| Print in upper case the first three letters of your last name here: | |--| | Your name: | | Chemistry 342 | | Second Exam | | October 22, 1999 | | 1 J = 1 kg m ² s ⁻² k_B = 1.38066×10 ⁻²³ J K ⁻¹ $R = N_{Avogadro}k_B$ 1.01325 bar = 1 atm $R = 8.31441$ J mol ⁻¹ K ⁻¹ = 1.98718 cal mol ⁻¹ K ⁻¹ = 0.082057 L atm mol ⁻¹ K ⁻¹ p/p_0 = exp[- $(M/RT)gz$] barometric formula where $g = 9.80665$ m s ⁻² van der Waals equation : $(p + a/V_m^2)(V_m - b) = RT$ monatomic gas molar heat capacity: $C_V = (3/2)R$ General relations for any equation of state: $(\partial U/\partial V)_T = T(\partial p/\partial T)_V - p$ $(\partial H/\partial p)_T = -T(\partial V/\partial T)_p + V$ $C_p - C_V = \{p + (\partial U/\partial V)_T\} \cdot (\partial V/\partial T)_p$ | - 1. For each of the following processes, state which of the quantities ΔU , ΔH , ΔS , ΔA , ΔG , q, W are equal to zero for the system specified. - (a) A non-ideal gas is taken around a Carnot cycle. - (b) A <u>non-ideal gas</u> is adiabatically expanded through a throttling valve (as in the Joule-Thomson experiment). - (c) An ideal gas is adiabatically expanded through a throttling valve, (as in the Joule-Thomson experiment). - (d) Liquid water is vaporized at 100°C and 1 atm. - (e) H_2 and O_2 react to form H_2O in a thermally isolated bomb. - (f) HCl and NaOH react to form H_2O and NaCl in an aqueous solution at constant T and p. Enter the zeros into the table and provide a brief explanation | mator | ΔU ΔH ΔS ΔA ΔG q W Explain why zero | | | | Explain why zero | | | | |-------|---|------------|-----------|----|------------------|---|----|--------------------| | | ΔU | ΔH | <u>∆3</u> | ΔA | ΔG | q | VV | Explain willy Zelo | | (a) | | | | | | | | | | (b) | | <u> </u> | | | | | | | | (c) | | | | | | | | | | (d) | | | | | | | | | | (e) | | | | | | | | | | (f) | | | | | | | | | **2.** One mole of an ideal gas is expanded from (T, p_1, V_1) to (T, p_2, V_2) in two stages: | | opposing pressure | volume change | |-------------------|---------------------------|----------------------| | First stage (I) | P' (constant) | V_1 to V' | | Second stage (II) | p ₂ (constant) | V' to V ₂ | We specify that the point (P',V') lies on the isotherm at the temperature T. **Draw** the pV diagram and indicate the three points on the isotherm and the work. (a) **Formulate the expression for the work** produced in this expansion in terms of T, p_1 , p_2 , and P' only. Derive the relations below and place the final expressions into the table. | | W | |--------------|---| | First stage | | | Second stage | | | Overall | | | of P' does the work
and what is the maxi i | | | |---|--|--| | | | | | | | | | | | | | | | | | value of (∂ S /∂V) ₇ fo
w, and the propertie | (b) Derive an expression for the change in entropy for the isothermal expansion of | |--| | one mole of the van der Waals gas from V_1 to V_2 . | 4. Naphthalene $(C_{10}H_8)$ melts at 80°C at 1 atm pressure. Its enthalpy of fusion is | | 19.29 kJ mol ⁻¹ at 80°C, and 19.20 kJ mol ⁻¹ at 70°C. The heat capacity of the liquid | | is 223.1 J K ⁻¹ mol ⁻¹ , and that of the solid is 214 J K ⁻¹ mol ⁻¹ . Calculate the | | entropy change of the naphthalene and of the surroundings when 1 mol of liquid naphthalene supercooled to 70°C freezes to solid at 70°C. Is this a spontaneous | | event? | | CVCIII: | | | | | | | | | | | | | | continue on next page | | 5. (a) The vapor pressure of water at 298 K is 0.0313 atm. Assume the vapor behaves ideally. Calculate $\Delta \mathbf{G}^{\ominus}_{T=298K}$ in kcal mol ⁻¹ for the change $H_2O(g) \rightarrow H_2O(l)$. | |---| | | | | | | | | | | | | | | | (b) Suppose that the energy per mole of a van der Waals fluid has the form $U = F(T) - a/V_m$. At a given temperature, find the difference between the energy of water as a gas and the energy of liquid water, assuming that $V_{m, gas} = 24 \text{ L mol}^{-1}$ and $V_{m, liq} = 18 \text{ cm}^3 \text{ mol}^{-1}$. Assume that water behaves as a van der Waals fluid with $a = 5.72 \text{ L}^2$ atm mol ⁻² . | | | | | | | **6.** The heat capacity of sulfur dioxide at a constant pressure of 1 atm at different temperatures is shown below. At 15 K the heat capacity at constant pressure of $SO_2(s)$ is 0.90 cal mol^{-1} K⁻¹. Solid SO_2 melts at 197.64 K, $\Delta_{fus} \textbf{\textit{H}}$ is 1769 cal mol^{-1} . At 1 atm, liquid SO₂ vaporizes at 263.08 K and the $\Delta_{\text{vap}} H$ is 5960 cal mol⁻¹. The heat capacity of SO₂ gas between 300 K and 1500 K is $\{6.15 + 13.8 \times 10^{-3} \ 7 - 91.0 \times 10^{-7} \ T^2 + 2.06 \times 10^{-9} \ T^3 \}$ cal mol⁻¹K⁻¹. ## Calculate the molar entropy value for SO_2 gas at 298.1 K. Heat capacity in cal K⁻¹ mol⁻¹ of sulfur dioxide at a constant pressure of 1 atm at different temperatures.