Chemistry 342

First Exam ANSWERS

February 4, 2005

2:00 PM in C6 Lecture Center

Write all work you want graded in the spaces provided. Both the logical solution to the problem and the answer to the question are required. Final numerical values receive only small additional credit. What is required is an answer in terms of the original numerical data, including all numerical values and units of conversion factors. Use no intermediate calculated numbers, except where such numbers arise from answers to previous parts. The solution has to be worked out in the form of complete equations, with justification or basis for the use in the specific problem.
Example:

Solutions	
Step 1	$\mathrm{d} w=-p_{o p} \mathrm{~d} V$ definition $\mathrm{d} \boldsymbol{U}=C_{V} \mathrm{~d} T+(\partial \boldsymbol{U} / \partial V)_{T} \mathrm{~d} V$ Apply $\mathrm{dV}=0$ (constant volume) $\begin{aligned} & \therefore w=0 \\ & \therefore \mathrm{~d} U=C_{\mathrm{V}} \mathrm{~d} T \end{aligned}$ Apply $C_{V}=(3 / 2) R$ (given) integrate to $\Delta \boldsymbol{U}=\int C_{V} \mathrm{~d} T=(3 / 2) \mathrm{R}\left[T f-T_{i}\right]$ $\Delta \boldsymbol{U}=q+w$ First Law Rearrange and apply $w=0$ $q=\Delta \boldsymbol{U}-0$
Step 2	$\mathrm{d} \boldsymbol{U}=C_{V} \mathrm{~d} T+(\partial \boldsymbol{U} / \partial V)_{T} \mathrm{~d} V$ Apply $\mathrm{d} T=0$ (constant temperature) Apply $(\partial \mathbf{U} / \partial V)_{T}=0$ (ideal gas) $\therefore \Delta \boldsymbol{U}=0+0$ $\mathrm{d} w=-p_{o p} \mathrm{~d} V$ definition Apply $p_{o p}=p_{\text {gas }}$ (reversible process) $p_{\text {gas }}=\mathrm{nRT} / V$ (ideal gas) $\therefore w=-\int p_{\text {gas }} \mathrm{d} V=-\int \mathrm{nR} T / V \mathrm{~d} V=-\mathrm{nR} 7 \mathrm{n}(V f / V i)$ $\Delta \boldsymbol{U}=q+w$ First Law Rearrange and apply $\Delta \boldsymbol{U}=0$ and $w=-\mathrm{nR} \ln (V f /$ Vi) from above, $\therefore q=+\mathrm{nR} 7 \mathrm{n}(V f / V i)$

Answers	Work, joules	Heat, joules
Step 1	0 J	$(3 / 2)(8.3144)(273-172) \mathrm{J}$
Step 2	$-8.3144(273) \ln (1 / 2) \mathrm{J}$	$8.3144(273) \ln (1 / 2) \mathrm{J}$

POSSIBLY USEFUL INFO: $\quad 1 \mathrm{~J}=1 \mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-2} \quad\left(p+\mathrm{n}^{2} \mathrm{a} / V^{2}\right)(V-\mathrm{nb})=\mathrm{nR} T$
$\mathrm{R}=8.31441 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=1.98718 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}=0.082057 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}{ }^{-1} \mathrm{~K}^{-1} 1 \mathrm{~atm}=101325 \mathrm{~Pa}$ $(\partial \boldsymbol{U} / \partial V)_{T}=T(\partial p / \partial T)_{V}-p \quad(\partial \boldsymbol{H} / \partial p)_{T}=-T(\partial V / \partial T)_{p}+V \quad \mu_{\mathrm{JT}} \equiv(\partial T / \partial p)_{H} \quad(\partial \boldsymbol{H} / \partial p)_{T}=-C_{p} \mu_{\mathrm{JT}}$ $C_{p}-C_{V}=\left\{p+(\partial U / \partial V)_{T}\right\}(\partial V / \partial T)_{p}$
special case : $\left.\left[T_{f} / T_{i}\right]^{C V / R}\right\}=\left[V_{i} / V_{f}\right]$ only for ideal gas undergoing reversible adiabatic process

1. Two moles of a van der Waals gas undergoes isothermal expansion from $1 \mathrm{~atm}, 200 \mathrm{~K}$ to ten times its initial volume against a constant pressure of 0.1 atm . The parameters for this gas are:
$\mathrm{a}=1.4 \mathrm{~L}^{2} \mathrm{~atm} \mathrm{~mol}{ }^{-2}, \mathrm{~b}=0.39 \mathrm{~L} \mathrm{~mol}^{-1}$,
$\mathrm{C}_{\mathrm{V}}=(5 / 2) \mathrm{R}-0.370 \times 10^{-3} \mathrm{~T}+25.46 \times 10^{-7} \mathrm{~T}^{2} \mathrm{cal} \mathrm{mol}{ }^{-1} \mathrm{~K}^{-1}$.

