2.1 Definitions

system — A thermodynamic system is that
part of the physical universe the proper-
ties of which are under investigation. The
system is confined to a definite place in
space by the boundary which separates
it from the rest of the universe, the
surroundings.

isolated system — A system is isolated
when the boundary prevents any
interaction with the surroundings. An
Isolated system produces no observable
effect or disturbance in its surroundings.

open system — A system is open when
mass passes across the boundary.

closed system — A system is closed when
NO mass passes across the boundary.



properties — The properties of a system
are those physical attributes that are
perceived by the senses, or are made
perceptible by certain experimental
methods of investigation.

state of a system — A system is in a
definite state when each of its properties
has a definite value.

change in state — A change in state is
completely defined when the initial and
final states are specified.

path — The path of a change in state is
defined by giving the initial state, the
sequence of intermediate states arranged
in the order traversed by the system, and
the final state.



process — the method of operation by means

of which a change in state is effected. The
description of a process consists in stating some
or all of the following: (1) boundary, (2) the
change in state, the path, or the effects produced
in the system during each stage of the process,
(3) the effects produced in the surroundings
during each stage of the process.

cycle — the path of a transformation in which
a system having undergone a change of
state returns to its initial state. The process
by means of which the transformation is
effected is called a cyclical process.



state variable — a variable that has a
definite value when the state of a system
Is specified (also called a state function).

A — Difference between the values of a
state function in the final and initial states
Is denoted by A, for example
AV=(V,-V,)

The symbol A always signifies a difference of

two values, which is always taken in this
order:

final value minus initial value.



Each time you have a problem to solve
in thermodynamics, you should pose the
following questions to yourself:

¢ \What is the system?

e \Where is the boundary?

e \What is the initial state?

e \What is the final state?

e \What is the path of the transformation?

Doing this is absolutely indispensable
before beginning to work any problem.



2.2 Work and Heat

work — Any quantity that flows across the
boundary of a system during a change in
its state and is completely convertible into
the lifting of a weight in the surroundings.

Note that in this thermodynamic definition of work:
1. Work appears only at the boundary of a system.
2. Work appears only during a change in state.

3. Work is manifested by an effect in the
surroundings.

4. The quantity of work is W= —mgh.

5. Work is an algebraic quantity. Work is positive if
the weight is lowered (h is -), in which case we
say that work has been destroyed in the
surroundings or has flowed from the surroundings
to the system. Work is negative if the weight is
lifted (h is +), in which case we say that work has
flowed from the system to the surroundings.



heat — A gquantity that flows across the
boundary of a system during a change in
state by virtue of a difference in
temperature between the system and its
surroundings, and flows from a point of
higher to a point of lower temperature.

Note that in this thermodynamic definition of heat:
1. Heat appears only at the boundary of a system.
2. Heat appears only during a change in state.

3. Heat is manifested by an effect in the
surroundings.

4. The quantity of heat is equal to the number of
grams of water in the surroundings which are
iIncreased by one degree in temperature starting
at a specified temperature under a specified
pressure.

5. Heat is an algebraic quantity. Heat is positive if a
mass of water in the surroundings is cooled, in
which case we say that heat has flowed from the
surroundings fo the system. Heat is negative if a
mass of water in the surroundings is warmed, in
which case we say that heat has flowed from the
system to the surroundings.




The judgement as to how much heat flow or
work flow has occurred in a transformation is
based on observation of effects produced in the
surroundings, not based upon what happens
within the system. Observing the system before
and after a change in state does not permit
deducing anything about the heat or work flow.

The quantities of heat and work which flow
depend upon the process and therefore on the
path connecting the initial and final states. Heat

and work are called path functions.



EX&MPLE: A system alters its volume against
an opposing external pressure.

2.3 Work of expansion and compression,
maximum and minimum work

Consider a system: a quantity of gas confined
in a cylinder at a constant temperature T.

