| Print in upper case the first three letters of your last name here: | | | | |--|--|--|--| | Your name: | | | | | Chemistry 342 | | | | | First Exam | | | | | September 24, 1999 | | | | | 1 J = 1 kg m ² s ⁻² k_B = 1.38066×10 ⁻²³ J K ⁻¹ $R = N_{Avogadro}k_B$
$R = 8.31441$ J mol ⁻¹ K ⁻¹ = 1.98718 cal mol ⁻¹ K ⁻¹ = 0.082057 L atm mol ⁻¹ K ⁻¹ p/p_0 = exp[- (M/RT)gz] barometric formula where $g = 9.80665$ m s ⁻² monatomic gas molar heat capacity: $C_V = (3/2)R$
General relations for any equation of state: $(\partial U/\partial V)_T = T(\partial p/\partial T)_V - p$ $(\partial H/\partial p)_T = -T(\partial V/\partial T)_p + V$
$C_p - C_V = \{ p + (\partial U/\partial V)_T \} (\partial V/\partial T)_p$ | | | | | 1. A monatomic gas obeys the equation of state $pV = nRT + nap$ | | | | 1. A monatomic gas obeys the equation of state pV = nRI + napwhere $a = 0.02 \text{ L mol}^{-1}$, such that $(\partial U/\partial V)_T = 0$ for the gas. This gas is taken from state $\mathcal{A}(10. \text{ L}, 1 \text{ atm}, \text{ T} = 304.7 \text{ K})$ to state $\mathcal{B}(? \text{ L}, 20 \text{ atm}, \text{ T} = 304.7 \text{ K})$ by several possible paths. Path I: A compression along the isotherm connecting initial and final states. Path II: A constant volume process which takes the gas from the initial pressure to the final pressure, followed by a constant pressure (20 atm) process which takes the gas to the final state. Path III: A constant pressure (1 atm) process which takes the gas from the initial volume to the final volume, followed by a constant volume process which takes the gas to the final state. Consider each $A \rightarrow B$ path and calculate ΔU and ΔH in joules for each path. For each path, calculate q and W where possible (if not, say why not). First, draw these three paths on the pV diagram of the gas: | Path I | Path II | Path III | |-----------------------|------------|---| | W | W | W | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | *************************************** | | | | | | | | | | q | q | q | $\Delta oldsymbol{U}$ | ΔU | Δ U | | | | | | | | | | | | | | | | | | △H | ΔH | Δ H | 2. The biochemical reactions necessary to sustain life in a person produce about 6000 kJ day ⁻¹ of heat at constant pressure. This is the basal metabolic rate. Consider one of the large number of reactions that may occur: | | | | | | |--|---|--|--|--|--| | | $e(aq.) \rightarrow urea(aq.) + 3CO_2(g, 1 atm) + 3H_2O(l)$ | | | | | | Suppose that you have obtained from the data section of your textbook, the following standard enthalpies of transformation at 298 K in kJ mol ⁻¹ : | | | | | | | $\Delta \boldsymbol{H}^{\Theta}$ of oxidation of 1 mol so | $\Delta \mathbf{H}^{\Theta}$ of oxidation of 1 mol solid glycine to CO_2 , ammonia, and liquid water = \mathbf{a} | | | | | | $\Delta \boldsymbol{H}^{\Theta}$ of hydrolysis of 1 mol so | olid urea to CO_2 and ammonia = b | | | | | | $\Delta \mathbf{H}^{\Theta}$ of dissolution of solid gl | yeine = c | | | | | | $\Delta \boldsymbol{H}^{\Theta}$ of dissolution of solid un | rea = d | | | | | | In case you have forgotten: | glycine NH ₂ CH ₂ COOH urea H ₂ NCONH ₂ (aq.) means very dilute aqueous solutions | | | | | | Suppose <i>n</i> moles of urea are produced via this reaction per day, how many kJ day ⁻¹ is the contribution of this reaction to the metabolic rate? | 3. If two gases A and B of molecular weight x and y (g mol⁻¹) respectively are found at equal abundance in the atmosphere at sea level, at what height should we expect to find gas A to be three times as abundant as gas B? You may assume that the atmosphere is isothermal at 298 K. 4. If a compound is burned under adiabatic conditions so that all the heat evolved is used in heating the product gases, the maximum temperature reached is called the adiabatic flame temperature. **Calculate this temperature** for the burning of acetylene (ethyne) in oxygen sufficient for complete combustion to CO_2 and $H_2O(g)$. **Predict**: Do you expect the flame temperature of an oxyacetylene torch to be higher or lower when excess oxygen is used? For ease of calculations, assume independent of temperature the following data: | | C_p J mol ⁻¹ K ⁻¹ | $C_V \text{ J mol}^{-1} \text{ K}^{-1}$ | |-----------------------------|---|---| | $H_2(g)$ | 28.824 | 20.5 | | $O_2(g)$ | 29.355 | 21.0 | | $H_2O(g)$ | 33.58 | 25.3 | | $H_2O(1)$ | 75.291 | 75.2 | | $\mathrm{CO}_2(\mathrm{g})$ | 37.11 | 28.8 | | HCCH(g) | 43.93 | 35.0 | Also, you may use the following values at 298 K | $\Delta_f \mathbf{H}^{\ominus}$ for the formation of | $\Delta_f \mathbf{H}^{\Theta}$ kJ mol ⁻¹ | |--|---| | $H_2O(g)$ | -241.82 | | $H_2O(1)$ | -285.83 | | $CO_2(g)$ | -393.51 | | HCCH(g) | +226.73 | and at 373 K | $\Delta_{vap} \mathbf{H}^{\Theta}$ for H_2O kJ mol ⁻¹ | |--| | 40.656 | | Ten moles of nitrogen at 300 K are held by a piston under 40 atm pressure. The pressure is <u>suddenly</u> released to 10 atm and then the gas expands adiabatically. If C_V for N_2 is assumed to be constant and equal to 20.8 J mol ⁻¹ K ⁻¹ , calculate the final temperature of the gas. Assume the gas is ideal. Calculate ΔU and ΔH for the change in the gas. | | | |--|----------------|--| | | | | | | | | | ΔU | $\Delta {m H}$ | | | | | | | | | |