Problem Set 2 On Eigenvalues and Eigenfunctions

Some useful identities:

 $i \equiv \sqrt{-1}$ $\exp(i x) \equiv \cos x + i \sin x$ $\exp(-i x) \equiv \cos x - i \sin x$

- 1. (a) Show that exp[ax] is an eigenfunction of the operator d/dx, and find the corresponding eigenvalue.
 - (b) Which of the following functions are eigenfunctions of the operator d/dx and which of d^2/dx^2 ? Give the eigenvalues where appropriate.
 - (i) exp(*i*kx) (ii) cos(kx)
 - (iii) $exp[-ax^2]$

2. An eigenvalue equation that we will encounter in this course has the form $d^2/dx^2\Psi(x) = -C\Psi(x)$, where C is a <u>positive</u> constant. Find the general form for the eigenfunction $\Psi(x)$. To the extent possible, evaluate the constants that appear in the equation in terms of the constant C.

HINT: The only two common functions whose second derivative is a constant times the function itself are exponentials and trigonometric sine or cosine functions.

Thus, investigate two possibilities for the general form for the eigenfunction $\Psi(x)$: Possibility 1: $\Psi_1(x) = A \sin(bx) + B\cos(bx)$ Possibility 2: $\Psi_2(x) = A \exp(bx) + B\exp(-bx)$

In both possibilities b is real.

3. Another eigenvalue equation that we will encounter in this course has the form $d^2/dx^2\Psi(x) = +C\Psi(x)$, where C is a <u>positive</u> constant. Find the general form for the eigenfunction $\Psi(x)$. To the extent possible, evaluate the constants that appear in the equation in terms of the constant C. See above problem for the hint.