Space for a sketch (if desired)

$p_{o p}=0.1 \mathrm{~atm}$	isothermal	$p_{\text {op }}=0.1 \mathrm{~atm} \downarrow$
		$\begin{aligned} & 2 \mathrm{~mol} 200 \mathrm{~K} \\ & p f=? \\ & V f=10 \bullet \mathrm{Vi} \end{aligned}$
$\begin{aligned} & 2 \mathrm{~mol} 200 \mathrm{~K} \\ & 1 \mathrm{~atm}, \mathrm{Vi} \\ & \hline \end{aligned}$		

Solutions	
initial volume	$\left(p_{i}+\mathrm{n}^{2} \mathrm{a} / V_{i}{ }^{2}\right)\left(V_{i}-\mathrm{nb}\right)=\mathrm{nR} T_{i}$ Apply $p_{i}=1 \mathrm{~atm}, T_{i}=200 \mathrm{~K}, \mathrm{a}=1.4 \mathrm{~L}^{2} \mathrm{~atm} \mathrm{~mol}{ }^{-2}$, $\mathrm{b}=0.39 \mathrm{~L} \mathrm{~mol}{ }^{-1}$ $\left(1_{i}+2^{2} \times 1.4 \mathrm{a} / V_{i}{ }^{2}\right)\left(V_{i}-2 \times 0.39\right)=2 \times 0.08205 \times 200$ Solve for V_{i}
final pressure	$p=n R T /(V-n b)-n^{2} \mathrm{a} / V^{2}$ Apply $T_{f}=T_{i}=200 \mathrm{~K}$ Apply $V_{f}=10 V_{i}$ $p_{f}=2 \times 0.08205 \times 200 \times\left(10 V_{i}-2 \times 0.39\right)^{-1}-2^{2} \times 1.4\left[10 V_{i}\right]^{-2}$ Apply V_{i}
w	$\mathrm{d} w=-p_{o p} \mathrm{~d} V$ $w=-p_{o p} \int \mathrm{~d} V=-0.1\left[V_{f}-V_{i}\right]$ Apply $V_{f}=10 V_{i}$ $w=-0.1[10-1] V_{i}$ Apply V_{i}
q	$\Delta \boldsymbol{U}=q+w$ First Law $R e a r r a n g e$ to $q=\Delta \boldsymbol{U}-w$ Apply $\Delta \boldsymbol{U}$ and w from previous calculations

