrm{~cm}^{-3} \quad 1.2 \mathrm{~g} \mathrm{~cm}^{-3}$

|  |  |  |
| :--- | :--- | :--- |
| $\mathrm{H}_{2}$ | Pd <br> mem | $\mathrm{H}_{2}+\mathrm{N}_{2}$ |
| mixture is |  |  |
|  | bane <br> allows <br> only | $4 \mathrm{~N}_{2}: 1 \mathrm{H}_{2}$ <br> $\mathrm{H}_{2}$ <br> to <br> pass |
|  |  |  |


10. 10 min . A cylinder which is closed at both ends has within it a frictionless piston head. Both the piston and the walls of the cylinder are of insulating materials so that no heat can pass through them. Initially the left side of the cylinder contains one mole of gas at 10 atm while the right side contains one mole of gas at 0.2 atm , as illustrated in the accompanying diagram.


Both sides are initially at the same temperature, $25^{\circ} \mathrm{C}$, and the gas is ideal and monatomic. The catch holding the piston in place is released and the piston moves to its equilibrium position. Calculate the final temperature and pressure on each side and $\Delta \boldsymbol{U}, \Delta \boldsymbol{H}$, and $\Delta \boldsymbol{S}$ for the overall process.

## $\Delta U$ :

$T_{f}$ :
$p_{f}$ :
$\Delta H:$
$\Delta \mathbf{S}$ :
11. 5 min . Here are examples of two liquid solutions at $35^{\circ} \mathrm{C}$ :


From the graphical data above, provide the answers (to two significant digits and with units) to the following questions:
(a) What is the vapor pressure of pure liquid $\mathrm{CH}_{3} \mathrm{OH}$ ?
(b) What is the vapor pressure of pure liquid $\mathrm{CCl}_{4}$ ?
(c) What is the Henry's law constant for $\mathrm{CHCl}_{3}$ in acetone solution?
(d) What is the Henry's law constant for acetone in $\mathrm{CHCl}_{3}$ solution?
(e) What is the partial vapor pressure of $\mathrm{CH}_{3} \mathrm{OH}$ in a solution with $x_{\mathrm{CH} 3 \mathrm{OH}}=0.70$ ?
(f) What is the total vapor pressure of a solution of $\mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CCl}_{4}$ with $x_{\mathrm{CCl4}}=0.15$ ?
(g) What is the mole fraction of $\mathrm{CH}_{3} \mathrm{OH}$ in the vapor in equilibrium with a liquid solution of $\mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CCl}_{4}$ with $\mathrm{X}_{\mathrm{CCl} 4}=0.15$ ?
(h) What is $\left(\mu_{i}-\mu_{i}{ }^{\ominus}\right)$ for $i=\mathrm{CHCl}_{3}$ in a liquid solution of $\mathrm{X}_{\mathrm{CHCl} 3}=$ 0.60 in acetone at $35^{\circ} \mathrm{C}$ ?
(i) What is the activity coefficient for acetone in a liquid solution which is nearly zero molefraction of acetone in $\mathrm{CHCl}_{3}$ at $35^{\circ} \mathrm{C}$ ?
12. 15 min . The plot of $C_{p}$ vs. $\log _{10} T$ is shown below for solid benzene at 1 atm .


The area under the curve (shown above) up to 250 K is obtained graphically to be equal to 30 in the units shown. From 200 K to 250 K the molar heat capacity at constant pressure of solid benzene is given by the function: $4.0+0.08 T \mathrm{cal} \mathrm{mol}^{-1}$ $\mathrm{K}^{-1}$. For the process

$$
\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~s}, 200 \mathrm{~K}, 1 \mathrm{~atm}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~s}, 250 \mathrm{~K}, 1 \mathrm{~atm})
$$

determine $\Delta \boldsymbol{H}, \Delta \boldsymbol{S}, \Delta \boldsymbol{G}$.

## $\Delta \boldsymbol{H}$

$\Delta S$
13.5 min . Shown at the right are


Write the explicit (in terms of $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{CCl}_{4}$ ) equations which express the dotted curves for $\Delta_{\text {mix }} \boldsymbol{G}$ and $T \Delta_{\text {mix }} \mathbf{S}$.
$\Delta_{\text {mix }} \boldsymbol{G}=$
$T \Delta_{\text {mix }} \mathbf{S}=$
In two sentences explain the deviations of the experimental values (solid curves) from the dotted ones in this specific system.:

