4. Entropy Changes accompanying specific
processes, the Third Law of
Thermodynamics

4.1 Entropy Changes in Isothermal
Transformations, Trouton’s rule

From the definition
dS=10q,, /T

For an isothermal reversible process,
AS = Qrev /[T

EXAMPLE:

For an isothermal expansion of n moles
of an ideal gas, AU =0

so that g = -W whether the process is
carried out reversibly or not.

If carried out reversibly, Pop = Pgas
-W=nRTIn (V:/V,)= Qe

AS = Qe /T =nRIn(V,/V;) =nR In (p:/py)



EXAMPLE:
For reversible heating and cooling,
AS = th,.eV/T: erevdT/T

Generally C=a + bT + TP+ ...
If constant volume, use C,. If constant
pressure use C,.

EXAMPLE:
For a reversible transition at temperature
T, at constant pressure,

Az‘ranss = Atransl'i / Ttrans
for example, A,pS = A,pHIT,
For many liquids, the entropy of
vaporization has approximately the same

value (Trouton’s rule) :
AvapS ~ 85 J mol™ K™ or 21 cal mol™ K™’

This empirical observation permits

estimation of A,,, H> from boiling points.



4.2 Entropy as a Function of Temperature
and Volume

In a reversible transformation, p,, = pyas,
so that dU = 0q,e, - pdV =T7dS - pdV
ordS = (1/T)dU +(p/T)dV

dU=C,dT + (6U/V);dV
dS = (1/T{C,dT +(0U/0V)+dV} +(p/T)dV
dS = (1/T)C,dT + (1/T){p + (oU/6V)7} dV
dS = (0S8/07),,dT + (0S/0V)+dV
Thus we identify
(0S/0V)r= (1/T)p + (0U/V):} = (6p/oT)y

Thus,
dS =((1/T)C, dT + (op/oT), dV



Since C,/ /T is always positive, the above
expresses the important fact that at
constant volume the entropy increases
with increase in temperature.

EXAMPLE:

Changes in entropy for an ideal gas:

dS = (1/T)C, dT + (0p/0T),, dV general
For an ideal gas (0p/0T),, = R/V

AS = JCVdT/T + fRdV/V

EXAMPLE:
At constant volume, for any substance
AS = J CAAdl/T



Aside: More properties of exact
differentials

The total differential of a function of two
variables f{(x,y) is written in the form

df= '"aI“dX + Qf‘dy

ox Ay o of
‘Since the differential coefficients 5’; "5;
are functions of x and y, we may write

0
M(x,y) = -éfx— N(x,y) = Q{_

and we get 2

df'= M(x,y)dx + N(x,y)dy

We can form second derivatives of the

function f(x,y): azf azf azf 62f
Ox* oy*  oxdy Oyox

Of these four, only three are distinct. The

order of differentiation with respect to two

variables such as x and y does not matter
and the mixed derivatives are equal

’f 0
oxdy  Oyox




et us differentiate M(x,y) = él with

respect to y, Ox
(OM/Oy) = o'f and
Oyox
differentiate N(x,y) = -5y— with respect to x,
(ON/OX) = o°f
| Ox0y

But since the order of differentiation does
not matter, (0M/0y)= (ON/OX). These are
sometimes called “cross derivatives”
because of their relation to the total
differential df = M(x,y)dx + N(x,y)dy.

In summary,
for df = M(x,y)dx + N(x,y)dy.
(OM/oy)= (ON/Ox) holds.



On the other hand,
R(x,y)dx + O(x,y)dy

is an exact differential if and only if
(OR/Oy)= (0Q/0x). If this is true then there

must exist some function g(x,y) such that
dg = Rdx + Ody.

When we apply the cross derivative rule
to fundamental equations, we obtain
additional fundamental relations called

the Maxwell relations.



4.2 Entropy as a Function of Temperature
and Volume

Whatis (dU/V)y ?
First law dU = dq + oW, dW = - p,,dV
Second law dS= 0Qe/T
In a reversible transformation, p,p = Pgas
so that dU = 0qyey - pdV
dU =TdS - pdV

ordS = (1/T)dU +(p/T)dV
Uis a function of T and V,
dU = CydT + (AU/eV)rdV

Cross derivatives give us

(EC/N)r = (FUIETHV)

Substitute dU

dS = (1/T{CydT +(U/V) 7 dV} +(p/T)dV

dS = (1/T)CydT + (1/T){p + (U/V)7} dV

Cross derivatives give us

(A/THECYN)r = - (1/T)p + (V)7
+(A1/TR(D/ET)\+(FULSTV)}




leading to

(1/T)p + (AUV)7}y = (1/T)(/ET)y
(1/T){p + (W V)7} = (p/T)y
which lead to two important results:

(/)= T(P/T)y -p

dS = (1/T)CydT + (1/T){p + (U/&V)1} dV

compare directly with

dS = (8/0T),dT + (8S/oV)rdV

Thus we identify

(cS/cT)y = (1/T)Cy

(8S/V)r = (THp + (AUN)7} = (p/T)y
(0S/V)r = (p/AT)y

Thus,
dS = (1/T)Cy dT + (cqp/cT)y dV




Since Cy/T is always positive, the above
expresses the important fact that at
constant volume the entropy increases
with increase in temperature.

EXAMPLE:

Changes in entropy for an ideal gas:

dS = (1/T)Cy dT + (ap/JT)y dV  general
For an ideal gas (p/JT)y = R/V

AS = jCVdT/T +fRdV/V

EXAMPLE:
At constant volume, for any substance

AS = fCVdT/T



4.3 Entropy as a Function of Temperature
and pressure

What is (cH/op)r ?
First law dU = g + oW, aW = - p,,dV
Second law dS= 0Qe/T
In a reversible transformation, po, = pgas
so that dU = 0dqey - pdV
dU =T7dS - pdV
ordS = (1/T)dU +(p/T)dV
H=U+pV
dH =dU +pdV + Vdp
dU =dH -pdV - Vdp
dS = (1/T){dH-pdV - Vdp } +(p/T)dV
dS = (1/T)Y{dH - Vdp }
H is a function of T and p,
dH = C,dT + (dH/ép)rdp
Cross derivatives give us

(BCy/p)r = (FH/FTp)

Substitute dH




dS = (1/T) C,dT + (éH/ép)dp - Vdp }

Cross derivatives give us

(/TEC/p)r =- (VTN (AH/Gp)r- V)
+(1/TR-(N/ET) y+(FHIET )}

leading to

(/TR (H/2d)7- V Y= -(1/T)(V/ET),
(1IT) { (HIZD)7- V' } = (V/ET),
which lead to two important results:

(AH/3p) 7= -T(V/ET), +V

dS =(1/T)CpodT + {(cH/p)r- V } dp
compare directly with

dS = (58/T),dT + (&8/cp)+dp

Thus we identify

(S/aT), =(1/T)C, and

(8/p)r = (V/TR(H/P)r-V } = -NV/T),

(88/p)r = _~(V/aT)p

Thus,  dS = (1/T)C, dT - (&V/&T), dp



dS = (1/T)C, dT - (eV/2T), dp
Since C,/T is always positive, the above
expresses the important fact that at
constant pressure the entropy increases
with increase in temperature.

EXAMPLE:

Changes in entropy for an ideal gas:

dS =(1/T)C, dT - (eV/JT), dp  general
For an ideal gas (&V/oT), = R/p

A8 = f CdT/T - J’ Rdp/p

EXAMPLE:
At constant pressure, for any substance

AS = Jde /T



To summarize, we have derived:

(U/V) 1 and (AH/cp)r from the equation
of state

(AU/N)r= T(0/ET)y -p
(GH/p) = -T(V/ET), +V

and
dS = (1/T)Cy dT + (do/OT)y dV
dS = (1/T)C, dT - (eV/2T), dp




EXAMPLE:
The entropy of a system at a temperature

T is related to its entropy at T = 0 by
means of the calculable changes in
entropy that accompany the temperature
and phase changes in taking the system
from O K to temperature T.

n
Melt
/ Boil

Debye
approximatio

AtsS




dS = (1/T)C, dT - (3V/oT),dp

(at p = 1 bar)

Standard entropy of a substance S°;

S° =8¢+ f C, dT/T + ...
0

At zero K the entropy has its smallest
algebraic value, S, k. The entropy at any
higher temperature is greater than S; «

The Third Law of Thermodynamics
defines the value of §y« :

All perfectly pure, perfectly crystalline
materials have the same entropy at
absolute zero.

The entropy of a pure, perfectly
crystalline substance is zero at the
absolute zero of temperature.



Standard entropy of a solid S
Is sometimes called third law entropy
because the value is based on Sy« = 0.

Since a change in the state of
aggregation (melting, vaporization,
change in crystalline form) involves a
change in entropy, these contributions
must be included in computation of the
entropy of a substance at temperature T.

EXAMPLE:
Solids at very low temperatures

How to do the integral?
f "'C, dT/T
0

C, behaves asymptotically as ar’
(Debye T-cubed law) at very very low
temperatures, so that the integral has a
finite value (’1/3)617“3 .



EXAMPLE.
Calculate the standard molar entropy of

nitrogen gas at 25°C.
JK' mol™

Debye extrapolation 0 to 10 K 1.92
Integration, 10 K to 35.61 K 25.25

Phase transition at 35.61 K 6.43
ntegration, 35.61 Kto 63.14 K 23.38
—usion at 63.14 K 11.42
ntegration, 63.14 Kto 77.32 K 11.41
Vaporization at 77.32 K 7213
Integration, 77.32 K to 298.15 K_41.12
192.06

using Atrans® = AgransH  Tirans

and JT’ C, dT/T
-



General trends in the values of standard
molar entropies:

1. Entropies of gases are larger than
those of liquids, which are larger than
those of solids.

2. The entropy of a series of gases
iIncreases logarithmically with the mass.
3. Comparing gases having the same
mass, Ne, HF, H20 for example, entropy
IS greater for greater number of degrees
of freedom.(translation, +2, +3 rotations)
4. Solids built structurally with single
simple unit: higher cohesive energy,
lower entropy

5. Solids built structurally of a single
complex unit: lower cohesive energy (van
der Waals forces), higher entropy.

6. Where complex units occur in the
crystal, the entropy is greater due to
additional degrees of freedom




The molecular interpretation of entropy

The entropy of a system in a definite
state can be related to what is called the
probability of that state of the system.
For this we need a structural model.

If we consider the system as made up of
particles (for example rare gas atoms):
The entropy of a system in a specified
state can be defined in terms of the

number of possible arrangements of the
particles composing the system which
are consonant with the state of the
system. Boltzmann defined (statistical
mechanical) entropy by the equation:

S=kglnQ



When the constraints are simple and the
system is sufficently small, it is possible
to look at each way of arriving at a
physical state, that is it is possible to
count out each of the “arrangements” in
the total number of arrangements Q.

EXAMPLE

Consider a pair of dice. Question: What is
the most probable sum? Answer: That
sum which corresponds to the largest
number of distinguishable ways Q of
getting it.

The “physical state” in this example is
defined by having a specific value of the
property called “sum”.

Q2 , the number of possible arrangements
which are consonant with the physical
state of the system, is the number of
distinguishable ways of ending up with a
given value for the property called “sum”.
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PRRB®OE®D®...
N particles into 3 levels

A 103 d

Consider level A. Suppose 3 particles

are to be in level A:

There are N choices for picking the first

particle, there are (N-1) choices for

picking the second one, and (N-2)

choices for picking the third. That is, there

are N(N-1)(N-2) ways of selecting three

particles from N particles.