$\Delta \boldsymbol{U}$	$\begin{aligned} & \hline \mathrm{d} \boldsymbol{U}=C_{V} \mathrm{~d} T+(\partial \boldsymbol{U} / \partial V)_{T} \mathrm{~d} V \\ & (\partial \mathrm{U} / \partial \mathrm{V})_{\mathrm{T}}=\mathrm{T}(\partial \mathrm{p} / \partial \mathrm{T})_{\mathrm{V}}-\mathrm{p} \text { given general eqn } \\ & \text { Rearrange eqn of state to get } \mathrm{p}=\mathrm{nRT} /(\mathrm{V}-\mathrm{nb})-\mathrm{n}^{2} \mathrm{a} / \mathrm{V}^{2} \\ & (\partial \mathrm{p} / \partial \mathrm{T})_{\mathrm{V}}=\mathrm{nR} /(\mathrm{V}-\mathrm{nb}) \\ & (\partial \mathrm{U} / \partial \mathrm{V})_{\mathrm{T}}=\mathrm{nR} R /(\mathrm{V}-\mathrm{nb})-\left\{\mathrm{nRT} /(\mathrm{V}-\mathrm{nb})-\mathrm{n}^{2} \mathrm{a} / \mathrm{V}^{2}\right\}=\mathrm{n}^{2} \mathrm{a} / \mathrm{V}^{2} \\ & \therefore \mathrm{~d} \boldsymbol{U}=C_{\mathrm{V}} \mathrm{~d} T+\left[\mathrm{n}^{2} \mathrm{a} / \mathrm{V}^{2}\right] \mathrm{d} V \\ & \text { Apply } \mathrm{d} T=0 \quad \text { isothermal } \\ & \text { integrate } \Delta \boldsymbol{U}=0+\mathrm{n}^{2} \mathrm{a} \int V^{2} \mathrm{~d} V \\ & \text { to } \Delta \boldsymbol{U}=2^{2} \times 1.4 \mathrm{x}(-2)\left[V_{f}^{-1}-V_{\mathrm{i}}^{-1}\right] \\ & \text { Apply } V_{f}=10 V_{i} \\ & \Delta \boldsymbol{U}=2^{2} \times 1.4 \mathrm{x}(-2)\left[10^{-1}-1\right] V_{\mathrm{i}}^{-1} \\ & \text { Apply } V_{i} \end{aligned}$
$\Delta \boldsymbol{H}$	$\boldsymbol{H} \equiv \boldsymbol{U}+p V$ definition apply definition of state function $\Delta \boldsymbol{H}=\Delta \boldsymbol{U}+p_{f} V_{f}-p_{i} V_{i}$ Apply $\Delta \boldsymbol{U}=2^{2} \times 1.4 \times(-2)\left[10^{-1}-1\right] V_{i}{ }^{-1}$ and $p_{i}=1 \mathrm{~atm}, V_{f}=10 V_{i}$ $\Delta \boldsymbol{H}=2^{2} \times 1.4 \times(-2)\left[10^{-1}-1\right] V_{i}^{-1}+p_{f} 10 V_{i}-1 \times V_{i}$ Apply p_{f} and V_{i} from previous calculations

	Answers	Final number	Units
initial volume	$\begin{array}{r} \left(1_{i}+2^{2} \times 1.4 \mathrm{a} / V_{i}{ }^{2}\right)\left(V_{i}-2 \times 0.39\right)= \\ 2 \times 0.08205 \times 200 \end{array}$ Use ideal gas law to find $V_{\text {ideal }}$ to see which correction is large enough to matter. $V_{\text {ideal }}=32.823$, which leads to $2^{2} \times 1.4 / V_{i}^{2} \approx .005$. Can use this. Thus, need only to leave $V_{i}-2 \times 0.39$ term in the eqn. to be solved.	$V_{i}=33.5 \mathrm{~L}$	L
final pressure	$\begin{aligned} & p_{f}=2 \times 0.08205 \times 200 \times\left(10 V_{i}-2 \times 0.39\right)^{-1} \\ & \text { Substitute } V_{i} \end{aligned}$	$p_{f}=0.0982$	atm
w	$w=-0.1[10-1] V_{i} \times 8.3144 / 0.08205$ Substitute V_{i}	- 3055	J
q	$q=\Delta \boldsymbol{U}-w \quad$ do this after $\Delta \boldsymbol{U}$	+3085	J
$\Delta \boldsymbol{U}$		+30.5	J
$\Delta \boldsymbol{H}$	$\begin{aligned} \Delta \boldsymbol{H}=\left\{2^{2}\right. & \times 1.4 \times(-2)\left[10^{-1}-1\right] V_{i}{ }^{-1} \\ & \left.+p_{f} 10 V_{i}-1 \times V_{i}\right\} \times 8.3144 / 0.08205 \end{aligned}$	$\begin{aligned} & +30.5-61.1 \\ & =-30.6 \end{aligned}$	J

2. The compressibility factor for a gas at $20^{\circ} \mathrm{C}$ is described by this equation for pressures up to 10 atm :
$\mathrm{Z}=1-2.024 \times 10^{-2} p$. The following properties of this gas are also known:
$C_{V}=2.97+10.5 \times 10^{-3} \mathrm{~T}_{\mathrm{cal} \mathrm{K}}{ }^{-1} \mathrm{~mol}^{-1}$
$C_{p}=5.65+11.44 \times 10^{-3} \mathrm{~T}^{2}$ cal K $^{-1} \mathrm{~mol}^{-1}$
$(\partial \mathrm{U} / \partial \mathrm{V})_{\mathrm{T}}=2 \times 10^{-3} \mathrm{cal} \mathrm{L}^{-1}$
Two moles of a gas is compressed adiabatically in a single stage with a constant opposing pressure equal to 10 atm . Initially the gas is at $20^{\circ} \mathrm{C}$ and 1 atm pressure. The final pressure is 10 atm . Find the initial volume, final volume in liters, final temperature, $\boldsymbol{w}, \boldsymbol{q}, \Delta \boldsymbol{U}, \Delta \boldsymbol{H}$ in J

