3 Introduction to the Second Law of
Thermodynamics

The First Law introduces a state function, the
internal energy U. the First Law permits us to
assess What changes are permissible? only
those changes may occur for which the
internal energy of an isolated system
remains constant.

The Second Law introduces a state function,
entropy S. The Second Law permits us to
identify the spontaneous changes among
those permissible changes. Is one state of
the system accessible from another state of

the system by a spontaneous change?

To prepare a foundation for the mathematical
definition of entropy we consider
characteristics of cyclic transformations, in
particular the Carnot cycle.



3.1 The Carnot Cycle
Sadi Carnot investigated the principles
governing the transformation of thermal
energy heat into mechanical energy, work.
He based his discussion on a cycle of 4
reversible steps:

step 1. Isothermal expansion

step 2. Adiabatic expansion

step 3. Isothermal compression

step 4. Adiabatic compression

The material composing the system is
confined in a cylinder fitted with a piston. The
cycle uses two heat reservoirs, one reservoir
at a higher temperature T, and the other
reservoir at a lower temperature T,.

heat reservoir — a system which has the
same temperature everywhere within it, this
temperature is unaffected by the transfer of
any desired quantity of heat into or out of the
reservoir.



The mass of the system is fixed; the state
can be described by any two of p, V, or T.
The original state: The cylinder is immersed
in a heat reservoir at temperature T, , under
which conditions the material has volume V,
and pressure p, .

step 1. Isothermal expansion

In this step, the system is expanded
iIsothermally from the initial volume V, to a
volume V5.

The cylinder is now taken out of the
reservoir, insulated, and then,

step 2. Adiabatic expansion

The system is expanded adiabatically from
Vs 1o V. In this step the temperature of the
system drops from T, to a lower temperature
T..

The insulation is removed and the cylinder
placed in a heat reservoir at T,. and then,



step 3. Isothermal compression

The system is compressed isothermally (at
T.)from V, to V,.

The cylinder is removed from the reservoir
and insulated again, and then,

step 4. Adiabatic compression

The system is compressed adiabatically from
Vp to V,, the original volume. In this
adiabatic compression, the temperature rises
from T, to T, , the original temperature.

Thus, the system is restored to its initial
state.
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W, = Wi+ W,+ W;+ W,

qcy = Qh + qc

AUcy =0= ch t qcy 'ch =Qqu * dc

If W,, is negative (work has flowed from the
system across the boundary and appeared in
the surroundings), any work produced by the
system has been produced at the expense of
the thermal energy of the surroundings. that
s, heat (g, + q.) has flowed from the

surroundings to the system at the same time.

It is possible to devise a cycle so that work
appears in the surroundings. It can be done
In ways using reservoirs at many different
temperatures, or it can be done using only 2
reservoirs at different temperatures, as in the
Carnot cycle. Experience has shown that
(Kelvin's statement of the Second Law:) it is
Impossible for a system operating in a cycle
and connected to a single heat reservoir to
produce a positive amount of work in the
surroundings.



Experience shows that if a heat engine
operates between two temperature
reservoirs so that a positive amount of work
appears in the surroundings, i.e., -W., >0,
then q, the heat withdrawn from the high
temperature reservoir is positive (heat flows
from the high temperature reservoir to the
system) and q_ the heat withdrawn from the
low temperature reservoir is negative (heat
flows from the system to the low temperature
reservoir) .
efficiency of a heat engine — ratio of the
work produced in the surroundings to the
quantity of heat extracted from the high-
temperature reservoir.

&= "ch /i dn
For the Carnot cycle, -W,, = q, + q.
sothate =(q, +q.)/q, =1+(q:/q,) <1
The efficiency is the fraction of the heat
withdrawn from the high-temperature
reservoir which is converted into work in the
cyclic process.



Consider the efficiencies of two engines

operating in a cycle between the same two
heat reservoirs. /s it possible that the

efficiencies of these two engines are
different?

Let two engines E, and E' both operate in a
cycle between the same two heat reservoirs.
The engines may be designed differently and
may use different working substances. Let E,
be a reversible engine and E’ any engine at
all, reversible or not.

For engine E,, reversible, therefore

-We, =q, +q, forward cycle

-(-Wey) =-(qy +q.) reverse cycle
For the engine E’

-We, " =q," *+q, forward cycle

Suppose we run engine E. in its reverse
cycle and couple it to engine E' running in
the forward cycle. For this composite engine,
ch+ 'ch' :'(Qh +qc) +Qh’+QC'

just by summing the individual effects of the
appropriate cycles. Let us adjust E, so that



the composite engine produces no work in
the surroundings, i.e., adjust E, until

w,, -W,’'=0.
Then, 0=-(q,+q;) +q, "+ q.

or (qh - Gp ’)= - (qc 'QC!)

What if the efficiency of E’ is greater than E,?

Thenv‘g’:(ch’)/qh, > Sz(ch)/Qh
Then,14," > 1/, orq,>q,’
In summary
E, reverse | E' forward | composite
engine
Work W, -W,, ' 0
produced
Heat out ~Qh qn On' - Gn= -
of T,
Heat out -qc qc’ qc'-gc=+
of T,
Firstlaw | W, -q, |-W,/ +q) 0=
-q,=0 +q, = (94’ - qp)
+ (9. -90)




Note what we have here, the system has a
negative heat (q, - g,), that is, the composite
engine puts a positive quantity of heat into
the reservoir at T,, and extracts an equal
quantity of heat from the reservoir at T..
What a gadget! We could imagine the cold
end to be the inside of an icebox and the hot
end to be the inside of an oven. Our engine
will neither create nor use work, but manage
to pump heat from the cold end to the hot
end, all without benefit of Commonwealth
Edison. This is impossible to build (perpetual
motion machine of the second kind).

The argument which led to this impossible
engine was based only on the First Law and
the assumption that the efficiency of E’ is

greater than E/! Therefore, the efficiency of
any engine must be less than or equal to the
efficiency of a reversible engine, both
operating between the same two
temperatures. ¢ <¢




Now consider two reversible engines with
efficiencies ¢' and ¢”. since the second one is
reversible, the efficiency of the first must be
less than or equal to the second. ¢’ < ¢". But
the first is reversible so ¢ < ¢’ also.

Thus, &' = ¢ must be true.

All reversible engines operating between the
same two temperature reservoirs have the
same efficiency.

The equality dictates that the efficiency of a
reversible engine does not depend on the
working substances in the engine, only the
temperatures of the reservoirs. Hence the
efficiency of reversible engines is a function
only of the temperatures of the reservoirs.

e =1f(T,,T,). Since any substance used in the
reversible engine gives the same efficiency,
make it an ideal gas for easy calculations.



step

general case

ideal gas

AU:qh + W,

0= Oh 'RThIn(VB/VA)

AU:WZ

jcydT =W,
CydT/T= -RdV/V

CyIn(T/Ty) =

-RIN(Vc/Vs)

w

AU:qC + W,

0=09. -RTIn(Vp/V¢)

AN

AU:W4

JCudT =W,
C\dT/T=-RdV/V
CIn(Ty/T,) =
'Rln(VA/VD)
W4 =

cycle

Wy =
W1 +Wo+W3+W,

ch —- RThln(VB/VA)
+JTCTthdT
-RT.In(Vp/V¢)
+ M CodT
= - R(Th-T¢) In(Ve/Va)

from steps 2 and 4: In(Vc/Vg) = -In(VA/Vp) oOr
VB/VA - VclVD




Wy, = - R(Th-T¢) In(Ve/Va) depends on the
temperatures of the two reservoirs and on the ratio
(Ve/Va) (the compression ratio) for an ideal gas as
the working substance in a reversible cycle.
Efficiency, €= - W./qn for any engine based
= (gn + dc) /an on 2 temperature
reservoirs

= R(Th-T¢) In(V/Va) for any
RTh In(Ve/Va) reversible
= (Th-T)/Th = 1- (Tc/Ty)  cycle

For reversible cycle

& = (qh,rev + qc,rev) /Qh,rev

— 1+(Qc,rev /qh,rev) =1- (Tc /Th)
Therefore,
(qc,rev /qh,rev) + (TC /Th) - O; or
(qc,rev /TC) + (qh,rev /Th) =0

Here is something which when summed up for
the cycle Is zero, i.e., a state function!
erqrev /T — O



3.2 The Thermodynamic Definition of Entropy

We have actually shown this only for
reversible cycles that involve only 2
temperatures, but can generalize the
proof to any cycle whatsoever by
constructing appropriate combinations of
Carnot cycles.

Define dS =0Qqe, /T an exact
differential



3.3 The Clausius Inequality
For irreversible cycles,
g” =[1+(qc /gn)] < [1+(qcrev /qn,rev)]-
By constructing composite cycles with
irreversible cycles and running in reverse
some of them, it can be shown that;

For other (not reversible) cycles

éhq:'rrev /T <0

For any change in state,
thIrrev/T < JhQrev/T = AS

or AS > f 0Girev/ T Clausius inequality

The Clausius inequality can be applied
directly to changes in an isolated system.
For any change in state in an isolated
system, 0g;r, = 0 since no heat goes in
or out of the system. The inequality then
becomes

dSisolated system >0



That is, the requirement for a real
transformation in an isolated system is
that dS be positive, the entropy must
Increase.

Any natural change occurring within an
isolated system is attended by an
iIncrease in entropy of the system. The
entropy of an isolated system continues
to increase so long as changes occur
within it. When the changes cease, the
Isolated system is in equilibrium and
entropy has reached a maximum value.
Therefore, the condition of equilibrium in
an isolated system is that the entropy
have a maximum value.



That is, the requirement for a real
transformation in an isolated system is
that dS be positive, the entropy must
Increase.

Any natural change occurring within an
Isolated system is attended by an
increase in entropy of the system. The
entropy of an isolated system continues
to increase so long as changes occur
within it. When the changes cease, the
isolated system is in equilibrium and
entropy has reached a maximum value.
Therefore, the condition of equilibrium in
an isolated system is that the entropy
have a maximum value.



The First Law: dU = 0 + oW
If only pressure-volume work is done,
then in a reversible transformation (p,, =

anS)’ dU = bqrev -pdV

Divide by T:
dU = Qgﬂﬂ - P dVv
T T T

using the definition of dS
dU=dS - pdV

T T
dS =dU+ pdV

T T general
or

duU = TdS - pdV
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