## Problem Set 2 <br> On Eigenvalues and Eigenfunctions

Some useful identities:

$$
\boldsymbol{i} \equiv \sqrt{ }-1 \quad \exp (\boldsymbol{i} x) \equiv \cos x+\boldsymbol{i} \sin x \quad \exp (-\boldsymbol{i} x) \equiv \cos x-\boldsymbol{i} \sin x
$$

1. (a) Show that $\exp [a x]$ is an eigenfunction of the operator $d / d x$, and find the corresponding eigenvalue.
(b) Which of the following functions are eigenfunctions of the operator $\mathrm{d} / \mathrm{dx}$ and which of $\mathrm{d}^{2} / \mathrm{dx}^{2}$ ? Give the eigenvalues where appropriate.
(i) $\exp (i k x)$
(ii) $\cos (\mathrm{kx})$
(iii) $\exp \left[-a x^{2}\right]$
2. An eigenvalue equation that we will encounter in this course has the form $d^{2} / d^{2} \Psi(x)=-C \Psi(x)$, where $C$ is a positive constant. Find the general form for the eigenfunction $\Psi(x)$. To the extent possible, evaluate the constants that appear in the equation in terms of the constant C .
HINT: The only two common functions whose second derivative is a constant times the function itself are exponentials and trigonometric sine or cosine functions.
Thus, investigate two possibilities for the general form for the eigenfunction $\Psi(\mathrm{x})$ :
Possibility 1: $\Psi_{1}(\mathrm{x})=\mathrm{A} \sin (\mathrm{bx})+\mathrm{B} \cos (\mathrm{bx})$
Possibility 2: $\Psi_{2}(\mathrm{x})=\mathrm{A} \exp (\mathrm{bx})+\mathrm{Bexp}(-\mathrm{bx})$
In both possibilities b is real.
3. Another eigenvalue equation that we will encounter in this course has the form $d^{2} / d^{2} \Psi(x)=+C \Psi(x)$, where $C$ is a positive constant. Find the general form for the eigenfunction $\Psi(\mathrm{x})$. To the extent possible, evaluate the constants that appear in the equation in terms of the constant C . See above problem for the hint.
