
Problem Set 5 Answers 
More Separation of Variables, Postulates 0-3 

 
1.  (a) H (x) Ψ(x)  = E Ψ(x) 
 [- (h2/2m) d2/dx2 + ½ mω2x2 ] [2ωm/h]¼ exp[-πωmx2/h)]  
      = E[2ωm/h]¼ exp[-πωmx2/h] 
(b) To prove Ψ(x) is an eigenfunction, substitute and see if it satisfies the equation. 
 d/dx exp[-πωmx2/h] = -2(πωm/h)x exp[-πωmx2/h] 
 d2/dx2 exp[-πωmx2/h] = -2(πωm/h)[1- (2x2πωm/h)] exp[-πωmx2/h] 
 
 - (h2/2m){ -(2πωm/h)[1- (2x2πωm/h)] exp[-πωmx2/h]}  
                                                                   + ½ mω2x2 exp[-πωmx2/h)] = E? 
 - (h2/2m){ -(2πωm/h)[1- (2x2πωm/h)] } + ½ mω2x2 = E? 
 -½ mω2x2 + (h2/2m)(2πωm/h) + ½ mω2x2 = E? 
 ½ hω = E     Yes Ψ(x) satisfies the equation and gives the eigenvalue. 
(c) linear momentum operator is  (h/i)d/dx. The average value of linear momentum in this 
 state is given by Postulate 3: 
 〈px〉 = ∫-∞∞ Ψ(x)* (h/i)d/dxΨ(x)dx   
       =  (h/i) [2ωm/h]½ ∫-∞∞ exp[-πωmx2/h] d/dx exp[-πωmx2/h]dx  
 is of the form ∫ ydy 
       =  -(h/i) [2ωm/h]½ ½ exp[-2πωmx2/h]|-∞∞ 

       = 0 
(d) root mean square linear momentum = 〈px

2〉½ 

 the second deriv found already is  -(2πωm/h)[1- (2x2πωm/h)] exp[-πωmx2/h]} 
 〈px

2〉 = -h2 [2ωm/h]½ ∫-∞∞ exp[-πωmx2/h]d2/dx2 exp[-πωmx2/h]dx 
          = -h2 [2ωm/h]½ ∫-∞∞ exp[-πωmx2/h]• -2(πωm/h)[1- (2x2πωm/h)] exp[-πωmx2/h]dx 
    = h2 [2ωm/h]½ (2πωm/h) ∫-∞∞ [1- (2x2πωm/h)] exp[-2πωmx2/h]dx 
 integrals are of the form ∫0∞ exp(-a2x2)dx = (1/2a)(π)½      for a > 0 
             ∫0∞ x2 exp(-ax2)dx = (1/4a)( π/a)½  a > 0 
 first term in integral is  (1/2a)(π)½   where a2= 2πωm/h,    
 first term = (h/8ωm)½  
 second term in integral is (-2πωm/h)• (1/4a)( π/a)½ where a = 2πωm/h, 
 second term =  (-2πωm/h)•h/8πωm•( h/2ωm)½ = - ½( h/8ωm)½  

 Since integrating from -∞ to ∞, multiply result of  ∫0∞ by 2. 
 〈px

2〉 = h2 [2ωm/h]½ (2πωm/h) • ( h/8ωm)½ =  h (ωm)/2  
        = hωm/2                      
 root mean square = 〈px

2〉½ =[hωm/2] ½  



(e) Probability of finding the particle within an infinitesimal distance dx of the position x 
 = (h/πωm)½ is given by Ψ*Ψ  
 Ψ*Ψ = [2ωm/h] ½ exp[-2πωmx2/h].  
 For x = (h/πωm)½ value is [2ωm/h] ½ exp[-2πωm/h (h/πωm)] =[2ωm/h] ½ exp[-2] 
(f) Average position of the particle is  
 〈x〉 =∫-∞∞ Ψ(x)* xΨ(x)dx = [2ωm/h] ½  ∫-∞∞xexp[-2πωmx2/h]dx =? 
 This integral is of the form ∫-∞∞ydy 
 〈x〉 =0 because exp[-∞] at both limits. 
(g) Root mean square position is 〈x2〉½ 

 〈x2〉 = ∫-∞∞ Ψ(x)* x2Ψ(x)dx= [2ωm/h] ½ ∫-∞∞x2exp[-2πωmx2/h]dx 
 This integral is of the form ∫0∞ x2 exp(-ax2)dx = (1/4a)( π/a)½  where a=2πωm/h,  
 multiply by 2 since integral is from -∞ to +∞. 
 〈x2〉 = h/4πωm = h/2ωm 
 〈x2〉½ = [h/2ωm] ½

(h)  Product of 〈x2〉½〈px
2〉½ is [h/2ωm] ½[hωm/2] ½ =h/2  

(i)  Diatomic molecule has mean displacement 〈(R-Req)〉 =〈x〉  = 0 in this state. Mean 
 square displacement is 〈(R-Req)2〉=h/2ωm 
 When m is increased to M, mean displacement is still 0, mean square displacement 
 = h/2ωM, decreases. Heavier isotopes have smaller mean square displacement, 
 smaller amplitudes of vibration than lighter isotopes. 
 