Space for a sketch (if desired)

$\begin{aligned} p_{o p}=10 \mathrm{~atm} \\ \downarrow \end{aligned}$	$\overrightarrow{\text { adiabatic }}$	
$\begin{aligned} & 2 \mathrm{~mol} \\ & 293 \mathrm{~K} \\ & 1 \mathrm{~atm}, \mathrm{Vi} \end{aligned}$		$\begin{gathered} p_{o p}=10 \mathrm{~atm} \\ \downarrow \end{gathered}$
		$\begin{aligned} & 2 \mathrm{~mol} \\ & T f=? \quad V f=? \\ & p f=10 \mathrm{~atm} \end{aligned}$

Solutions	
initial volume	$(p V / \mathrm{nR} T)=1-2.024 \times 10^{-2} p, \quad$ given, definition of Z Rearrange to $V=\mathrm{nR} T\left[\mathrm{p}^{-1}-2.024 \times 10^{-2}\right]$ $V_{i}=\mathrm{nR} T_{i}\left[\mathrm{p}_{i}{ }^{-1}-2.024 \times 10^{-2}\right]$ Apply $p_{i}=1 \mathrm{~atm}, T_{i}=293 \mathrm{~K}, \mathrm{n}=2 \mathrm{~mol}$ $V_{i}=2 \times 0.08205 \times 293\left[1^{-1}-2.024 \times 10^{-2}\right]=2 \times 0.08205 \times 293 \times 0.980=47.12 \mathrm{~L}$
final volume	$\begin{aligned} & V_{f}=n R T_{f}\left[\mathrm{p}_{f}{ }^{-1}-2.024 \times 10^{-2}\right] \\ & \text { Apply } p_{f}=10 \mathrm{~atm}, \mathrm{n}=2 \mathrm{~mol} \\ & V_{f}=2 \times 0.08205 \times T_{f}\left[10^{-1}-2.024 \times 10^{-2}\right] \\ & \text { Requires another eqn in } T_{f} \text { and } V_{f} \quad \text { [for which, see eqn (1) below] } \\ & \hline \end{aligned}$
final temperature	

w	$\begin{aligned} & \mathrm{d} w=-p_{o p} \mathrm{~d} V \\ & \text { Apply } p_{o p}=10 \mathrm{~atm} \\ & \mathrm{~d} w=-10 \mathrm{~d} V \\ & w=-10\left[V_{\mathrm{f}}-V_{\mathrm{i}}\right] \times 8.3144 / 0.08205 \\ & \text { Apply } V_{i}=47.12 \mathrm{~L} \text { and } V_{f} \text { from above. } \\ & w=-10\left[V_{\mathrm{f}}-47.12\right] \times 8.3144 / 0.08205 \\ & \hline \end{aligned}$
q	$q=0$ definition of adiabatic
$\Delta \boldsymbol{U}$	$\Delta \boldsymbol{U}=q+w$ First Law Apply $q=0$ and w $\Delta \boldsymbol{U}=0 \quad-10\left[V_{\mathrm{f}}-47.12\right] \times 8.3144 / 0.08205$
$\Delta \boldsymbol{H}$	$\boldsymbol{H} \equiv \boldsymbol{U}+p V$ definition apply definition of state function $\begin{aligned} & \Delta \boldsymbol{H}=\Delta \boldsymbol{U}+p_{f} V_{f}-p_{i} V_{i} \\ & \text { Apply } \Delta \boldsymbol{U}=-10\left[V_{f}-47.12\right] \times 8.3144 / 0.08205 \\ & \text { and } p_{i}=1, p_{f}=10 \mathrm{~atm} V_{i}=47.12 \mathrm{~L} \\ & \Delta \boldsymbol{H}=-10\left[V_{\mathrm{f}}-47.12\right] \times 8.3144 / 0.08205+\left\{10 V_{f}-1 \times 47.12\right\} \times 8.3144 / 0.08205 \\ & \Delta \boldsymbol{H}=9 \times 47.12 \times 8.3144 / 0.08205 \mathrm{~J} \end{aligned}$

