Print in upper case the first three letters of your last name here:			
Your name:			
Chemistry 342			
First Exam			
September 24, 1999			
1 J = 1 kg m ² s ⁻² k_B = 1.38066×10 ⁻²³ J K ⁻¹ $R = N_{Avogadro}k_B$ $R = 8.31441$ J mol ⁻¹ K ⁻¹ = 1.98718 cal mol ⁻¹ K ⁻¹ = 0.082057 L atm mol ⁻¹ K ⁻¹ p/p_0 = exp[- (M/RT)gz] barometric formula where $g = 9.80665$ m s ⁻² monatomic gas molar heat capacity: $C_V = (3/2)R$ General relations for any equation of state: $(\partial U/\partial V)_T = T(\partial p/\partial T)_V - p$ $(\partial H/\partial p)_T = -T(\partial V/\partial T)_p + V$ $C_p - C_V = \{ p + (\partial U/\partial V)_T \} (\partial V/\partial T)_p$			
1. A monatomic gas obeys the equation of state $pV = nRT + nap$			

1. A monatomic gas obeys the equation of state pV = nRI + napwhere $a = 0.02 \text{ L mol}^{-1}$, such that $(\partial U/\partial V)_T = 0$ for the gas. This gas is taken from state $\mathcal{A}(10. \text{ L}, 1 \text{ atm}, \text{ T} = 304.7 \text{ K})$ to state $\mathcal{B}(? \text{ L}, 20 \text{ atm}, \text{ T} = 304.7 \text{ K})$ by several possible paths.

Path I: A compression along the isotherm connecting initial and final states.

Path II: A constant volume process which takes the gas from the initial pressure to the final pressure, followed by a constant pressure (20 atm) process which takes the gas to the final state.

Path III: A constant pressure (1 atm) process which takes the gas from the initial volume to the final volume, followed by a constant volume process which takes the gas to the final state.

Consider each $A \rightarrow B$ path and calculate ΔU and ΔH in joules for each path.

For each path, calculate q and W where possible (if not, say why not). First, draw these three paths on the pV diagram of the gas:

Path I	Path II	Path III
W	W	W
-		

q	q	q
$\Delta oldsymbol{U}$	ΔU	Δ U
△H	ΔH	Δ H

2. The biochemical reactions necessary to sustain life in a person produce about 6000 kJ day ⁻¹ of heat at constant pressure. This is the basal metabolic rate. Consider one of the large number of reactions that may occur:					
	$e(aq.) \rightarrow urea(aq.) + 3CO_2(g, 1 atm) + 3H_2O(l)$				
Suppose that you have obtained from the data section of your textbook, the following standard enthalpies of transformation at 298 K in kJ mol ⁻¹ :					
$\Delta \boldsymbol{H}^{\Theta}$ of oxidation of 1 mol so	$\Delta \mathbf{H}^{\Theta}$ of oxidation of 1 mol solid glycine to CO_2 , ammonia, and liquid water = \mathbf{a}				
$\Delta \boldsymbol{H}^{\Theta}$ of hydrolysis of 1 mol so	olid urea to CO_2 and ammonia = b				
$\Delta \mathbf{H}^{\Theta}$ of dissolution of solid gl	yeine = c				
$\Delta \boldsymbol{H}^{\Theta}$ of dissolution of solid un	rea = d				
In case you have forgotten:	glycine NH ₂ CH ₂ COOH urea H ₂ NCONH ₂ (aq.) means very dilute aqueous solutions				
Suppose <i>n</i> moles of urea are produced via this reaction per day, how many kJ day ⁻¹ is the contribution of this reaction to the metabolic rate?					

3. If two gases A and B of molecular weight x and y (g mol⁻¹) respectively are found at equal abundance in the atmosphere at sea level, at what height should we expect to find gas A to be three times as abundant as gas B? You may assume that the atmosphere is isothermal at 298 K.

4. If a compound is burned under adiabatic conditions so that all the heat evolved is used in heating the product gases, the maximum temperature reached is called the adiabatic flame temperature. **Calculate this temperature** for the burning of acetylene (ethyne) in oxygen sufficient for complete combustion to CO_2 and $H_2O(g)$. **Predict**: Do you expect the flame temperature of an oxyacetylene torch to be higher or lower when excess oxygen is used?

For ease of calculations, assume independent of temperature the following data:

	C_p J mol ⁻¹ K ⁻¹	$C_V \text{ J mol}^{-1} \text{ K}^{-1}$
$H_2(g)$	28.824	20.5
$O_2(g)$	29.355	21.0
$H_2O(g)$	33.58	25.3
$H_2O(1)$	75.291	75.2
$\mathrm{CO}_2(\mathrm{g})$	37.11	28.8
HCCH(g)	43.93	35.0

Also, you may use the following values at 298 K

$\Delta_f \mathbf{H}^{\ominus}$ for the formation of	$\Delta_f \mathbf{H}^{\Theta}$ kJ mol ⁻¹
$H_2O(g)$	-241.82
$H_2O(1)$	-285.83
$CO_2(g)$	-393.51
HCCH(g)	+226.73

and at 373 K

$\Delta_{vap} \mathbf{H}^{\Theta}$ for H_2O kJ mol ⁻¹
40.656

Ten moles of nitrogen at 300 K are held by a piston under 40 atm pressure. The pressure is <u>suddenly</u> released to 10 atm and then the gas expands adiabatically. If C_V for N_2 is assumed to be constant and equal to 20.8 J mol ⁻¹ K ⁻¹ , calculate the final temperature of the gas. Assume the gas is ideal. Calculate ΔU and ΔH for the change in the gas.		
ΔU	$\Delta {m H}$	