Initial conditions (Pgasis Vi, T)
Final conditions: (pyes ¢, Vi, T)

oW = "popd V or -pexth in the notation of your textbook

W = f'be = - fopopdV
Vi Vi

a) suppose the path is described by
Pop = @ constant = P,

W = JVfaW =-P_, ﬁfdv
Vi Vi



b) suppose the path is described by
Pop = aexp[-bV]

W = JthW =-a f‘”fexp[—b\ﬂdv
Vi Vi

= +(a/b)}{ exp[-bV{] - exp[-bV]] }

c) suppose the path is described by
Pop = alV

W = for)W =-a ij[1/V]dV

Vi Vi

= -a{[InV{] - [InV{]} =-aln(V;/V))

d) suppose the path is described by
Pop = Pgas(V).

e f’fnvv =-J‘ff[pgas(\/)]dv

Vi Vi

The function pgss(V) is given by the equation of
state of the gas, which when substituted into the
integral permits the integration to be carried out.



Note that oW does not integrate in the ordinary
way, that is,
JVfdv = V,-V.= AV
Vi
ﬁfavw W = W,-W,

Vi
oW is an infinitesimal, not an exact differential
dV is an exact differential (MORE on this LATER).



EXAMPLE: A gas system alters its volume against
an opposing external pressure in the following

process:
a single-stage compression from V,toV,

Pop = @ constant = P,

The quantity of work is
W= —Mgh.
the weight is
lowered (h is -),
Work is posifive
in which case
we say that
work has
flowed from the
surroundings

fo the system.
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W= J”fow =- P, J“dv
Vi V2

=P,,(V,-V;) > 0.



compression

\ Final state

pa, Vo Initial state

w=' (VoW =-Py J“dv
Vi \Y

(VZ'Vl) > 0.



EXAMPLE: A gas system alters its volume against
an opposing external pressure in the following
process:

a single-stage expansion from V, toV,

Pop = @ constant = P,
The quantity of work is

W= —Mgh.

the weight is

v s g/ raised (his +),
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M Work is negative

"""" in which case
we say that

work has

flowed to the

surroundings

T, py, Vo from the system.
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expansion

\ Initial state
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Constraints for the p,p, = constant

Expansion: Compression:
pop pqas final < pqas initial pop pqas final > pqas initial
Best Work . Least Work
for p,p = constant § ' for pop = constant
single stage 4 | single stage
expansion o compression
C
i =\
iz
Work
%
- f <
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Work = - [ popdV = - poo[ Vi - V]




EXAMPLE: A gas system alters its volume
against an opposing external pressure in the
following process:

a two-stage expansion from V, to V,
First stage: p,, = a constant = P"

Second stage: p,, = a constant = P’

W= J“mxv =-P"0pf’dV~P’op5V2dV
Vi V1 V’r

=-P", (V'-V)) -P'y, (V-V') < 0.
work has flowed to the surroundings
| from th m.

||||nitial state

*pl, vy compare this
I with one-stage
I\ expansion.
\ This produces
AN more | work | from
Final state the system to the

surroundings,
P2, Vo for the same
Piir— s, o change in state

: of the system.




EXAMPLE: A gas system alters its volume
against an opposing external pressure in the
following process:

a two-stage compression from V,to V,

First stage: p,, = a constant = P"

Second stage: p,, = a constant = P’y

W= JVfaW =-P~Opﬁ'dv-P'opJ‘“dv
Vi V2 V'

=P, (V,-V) + Py, (V'-V,)) > 0.
work has flowed from the surroundings

fo the system.
\
! Final state
\ V
D1, 1 i
Py . compare this

with one-stage
compression.
This requires
less | work | from
™ the surroundings
Initial state  to the system,
P2, Vo for the same
~~~~~ change in state
of the system.

Py -

v, V/ v,



EXAMPLE: A gas system alters its volume
against an opposing external pressure in the
following process:
a reversible compression from V, to V,
along the path described by p,, = Pgas(V)

W= J“avv =-J“ [Pges(V) 1dV/

Work is positive. The minimum amount of work has
flowed from the surroundings fo the system.
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reversible compression

Final state

Py Vl

=N ——

Pop=p
py, Vo INitial state

Compare this with 1-sta?e and 2-stage compression.

This requires minimum work |
from the surroundings to the system,
for the same change in state of the system.




EXAMPLE: A gas system alters its volume
against an opposing external pressure in the
following process:

a reversible expansion from V, to V,

along the path described by p,, = Pgas(V)

W= ffavv = JV [Pgas(V) 1V

Work is negative . The maximum amount of work
has flowed to the surroundings from the system.
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reversible expansion

Initial state

R e—-

Compare this with 1-stage and 2-stage expansion.
This produces maximum | work |

from the system to the surroundings,

for the same change in state of the system.




Note that whether V; <V, (gas undergoes the
process of compression) or V¢ > V;, (gas
undergoes the process of expansion) the
integration is the same. The only difference is that
the opposing external pressure has to be greater
than or at least as great as pyss s in order to have
compression, while the opposing external pressure
has to be no larger than pg.s; in order to have
expansion.

For a gaseous system in an isothermal process

(T= constant throughout the path), the maximum
work produced in the surroundings during the
expansion of a gas (that is, the maximum amount
of work that can be removed from a system) is also
the minimum amount of work that is required to flow
from the surroundings to the system to carry out
the compression of a gas:

Winax or min = 'fo [pgas(v) ] dV, T =constant

Vi



2.4 Reversible and irreversible transforma-
tions, cyclic transformations

Consider a system: a quantity of gas confined in
a cylinder at a constant temperature T. Stage |
process: Initial conditions (Pgasi=p1, Vi=Vy, T),
final conditions (pgas = Py, Vi= V,, T) with V, >V,
followed by Stage Il process: Initial conditions
(Pgas, = P2, V= Vs, T), final conditions (Pgas+= p:
V:=V,, T). This is a 2-stage cycle. The system
has returned to its original state (p,, V;, T).

P1 Vls T

Stage | |4 T | Stage Il

P2; V?J T

Question: Calculate the work for this cycle, W ..

Answer: Can’t do it, didn’t describe the path!



Suppose we perform this cycle by PROCESS A:
Stage | is a single stage expansion with p,, = p,
followed by Stage I, a single stage compression

with p,, = p;.

P1 Vli T
Stage | Stage |l
single stage l T single stage
expansion compression
pop = P2 pop = P1
P2, V21 T
Wexp = "'Pz(Vz 'Vl) Wcomp = pl(VZ 'Vl)

chcie = Wexp + Wcomp = "p2(V2 ‘Vl) + pl(Vz 'Vl)

= (p1-p2)(V,-V;) >0
Net work has been destroyed in the
surroundings; work passed across the boundary
from the surroundings to the system. The system
was restored to its initial conditions but the
surroundings have not been restored: weights
are lower in the surroundings after the cycle!
This is an irreversible process.



Suppose we perform this cycle by PROCESS B:
infinitely slowly do a multistage expansion with
Pop = Pgas - 0 , where & is infinitesimally small at
each stage, then infinitely slowly do a multistage
compression with p,, = p,,s +8 at each stage.

Wexp = - ,V2 pgasdv Wcomp =-(V pgasdv-

Vi V2
chcle = Wexp + Wcomp =0

The system was restored to its initial conditions

and the surroundings are also restored to their
initial conditions, since no net work is produced.
This is a reversible process.

In a reversible process the internal equilibrium of
the gas is disturbed only infinitesimally and in the
limit, not at all. At any stage in a reversible
transformation the system does not depart from
equilibrium by more than an infinitesimal amount.

The goal of reversibility can be very closely
approached, but not attained.



chc!e: JBW # 0 QCyclezjaq #0

Since the quantity of work that appears in the
surroundings depends upon the way in which the
change in state is brought about, the integral
representing work is said to be a line integral
whose value depends upon the path.

In contrast,

j dy =0 fory = any state function

If we sum the differential of any state function of
the system over any cycle, the total difference,
the cyclic integral, must be zero.

Conversely, if we find a differential quantity dy
such that

f dy =0 forall cycles

then dy is the differential of some state function
or state property y.



Path f Path 2

AN Z A,
State A ’ |

-~
bt

State B 777 7 ,

AU=-mgh W=0 W = -mgh
qg=-mgh q=0

AU =-mgh AU =-mgh

7



2.5 The energy U, the First Law of
Thermodynamics

The first law of thermodynamics is a statement
of the following universal experience: If a system
IS subjected to any cyclic transformation, the
work produced in the surroundings is equal to the
heat withdrawn from the surroundings.

The first law is also a statement of the
conservation of energy U.

dU=og+ oW orAU=qg+ W

(system + surroundings) includes everything.

If the system is returned to its original state, then
the work produced in the surroundings must
equal to the heat withdrawn from the
surroundings.

In the system’s accounting, the change in internal
energy of the system must be accounted for by
the net heat + work appearing at the
surroundings.



In other words, for any change of state of the
system,

AU system + AUsurr. =0
Clausius stated this as: “The energy of the
universe is a constant.”

Choosing a system of fixed mass, we can
describe the state of the system by specifying T
and V. Then we can write the energy U as a
function of T and V-

U = U(T,V) and the change in U, dU is related to
the changes in temperature dT and the changes
in volume dV through the total differential
expression

dU = (3UIET), dT + (aUIaV);dV

The subscript “,, “ means “at constant V”.

What does this say?
If the temperature of the system increases by an
amount d T and the volume increases by an
amount dV, then the total increase in energy is

the sum of two contributions.

(oUIoT), dT is the increase in energy resulting
from the temperature increase alone.









2.6 Exact and inexact differentials

What is an exact differential ?
An exact differential integrates to a finite
difference.

f
J Tdy =yr -y
yi

which is independent of the path of integration.

In contrast, “pdV” is the kind of expression that
cannot be regarded as the differential of any
function of the state of the system; it is an

inexact differential.

Since p is in general, a function of two variables,
say T and V, it is evident that the integral of pdV
IS meaningless unless some functional
relationship between T and V' is specified

(the path); only in that case can the line integral

W = J‘thw = - J‘”fpopdv
Vi Vi

be evaluated.



2.7 Examples of Changes in State (at Constant
Volume, at Constant Pressure); Definition
of H

2.7.1 Changes in State at Constant Volume
dU = (0UIBT), dT + (8UI6V);dV
If the volume of the system is constant as the

system undergoes a change in state, then
dV=0

dU = (oU/oT),,dT when dV=0
and
AU = f ™ (oUIOT),dT when dV=0
Ti

Also, since dV = 0, V, = V;and the integral

w= - J\fpopdv
Vi

IS zero, of course.

The first law says AU=qg+ W, leading to
AU = qy

1] 11

The subscript “, “ means “at constant V.



AU=qy, constant volume change
of any system
leads us to write
dU = dq,,
or au = (oUloT),dT = dqy
which relates the heat withdrawn from the
surroundings to the increase in temperature
d7T of the system at constant volume.
The ratio (dqy, /dT) of the heat withdrawn
from the surroundings to the temperature
iIncrease of the system is called the heat
capacity of the system at constant
volume, C,, .
Cy =(dqy/dT) = (oU/oT),
This identifies the partial derivative (oU/oT),
with an easily measurable quantity Cy, .
For an infinitesimal change
dU= C,dT
which can be integrated to

AU = ff C,dT constant volume change
Ti of any system



2.7.2 Changes in State at Constant Pressure

Define H=U+pV

dH=dU + pdV + Vdp

Since H is a state function, dH is an exact
differential. H is called the enthalpy.

Choosing a system of fixed mass, we can
describe the state of the system by specifying
T and p. Then we can write the energy H as a
function of T and p:
H = H(T, p) and the change in H, dH is related
to the changes in temperature dT and the
changes in pressure dp through the total
differential expression

dH = (OH/OT),dT + (6H/op)rdp
At constant pressure, dp=0
AH, = |dH = [ (6HIoT),dT
The subscript “," means “at constant
pressure”.
At constant pressure P, the first law

dU =g + 0W leads to AU = q,-PAV



and the definition

H=U+pV leadsto AH =AU+ PAV

Therefore,

AH,=q, or [(0HIOT),dT = g,

The ratio of the heat withdrawn from the

surroundings to the temperature increase of

the system is called the heaft capacity of the

system at constant pressure, C,.

C, =(0q,/dT)sothat g,=|C,dT

which relates the heat withdrawn from the

surroundings to the increase in temperature

d7 of the system at constant pressure.

Thus, (0H/0T), can be identified with the

heat capacity at constant pressure.
(oHIoT), = Cp,

This identifies the partial derivative (0H/0T),

with an easily measurable quantity C,.

AH J.” C,dT constant pressure
Ti

any system




2.8 Relation between C, and C,,

The heat capacity of any system may have

any value from — to +o0, depending on the
path since the heat withdrawn from the

surroundings may have different values. Only
two values C, and C, have major importance.

How are they related?

og + dW=dU = (oU/oT),dT + (oUloV)rdV
0g - popdV =CdT + (oUloV)rdV

At a constant pressure, p,, = p

0q, -pdV = CdT + (oU/oV);dV

ag, =CdT + {p+ (0UIOV)r}dV
Differentiate with respect to T at constant p,
(0q,/0T), =Cy+{p+ (oUloV)r 3 (ov/oT),

C, -Cy={p+(UleV)r}(oV /oT), general



In a constant volume process, no work

IS produced, the average distance
between molecules remains the same.
Heat capacity is small, all of the heat
withdrawn goes into the chaotic motion of
the molecules and is reflected by a
temperature increase.



In a constant pr re pr . the

system expands against the opposing
pressure and produces work in the
surroundings; the heat withdrawn from
the surroundings is divided into 3
portions:
e produces work in the surroundings
e provides energy necessary to separate
the molecules to larger distances
e increases the energy of the chaotic
motion (reflects a temperature increase)
To produce a temperature increment of
one degree, more heat must be
withdrawn in the constant pressure
process than is withdrawn in the constant
volume process, thus C, > Cy.

heat capacity ratio =y =(C, /Cy) > 1



For an ideal gas:

Cp-Cy=I[p+ (0Ul6V)r] (0V /0T), (general)

Substituting the following:

(oUloV)+ =0, (as we shall see in the
Joule expt.)

p(oV/oT), =R (from the ideal gas

equation of state)
leads to

Cp "CV=R



gas at T4, py, V4 Path 1 Path 2
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w=0 W=-/po,dV
qg=AU qg=AU-W

AU = /CAT + /(8UIoV)rdV
= f,12 (0UIaV)7dV  since dT =0



2.9 The measurement of (OU/0V); and
(0HIop)r
2.9.1 Joule’s experiment provides (OU/0V)r

Thermometer ..
Stirrer
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No observed temperature difference in the water
before and after opening the stopcock.

dg + dW =dU = (8UI8T), dT + (3UIV)+dV

Expansion against zero opposing pressure

means 0W=0.

No observed temperature change in the

surrounding water means 0g =0 .

Since the water and the system are in thermal

equilibrium, then for the system also, d7T =0 .
dU=0=0+ (5U/6V);dV

dV = 0, therefore, (0U/OV)r =0




2.9.2 Joule-Thomson expt. provides (0H/0p)+
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Insulated sothatg =0.
RHS volume increases by V,

LHS volume decreases by V,

W=(- p,Vo)rust (+ p1Vi)Lns for one mole
of gas that passes through the plug.
q+tW=U,-U; = -p,V, +p V4
. Hy,=H,
Measure AT/Ap to obtain p, = (0T/0p)y .

dH = C,dT + (6H/op)+dp .

For dH = 0O, and differentiate with respect to p
0 =C,(0T/0p)y +(0H/0p)+

(OH/op)r = - Cp 1yr



dH = C,dT + (0H/op)rdp = dU +pdV + Vdp
=C,dT + (oU/oV)7dV + pdV + Vdp .
For dT = 0 and differentiate with respect to p,

(OH/op)r = [p +(oUIoV)r1(oV/op)r +V

For the ideal gas,

H=U+pV=U+RT for one mole.
Since we have already shown that U is only
a function of T for an ideal gas (Joule expt.),
then H is only a function of T for an ideal gas.

(0H/op)7 = 0



For the general non-ideal gas:

We have already found the general
relationships

(cH/cp)r = [p +(oU/oV)r1(oV/iop)r +V
and

Cpo -Cy={p+ (QUIV)r}(oV /0T),

We shall prove later on that the quantities

(U/N)r and (cH/cp)r can be related
directly to the equation of state, as follows:

(U/NV)r = T(p/T)y - p
(GH/p)7 = - T(AVIET), +V

Therefore, for any gas, ideal or not, we
can find the derivatives (¢oV/JT), and

(cb/JT)y from the equation of state,
and then we can find the functions:

(A N)7r = T(p/AT)y - p
(GH/0)7 = - T(V/ET), +V
C, - Cy={p + (BUIBV)1}(OV /0T),




The special case that the equation of state is
pV =RT

gives

(cb/cT)y = R/V  and (eV/IT), = R/p
These lead to
(U/N)r = T(pldT)y-p =0
(H/cp)r = - T(cV/AT), +V =0
C,-Cy={p+(0UoV)r}(oV/0T), =R



(01]/0”\/)7’ and (07"/0?3)7‘

from the equation of state

Later on, we shall prove from the first
and second laws of thermodynamics,
that

(U N)r = T(p/oT)y -p
(H/D)r = -T(V/ET), + V

For the equation of state pV = nRT

We get (p/oT)y = nR/V

and (cV/ET), = nR/p

(U/N)r = T(cp/AT)y -p =nRT/V -nRT/V
=0

(cH/cp)t =-T(N/FT),+V =-nRT/p+nRT/p
=0




For the equation of state
pV =nRT +nap
where a is dependenton T

From p = nRT/(V-na) we get
(cp/OT)y = nIW( V-na)
+n*RT(V-na)“(da/dT)
(U/N)r = T(P/T)y -p
= nRT/(V -na)
+n°RT(V-na) (da/d?) -nRT/(V-na)
= n*RT?(V-na)“(da/dT)
{=0 if a is independent of T}

From V=nRT/p +na we get
(V/ET), = nR/p+ n(da/dT)
(AH/p)r = -T(N/TT),+V
=-nRT/p - nT(da/dT) + nRT/p + na
= na-nT(da/dT)
{= naif a is independent of T}



FFor the equation of state
[p+(n/V)?alV = nRT
where a is dependenton T

From p = nRT/V -(n/V)’a  we get
(0/5T)v= nR/V -(n/V)*(da/dT)
(AN = T(D/T)y -p
= nRT/V -(n/V)*T(da/dT) -nRT/V
+(n/V)’a
(o’U/é’V)T—g /V)’a -(n/V)*T(da/dT)
{= (n/V)aif ais independent of T }

Can not easily find (dH/dp)t from
(cV/OT), because we have a cubic
equationin V



For the equation of state
[p+(n/V)?a][V-nb] = nRT
where a and b are dependenton T

From p = -(n/V)’a + nRTAV-nb) we get

(0/5T)y = -(n/V)*(dald T) + nR/(V-nb)
+n°RT(V-nb)*(db/dT)

(U/N)r = T(p/T)v -p

= nRT/(V-nb) -(n/V)*T(da/dT)

-nRT/(V-nb) +£n/V) a
+n°RT?(V-nb)“(db/dT)

(U/N)7 = (n/VVa -(n/V)°T(da/dT)
+n°RT?(V-nb)“(db/dT)

{= (n/V)“a if a,b are independent of T}

Can not easily find (cH/cp)+ from
(NV/T), because we have a cubic
equation in V



2.10 Adiabatic Changes in State

adiabatic change in state — A change in
state during which no heat flows, g =0 .

For an adiabatic change in state,

since g =0, the first law leads to

dU = oWy, AU =W,

The work that crosses the boundary from the
system to the surroundings is at the expense
of a decrease Iin energy of the system.

A decrease in energy in a system is
evidenced almost entirely by a decrease In
temperature of the system: i.e., If work
appears in the surroundings in an adiabatic
change in state, the temperature of the

system falls.
For an ideal gas:

dU =C,dT + (oU/oV)rdV  general
= CvdT +0 ideal gas

For an adiabatic change,

dU = oW =-p,,dV adiabatic



L -pepdV = CydT adiabatic, ideal gas

p =nRT/NV ideal gas
If adiabatic change is carried out reversibly,
Pop = Pgas reversible

-(nRT/V)dv =C,dT adiabatic, ideal gas,
& reversible
for one mole

-R(dWV) =Cy (dT/T) adiabatic, ideal gas,
& reversible
Integrating,
- Rin(V,/V) = Cy In(T;/T;) adiabatic, ideal gas,
& reversible
R=C,-Cy ideal gas
R/Cy=(C,/Cy) -1=y-1 ideal gas

-(y-1 ) In( V/Vy) = In(T,/T;) | adiabatic,
(Vi/V (r-1) = (Tf/T) ideal gas,
(Vi /Vz) W1 = (1,/T)) & reversible
PVt =polst _ only




1J=1kg m’s

kp = 1.38066x10 > J K™

R = NAvogadrokB

R =831441 Jmol ' K™
=1.98718 cal mol ' K

= 0.082057 ¢ atm mol K

monatomic gas
molar heat capacity Cy =(3/2) R



2.11 Application of the First Law of
Thermodynamics to Chemical Reactions,

the Standard Enthalpy Change, AH@(T)

the standard state — The standard state of
a substance at a specified temperature is its
pure form at 1 bar
1 bar is 10° pascals, 1 atm = 1.01325 bar

1 bar = 0.987 atm

Examples:

the standard state of water at 300 K is pure
liquid water at 300 K and 1 bar.

the standard state of methane at 300 K is
pure CH,4 gas at 300 K and 1 bar.

standard enthalpy of transition —the
enthalpy change that accompanies a change
In physical state.

Examples of changes in physical state:
vaporization: liquid—gas
fusion: solid — liquid



sublimation: solid—gas
solid phase transition:
monoclinic —»orthorhombic

H®(liquid, 1 bar, 353.2 K) CeHe(liq)

H®(gas, 1 bar, 353.2 K) CeHs(gas)
For the transition,
vaporization at the standard boiling point,

353.2 K: CeHs(liq) »> CgHe(gas)
AvapHZ(353.2 K) = H® (CsHs gas, 1 bar,353.2 K)

— H® (CeHs liquid, 1 bar,353.2K)
= 30.8 kJ mol™

standard enthalpy of vaporization A,,,H”
— the enthalpy change per mole when a
pure liquid at 1 bar vaporizes to a gas at 1
bar



The normal boiling point is at 1 atm, the
standard boiling point is at 1 bar.

For H,O they are 100.00°C (normal) and
99.6°C (standard).

reference state of an element— the most
stable state of the element at the specified
temperature and 1 bar.

standard enthalpy of formation A{H® (T)}—
the enthalpy change accompanying the
formation of one mole of a pure substance at
1 bar from its elements in their reference
state at 1 bar all at temperature (T), T
chosen conventionally to be 298.15 K.

elements —» compound



standard enthalpy of combustion A, H—
the enthalpy change per mole of a pure
substance at 1 bar reacting with O,(gas) at 1
bar to form COy(gas) at 1 bar and H,O(liquid
or gas) at 1 bar at temperature (T), T chosen
conventionally to be 298.15 K, in which case
it involves H,O(liquid).

(standard) reaction enthalpies can be
obtained from a combination of various
enthalpy changes. So long as the net reaction
is the same, no matter how the net chemical
equation s arrived at, the net enthalpy change
is the same because H is a state function.

For example for the reaction at 1 bar
CsHs(lig, 298.15 K)
+ (15/2)04 (g, 298.15 K)
— 3H,0(liq, 298.15 K)
+ 6CO, (g, 298.15 K)
Aran =7?



We could use the sum of the following
reactions, all at 298.15 K and 1 bar and AfH@"

of each:
—{ 6C(s) + 3Hx(g) — CeHs (liq) }
+ 3 { Ha(g) + (1/2)02(g) — HxO(liq ) }
+6{C(s) + O2(9) — CO2(9) }

AsaH = — ArH” (CoH (liq)
+3 ArH (H,0(liq)) + 6 AH (CO2 (g))

or we could use the sum of the following
reactions, all at 298.15 K and 1 bar and A, HT
of each:

CeHe (liq)) — 6C(g) + 6H(9)
+(15/2) { O2(g) — 20(9) }
-3{H0(lig) — 2H(g)+0O(9)}
-6{CO2(g) — C(g)+20(9)}

AnaH = AaHT (CoHs (lig) +(15/2)As¢ HZ (02 (9))
~3AH® (H0(lig)) — 6A, HT (CO, (9))



2.12 Temperature Dependence of Reaction
Enthalpy Changes

Again, because H is a state function, we can
make up a convenient process

to calculate A, H(T') from Ann H(298.15K).
For example for the reaction
C@He(g, 1 bar, 600 K)

+ (15/2)0, (g, 600 K)
> 3H,0(g, 600 K) + 6CO, (g, 600 K)

If we already know A, H(298.15K),

what is AmnH ©(600 K) = ?



We can add to our previous equation at
298.15 K the following, all at 1 bar:

—{a} — {b} — {c} —(152){d}+3{e}+3{f}+3{g}+6{h}

CeHs(liq, 298 K) —> CeHg(liq, 353 K)  (a)
CeHs(g, 353 K) — CsHe(g, 600 K) (c)

0, (g, 298 K) — O, (g, 600 K) (d)
H,O(liq, 298 K) — H,O(liq, 373 K) (e)
H,O(lig, 373 K) — H,0(g, 373 K) (f)
H,O(g, 373 K) — H,0O(g, 600 K) (g)

CO, (g, 298 K) — CO, (g, 600 K) (h)

and the A H for each is easily calculated as

either Ayap H or from AH = JdeT
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