S0 suppose we happened to pick the

particles ©@® :

The same occupancy (three particles in

level A) results whether we picked them

In the order @first, @ second, @ last

or in the order @3 ®

or in the order @0©®, etc. 3! ways in all
read this as “3 factorial”, 3! = 3x2x1




To get the number of distinguishable
ways of picking, we have to
divide N(N-1)(N-2) by 3!

Now consider level 3. Suppose 2
particles are to be in level 13:
There are (N-3) choices for picking the
first particle, there are (N-4) choices for
picking the second one. Then the number
of distinguishable ways of picking
particles to go into level 13 is

(N-3)(N-4)/2!

Consider level (I. Suppose 3 particles
are to be in level U:
There are (N-5) choices for picking the
first particle, there are (N-6) choices for
picking the second one, .... Then the
number of distinguishable ways of picking
particles to go into level I is
(N-5)(N-6)(N-7)/3!



Altogether, the number of distinguishable
ways of picking particles to go into level
A, 13, and { such that the occupancies
are 3, 2, and 3 respectively is

{N(N-1)(N-2)/31} x {(N-3)(N-4)/21}

x {(N-5)(N-6)(N-7)/31}
or
N(N-1)(N-2)(N-3)(N-4)(N-5)(N-6)(N-7)

3121 3

Now suppose we have a large number of
levels and we want to distribute all the N
particles among the levels, such that
there are n, particles in level A, ny;
particles in level 13 etc. then the number
of distinguishable ways of doing this is

Q= NI
nA! n{@! n(g! nzg! .......




When N particles are indistinguishable
from one another, the number of possible
arrangements, Q, of distributing these
particles among states having energies
€1, €g, ... 1S the number

Q) = NI /{n1! n2! n3! n4! }
where n, particles are in g4 etc.

If each has 1 or zero occupation, then
this would give the largest possible value
of Q and would correspond to the largest
possible value of entropy.

On the other hand if all were crowded
together into the first level, then 2 would
be very much smaller than that of a broad
distribution.

To achieve a high entropy then, the
particles would have to be spread out into
as broad an energy distribution as
possible.



The internal energy of the system would
be U= nyeqt+ &N, + £5ng+ g4ny +...

When U is small this greatly limits the
occupancies of higher values of g; , thus
limits severely the number Q. If the
internal energy of the system is increased
the distribution can be broader, the
number QQ and S of the system goes up.
This is the statistical interpretation of the

fact illustrated by the fundamental
equation dS = (1/T)dU +(p/T)dV.

Now consider the spatial distribution also.
Imagine space being divided up into tiny
voxels, and the N particles being
distributed into voxels such that there are
n, in voxel 1, ... etc. By increasing the
volume, the spatial distribution broadens.



The broader distribution in energy or
space is the more probable one since it
can be made up in greater number of
ways.

In a pure crystal the atoms are located in
an exact periodic pattern. There are N!
ways of arranging the atoms but since
the atoms are identical these
arrangements differ only in the order of
choosing the atoms. Since the
arrangements are not unique we must
divide by N! and so we obtain

Q = NI/N!'=1 for the perfect crystal

S = kB In Q

S = kg In(1) = 0 for the perfect crystal
This is the statistical interpretation of the
Third Law.



Entropy of mixing
Suppose we arrange two kinds of atoms
A and B on the N sites of a crystal.

Ny + Ng=N

Q = N!' /N,y INg!

S =kgIn Q =kg In{ NI /Na INg!'}
In Nl'= N In N -N for very large N
S = kg { NInN —=N4 In Npo —Ng In Ng
— N+ Np+ Ng }

In terms of mole fractions
| NA = XAN, NB = XBN
- — (B{NA In NA+ NB In NB_ NlnN}

S = — kg { XaN InxsN + xgN InxgN — NInN}
= — kg N { x5 InXsN+ X5 In xgN - InN}

S=—-kg N{Xalnxs+ XgIn xB}
IS positive
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