	Answers	Final number	Units
initial volume	$2 \times 0.08205 \times 293 \times 0.980$	47.12	L
final volume	$\begin{array}{l}V_{f}=2 \times 0.08205 \times T_{f}\left[10^{-1}-2.024 \times 10^{-2}\right] \\ \text { Solve } 2 \text { eqns in unknowns } T_{f} \text { and } V_{f}\end{array}$		
$\begin{array}{l}\text { final } \\ \text { temperature }\end{array}$	$\begin{array}{l}\left\{-10 \times 1.987 / 0.08205-2 \times 10^{-3}\right\}\left[V_{f}-47.12\right] \\ =2.97\left[T_{f}-293\right]+10.5 \times 10^{-3} \times 1 / 2\left[T_{f}^{2}-293^{2}\right]\end{array}$	eqn (2)	

3. When a system is taken from state A to state B along the path $A \rightarrow C \rightarrow B$ in the figure below, 80 J of heat flows into the system and the system does 30 J of work.

Volume, V
(a) How much heat flows into the system along the path $A \rightarrow D \rightarrow B$ if the work done is 10 J ?
(b) When the system is returned from state B to A along the curved path, the work done on the system is 20 J . Does the system absorb or liberate heat, and how much?
(c) If $\boldsymbol{U}_{\mathrm{D}}-\boldsymbol{U}_{A}=+40 \mathrm{~J}$, find the heat absorbed in each of the processes $A \rightarrow D$ and $D \rightarrow B$

	Solution	Numerical Answer, J
(a)	$\begin{aligned} & \Delta \boldsymbol{U}=q+w \text { First Law } \\ & q_{\mathrm{ACB}}=80 \mathrm{~J}, w_{\mathrm{ACB}}=-30 \mathrm{~J} \text { Given } \\ & \therefore \boldsymbol{U}_{\mathrm{B}}-\boldsymbol{U}_{\mathrm{A}}=q_{\mathrm{ACB}}+w_{\mathrm{ACB}}=80-30=q_{\mathrm{ADB}}+w_{\mathrm{ADB}}=q_{\mathrm{ADB}}-10, \boldsymbol{U} \text { is state function } \end{aligned}$	$\begin{aligned} & q_{\mathrm{A} \rightarrow \mathrm{D} \rightarrow \mathrm{~B}}= \\ &+60 \end{aligned}$
(b)	$\Delta \boldsymbol{U}=q+w$ First Law $\boldsymbol{U}_{\mathrm{A}}-\boldsymbol{U}_{\mathrm{B}}=-50\left[\right.$ from (a)] $=q_{\mathrm{B}_{\boldsymbol{y}} \mathrm{A}}+w_{\mathrm{B}_{\boldsymbol{y}} \mathrm{A}}=q_{\mathrm{B}_{4, ~} \mathrm{~A}}+20, \boldsymbol{U}$ is state function	$q_{\mathrm{B}_{4} \mathrm{~A}}=-70$ liberates heat to surrounds
(c)	$\begin{aligned} & \hline w_{\mathrm{DB}}=-\int p_{\mathrm{op}} \mathrm{dV}=0[\mathrm{dV}=0] \\ & w_{\mathrm{ADB}}=-10[\text { given in }(\mathrm{a})]=w_{\mathrm{AD}}+w_{\mathrm{DB}}=w_{\mathrm{AD}}+0, \text { leads to } w_{\mathrm{AD}}=-10 \mathrm{~J} \\ & \Delta \boldsymbol{U}=q^{+}+w \text { First Law } \\ & \left.\boldsymbol{U}_{\mathrm{D}}-\boldsymbol{U}_{\mathrm{A}}=+40 \mathrm{~J} \text { [given }\right]=q_{\mathrm{AD}}+w_{\mathrm{AD}}=q_{\mathrm{AD}}-10, \text { leads to } q_{\mathrm{AD}}=+50 \mathrm{~J} \\ & q_{\mathrm{ADB}}=+60\left[\text { from (a)] }=q_{\mathrm{AD}}+q_{\mathrm{DB}}=50+q_{\mathrm{DB}}, \text { leads to } q_{\mathrm{DB}}=+10 \mathrm{~J}\right. \\ & \hline \end{aligned}$	$\begin{aligned} & q_{\mathrm{A} \rightarrow \mathrm{D}}=+50 \\ & q_{\mathrm{D} \rightarrow \mathrm{~B}}=+10 \end{aligned}$

