Print in upper case the first three letters of your last name here:
Your name:
Chemistry 342
Second Exam
October 22, 1999
1 J = 1 kg m ² s ⁻² k_B = 1.38066×10 ⁻²³ J K ⁻¹ $R = N_{Avogadro}k_B$ 1.01325 bar = 1 atm $R = 8.31441$ J mol ⁻¹ K ⁻¹ = 1.98718 cal mol ⁻¹ K ⁻¹ = 0.082057 L atm mol ⁻¹ K ⁻¹ p/p_0 = exp[- $(M/RT)gz$] barometric formula where $g = 9.80665$ m s ⁻² van der Waals equation : $(p + a/V_m^2)(V_m - b) = RT$ monatomic gas molar heat capacity: $C_V = (3/2)R$ General relations for any equation of state: $(\partial U/\partial V)_T = T(\partial p/\partial T)_V - p$ $(\partial H/\partial p)_T = -T(\partial V/\partial T)_p + V$ $C_p - C_V = \{p + (\partial U/\partial V)_T\} \cdot (\partial V/\partial T)_p$

- 1. For each of the following processes, state which of the quantities ΔU , ΔH , ΔS , ΔA , ΔG , q, W are equal to zero for the system specified.
- (a) A non-ideal gas is taken around a Carnot cycle.
- (b) A <u>non-ideal gas</u> is adiabatically expanded through a throttling valve (as in the Joule-Thomson experiment).
- (c) An ideal gas is adiabatically expanded through a throttling valve, (as in the Joule-Thomson experiment).
- (d) Liquid water is vaporized at 100°C and 1 atm.
- (e) H_2 and O_2 react to form H_2O in a thermally isolated bomb.
- (f) HCl and NaOH react to form H_2O and NaCl in an aqueous solution at constant T and p.

Enter the zeros into the table and provide a brief explanation

mator	ΔU ΔH ΔS ΔA ΔG q W Explain why zero				Explain why zero			
	ΔU	ΔH	<u>∆3</u>	ΔA	ΔG	q	VV	Explain willy Zelo
(a)								
(b)		<u> </u>						
(c)								
(d)								
(e)								
(f)								

2. One mole of an ideal gas is expanded from (T, p_1, V_1) to (T, p_2, V_2) in two stages:

	opposing pressure	volume change
First stage (I)	P' (constant)	V_1 to V'
Second stage (II)	p ₂ (constant)	V' to V ₂

We specify that the point (P',V') lies on the isotherm at the temperature T.

Draw the pV diagram and indicate the three points on the isotherm and the work.

(a) **Formulate the expression for the work** produced in this expansion in terms of T, p_1 , p_2 , and P' only. Derive the relations below and place the final expressions into the table.

	W
First stage	
Second stage	
Overall	

of P' does the work and what is the maxi i		
value of (∂ S /∂V) ₇ fo w, and the propertie		

(b) Derive an expression for the change in entropy for the isothermal expansion of
one mole of the van der Waals gas from V_1 to V_2 .
4. Naphthalene $(C_{10}H_8)$ melts at 80°C at 1 atm pressure. Its enthalpy of fusion is
19.29 kJ mol ⁻¹ at 80°C, and 19.20 kJ mol ⁻¹ at 70°C. The heat capacity of the liquid
is 223.1 J K ⁻¹ mol ⁻¹ , and that of the solid is 214 J K ⁻¹ mol ⁻¹ . Calculate the
entropy change of the naphthalene and of the surroundings when 1 mol of liquid naphthalene supercooled to 70°C freezes to solid at 70°C. Is this a spontaneous
event?
CVCIII:
continue on next page

5. (a) The vapor pressure of water at 298 K is 0.0313 atm. Assume the vapor behaves ideally. Calculate $\Delta \mathbf{G}^{\ominus}_{T=298K}$ in kcal mol ⁻¹ for the change $H_2O(g) \rightarrow H_2O(l)$.
(b) Suppose that the energy per mole of a van der Waals fluid has the form $U = F(T) - a/V_m$. At a given temperature, find the difference between the energy of water as a gas and the energy of liquid water, assuming that $V_{m, gas} = 24 \text{ L mol}^{-1}$ and $V_{m, liq} = 18 \text{ cm}^3 \text{ mol}^{-1}$. Assume that water behaves as a van der Waals fluid with $a = 5.72 \text{ L}^2$ atm mol ⁻² .

6. The heat capacity of sulfur dioxide at a constant pressure of 1 atm at different temperatures is shown below.

At 15 K the heat capacity at constant pressure of $SO_2(s)$ is 0.90 cal mol^{-1} K⁻¹. Solid SO_2 melts at 197.64 K, $\Delta_{fus} \textbf{\textit{H}}$ is 1769 cal mol^{-1} .

At 1 atm, liquid SO₂ vaporizes at 263.08 K and the $\Delta_{\text{vap}} H$ is 5960 cal mol⁻¹. The heat capacity of SO₂ gas between 300 K and 1500 K

is $\{6.15 + 13.8 \times 10^{-3} \ 7 - 91.0 \times 10^{-7} \ T^2 + 2.06 \times 10^{-9} \ T^3 \}$ cal mol⁻¹K⁻¹.

Calculate the molar entropy value for SO_2 gas at 298.1 K.

Heat capacity in cal K⁻¹ mol⁻¹ of sulfur dioxide at a constant pressure of 1 atm at different temperatures.

