Problem Set 4

On Expectation Values

1. Calculate the mean position $\langle\mathrm{z}\rangle,\left\langle\mathrm{z}^{2}\right\rangle$, the mean momentum $\left\langle\mathrm{p}_{\mathrm{z}}\right\rangle$ and the mean kinetic energy $\left\langle\mathrm{E}_{\text {kin }}\right\rangle$ for a physical system of mass m in a state described by the state function

$$
\Psi=[2 / \mathrm{b}]^{1 / 2} \sin [\pi \mathrm{z} / \mathrm{b}]
$$

where b is a positive constant having the dimensions of length, the system has one degree of freedom, and the integration goes from 0 to b.
You may find it helpful to organize your solution to this problem in the following fashion:

Physical quantity	z	z^{2}	p_{2}	$\mathrm{E}_{\text {kin }}$
Operator				
Op Ψ				
$\Psi * О р \Psi$				
Integration $\int_{\mathrm{X} \sin ^{2}} \mathrm{axdx}=1 / 4 \mathrm{x}^{2}$ - ($1 / 4 a) x \sin 2 a x$ $-\left(1 / 8 a^{2}\right) \cos 2 a x$ $\int \mathrm{x}^{2} \sin ^{2} a \mathrm{xdx}=$ (1/6) x^{3} - $\left[(1 / 4 a) x^{2}-\right.$ $\left.\left(1 / 8 a^{3}\right)\right] \sin 2 a x$ $-\left(1 / 4 a^{2}\right) x \cos 2 a x$ $\int \sin ^{2}(a x) \mathrm{dx}$ $=1 / 2 \mathrm{x}$ - (1/4a) $\sin (2 a x)$				
Expectation value	$\langle\mathrm{z}\rangle=$	$\left\langle z^{2}\right\rangle=$	$\left\langle\mathrm{p}_{\mathrm{z}}\right\rangle=$	$\left\langle\mathrm{E}_{\text {kin }}\right\rangle=$

The classical average $\left\langle\mathrm{z}^{2}\right\rangle$ is $(1 / 3) \mathrm{b}^{2}$
Show that the quantum mechanical expectation value approaches this classical value for this physical system.