4. A cylindrical container of fixed total volume is divided into three sections, S_{1}, S_{2}, and S_{3}. The sections S_{1} and S_{2} are separated by an adiabatic piston, whereas S_{2} and S_{3} are separated by a diathermic (heat conducting) piston. The pistons can slide along the walls of the cylinder without friction. Each section of the cylinder contains 1.00 mole of a perfect diatomic gas $\left[C_{V}=(5 / 2) R\right.$]. Initially the gas pressure in all three sections is 1.00 atm and the temperature is 298 K . The gas in S_{1} is heated slowly until the temperature of the gas in S_{3} reaches 348 K . Find the final temperature, pressure, and volume, as well as the change in internal energy for each section. Determine the total energy supplied to the gas in S_{1}.

Space for a sketch (required)

S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$

Initial:

$p_{1}=1 \mathrm{~atm}$	$p_{2}=1 \mathrm{~atm}$	$p_{3}=1 \mathrm{~atm}$
$T_{1}=298 \mathrm{~K}$	$T_{2}=298 \mathrm{~K}$	$T_{3}=298 \mathrm{~K}$
$V_{1}=?=298 R / 1=24.4 \mathrm{~L}$	$V_{2}=?=298 R / 1=24.4 \mathrm{~L}$	$V_{3}=?=298 R / 1=24.4 \mathrm{~L}$

Solution:

Since fixed total volume, total work $=0, w_{1}+w_{2}+w_{3}=0$
Since adiabatic piston between S_{1} and $S_{2}, \quad q_{2}+q_{3}=0$
Since pistons are free to slide, then final $p_{f 1}=p_{f 2}=p_{f 3}=p_{f}$
Since diathermic piston between S_{2} and S_{3}, then $T_{f 2}$ is same as $T_{f 3}=348 \mathrm{~K}$
Since S_{2} and S_{3} are at same final p_{f} and T_{f} then $V_{f 2}=V_{f 3}$
What can we calculate?

$$
\mathrm{d} \boldsymbol{U}=C_{V} \mathrm{~d} T+(\partial \boldsymbol{U} / \partial V)_{T} \mathrm{~d} V
$$

Apply $(\partial \boldsymbol{U} / \partial V)_{T}=0$ [ideal gas] and $\mathrm{R}=1.987 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ to Section S_{2} and Section S_{3} :
$\Delta \boldsymbol{U}_{2}=C_{V}[348-298]=(5 / 2) R[348-298]=250 \mathrm{cal}$
$\Delta \boldsymbol{U}_{3}=C_{V}[348-298]=(5 / 2) R[348-298]=250 \mathrm{cal}$
First law: $\Delta \boldsymbol{U}_{2}=q_{2}+w_{2}$ and $\Delta \boldsymbol{U}_{3}=q_{3}+w_{3}$
But since $q_{2}+q_{3}=0$ from (2) and $w_{1}+w_{2}+w_{3}=0$ from (1) then

$$
w_{1}=-\left(w_{2}+w_{3}\right)=-\left(\Delta \boldsymbol{U}_{2}+\Delta \boldsymbol{U}_{3}\right)=-(250+250)=-500 \mathrm{cal}
$$

Ideal gases in S_{2} and S_{3} together went through an adiabatic reversible (infinitely slowly) compression brought about by expansion of S_{1}.
Therefore, $\ln \left\{\left[T_{f 2} / T_{i 2}\right]^{C V / R}\right\}=\ln \left[V_{i 2} / V_{f 2}\right]$ holds.

$$
\ln \left\{[348 / 298]^{5 / 2}\right\}=\ln \left[298 R N_{f 2}\right] \text {, solve for } V_{f 2}=16.59 L=V_{f 3}
$$

Ideal gas equation gives p_{f} from known $T_{f 2}$ and $V_{f 2}: \quad p_{f}=R(348) N_{f 2}=1.72 \mathrm{~atm}$
We know also that fixed total volume is the same as total initial volume,

$$
V_{f 1}+2 V_{f 2}=3 \cdot R 298 / 1
$$

From $V_{f 2}=16.59 \mathrm{~L}$, solve for $V_{f 1}: \quad V_{f 1}=40.16 \mathrm{~L}$
In S_{1} we know the values p_{f} and $V_{f 1}$, apply ideal gas law: $p_{f} V_{f 1}=R\left(T_{f 1}\right)$
Solve for $T_{f 1} \quad T_{f 1}=1.72 \mathrm{~atm}(40.16 \mathrm{~L}) / .082057=841.8 \mathrm{~K}$
In S_{1} can now apply First Law: $\Delta \boldsymbol{U}_{1}=C_{V}\left[T_{f 1}-298\right]=q_{1}+w_{1}$
substituting values of $T_{f 1}$ and w_{1} : (5/2)R[841.8-298] = $2701.6 \mathrm{cal}=q_{1}-500 \mathrm{cal}$, solve for q_{1} : $q_{1}=3202$ cal which is the total energy supplied to the gas in S_{1}.

Answers								
Section S_{1}				Sectio	S_{2}		Sectior	S ${ }_{3}$
$p_{\text {f1 }}=$	1.72	atm	$p_{\text {f2 }}=$	1.72	atm	$p_{\text {f3 }}=$	1.72	atm
$V_{f 1}=$	40.16	L	$V_{f 2}=$	16.59	L	$V_{f 3}=$	16.59	L
$T_{f 1}=$	841.8	K	$T_{f 2}=$	348	K	$T_{\text {f } 3}=$	348	K
$\Delta \boldsymbol{U}_{1}=$	2701.6	cal	$\Delta \boldsymbol{U}_{2}=$	250	cal	$\Delta \boldsymbol{U}_{3}=$	250	cal
Total energy supplied to the			gas in Section $\mathrm{S}_{1}=$			3202 cal		

5.(a) The following data have been obtained for the density of a gas as a function of pressure at $10^{\circ} \mathrm{C}$. find the molar mass (molecular weight) of the gas.

$p, \mathrm{~atm}$	0.68	2.72	8.14
$\rho, \mathrm{~g} \mathrm{~L}^{-1}$	1.29	5.25	16.31

Hint: the gas is not ideal but you can find the limit of ρ / p as the gas approaches ideality.

p, atm	0.68	2.72	8.14
$\rho / \mathrm{p}, \mathrm{g} \mathrm{L}^{-1} \mathrm{~atm}^{-1}$	1.89_{6}	1.92_{6}	2.00_{6}

The graph (required):

Solution	Answer	Final number	Units
In the limit $p \rightarrow 0$, gas behaves like an ideal gas. From the graph, $(\rho / \mathrm{p})_{\text {ideal }}=1.89_{0} \mathrm{~g} \mathrm{~L}^{-1} \mathrm{~atm}^{-1}$ $\mathrm{pV}=\mathrm{nRT}=\mathrm{m} / \mathrm{MRT}$ $M=(\mathrm{m} / \mathrm{N}) \mathrm{RT} / \mathrm{p}=(\rho / \mathrm{p})_{\text {ideal }} \mathrm{RT}$	$\mathrm{M}=1.890 \times 0.08205 \times 283$	44.0	g mol

5.(b) Given the $p V$ plots for a gas in the figure below:

(a) What is the critical temperature of the gas?	300	${ }^{\circ} \mathrm{C}$
(b) What is the critical pressure of the gas?	130	atm
(c) A sample of the gas is collected in a flask at $325^{\circ} \mathrm{C}$. As it is slowly cooled, it condenses at $250^{\circ} \mathrm{C}$. What is the density of the sample?	$1 \mathrm{~mol} \div$ 0.147 L	$\mathrm{~mol} \mathrm{~L}^{-1}$
(d) What is the vapor pressure in equilibrium with the liquid at $275^{\circ} \mathrm{C}$?	95 read off	atm

(c) The critical temperature and pressure for several gases are shown below:

gas	$T_{c}, \mathrm{~K}$	p_{c}, atm	T_{r}	p_{r}	Z
A	300	50	1.0	0.2	0.95
B	600	40	0.5	0.25	≤ 0.2
C	280	10	1.07	1.0	0.7
D	20	5	15.	2.0	1.0

Consult the figure on the next page and answer these questions based on it

	Solution and Reasoning	Answer choose one
(a) Which gas is most nearly ideal in behavior at 300 K and 10 atm?	Z closest to 1.0 is D	A
(b) Which is the least ideal	Z most different from 1.0 is B	C (D)