2.  (a) Schrodinger eq is   
{ - (h2/2m)[ ∂2/∂x2 +∂2/∂y2 +∂2/∂z2 ] +  ½ [κx x2 +  κy y2 +  κz z2] }Ψ(x,y,z) = E Ψ(x,y,z) 
 where κx = mωx

2 , κy = mωy
2  , κz = mωz

2. 
(b) How you would find the eigenfunctions and eigenvalues of this physical system; use 
 separation of variables: 
 Let Ψ(x,y,z) = P(x)•Q(y)•R(z) , substitute it into the Schr. equation: 
 { - (h2/2m)[ ∂2/∂x2 +∂2/∂y2 +∂2/∂z2 ] +  ½ [κx x2 +  κy y2 +  κz z2] } P(x)•Q(y)•R(z)  
          = E P(x)•Q(y)•R(z) 
  Then divide both sides of the equation by P(x)•Q(y)•R(z) to get 
 [- (h2/2m)∂2/∂x2 + ½ κx x2] P(x)    +    [- (h2/2m)∂2/∂y2 + ½ κy y2] Q(y)
                 P(x)                                                             Q(y) 
       +    [- (h2/2m)∂2/∂z2 + ½ κz z2] R(z)     = E 
                               R(z)  
 Since each term involves only x or only y or only z, then each must be equal to a 
 constant and the sum of the constants must equl the eigenvalue E 
 Therefore we find that we have to solve 3 equations, one in x, one in y, one in z. 



                  [- (h2/2m)∂2/∂x2 + ½ κx x2] P(x) = e P(x)  
 and the others look just like this except in the variables y and z. 
 We already have the eigenfunctions and eigenvalues of the x equation: 
        ϕ(x)  and energies are  (n +½)hω 
 Since the y and z equations are analogous then we know those eigenfuncitons and  
 energies as well. We need the x, y, z subscripts to identify the various quantum 
 numbers and harmonic frequencies which are different from each other  
 (since κx  ≠  κy  ≠  κz)  : 
   E =  (nx +½)hωx  +  (ny +½)hωy +  (nz +½)hωz

 Ψ(x,y,z)  = ϕ(x)• ϕ(y)• ϕ(z) 
 The eigenvalue for the ground state of the three-dimensional anisotropic 
 harmonic oscillator. 
   E =  (nx +½)hω x + (ny +½)hω y   + (nz +½)hω z  are the general eigenvalues of  
   this system  where nx  = 0,1,2,3,4 ...   ny  = 0,1,2,3,4 ... nz  = 0,1,2,3,4 ... 
   Ground state E = (0+½)hω x + (0+½)hω y   + (0+½)hω z
 
 The eigenfunction of the ground state of the three-dimensional anisotropic 
 harmonic oscillator. 
   Ψ(x,y,z) = ϕ(x)• ϕ(y) •ϕ(z)  
  = [2ωxm/h]¼exp[-ωxmx2/2h]•[2ωym/h]¼exp[-ωymy2/2h] 
        • [2ωzm/h]¼exp[-ωzmz2/2h] 
 
3. Since in the imaginary universe the gravitational terms exactly opposite and equal to 
 the e-e repulsion, then 
(a)  H = - (h2/2Mn) ∇n

2 - (h2/2me){∇1
2 + ∇2

2  + ∇3
2  +...}  -Ze2/r1 -Ze2/r2 -Ze2/r3 -Ze2/r4  ..  

 H  = - (h2/2μ){∇1
2 + ∇2

2  + ∇3
2  + ∇4

2 +...}  -Ze2/r1 -Ze2/r2 -Ze2/r3 -Ze2/r4  ... 
 H  Ψ(1, 2, 3, 4,...) = E Ψ(1, 2, 3, 4,...) can be solved by solving individual one-
 electron problems: 

{− (h2/2μ)∇i
2 +V(ri)}ψ( ri , θi , φi ) = Ei ψ( ri , θi , φi.) 

 
(b) For He atom in this universe,  
 {- (h2/2μ){∇1

2 + ∇2
2}  -Ze2/r1 -Ze2/r2}Ψ(1, 2) = E Ψ(1, 2) 

 
(c) Eigenfunctions are Ψ(1, 2) =ψ(r1,θ1,φ1)•ψ(r2,θ2,φ2)  
 where ψ(r1,θ1,φ1)= Rnl(r1)Θlm(θ1)Φ(φ1) in which the functions are the hydrogen 
 functions with Z=2. The eigenvalues are the hydrogen atom eigenvalues, -
 Z2/n2•e2/2a0



(d) Energy level diagram for He atom (not to scale) 
. 
. 
. 

 -----------------  2s 4s, 2s4p, 2s4d, 2s4f  -22(2-2+4-2) e2/2a0 = -1.25 e2/2a0
 ----------------- 2s3s, 2s3p, 2s3d    -22(2-2+3-2) e2/2a0 = -1.44... e2/2a0
 
 -----------------  2s2    -22(2-2+2-2) e2/2a0 = -2 e2/2a0
 
. 
. 
. 

 -----------------  1s 4s, 1s4p, 1s4d, 1s4f  -22(1-2+4-2) e2/2a0 = -4.25 e2/2a0
 ----------------- 1s3s, 1s3p, 1s3d    -22(1-2+3-2) e2/2a0 = -4.44... e2/2a0
 
 ----------------- 1s2s, 1s2p    -22(1-2+2-2) e2/2a0  = -5 e2/2a0
 
 
  ----------------- 1s2      -22(1-2+1-2) e2/2a0  = -8 e2/2a0
 
 
(e) Ground state energy = [-Z2/12-Z2/12]•e2/2a0 = -8 e2/2a0 This is much lower energy than 
 that of He atom in our universe, -2.904 e2/2a0 because the repulsion between the 
 two electrons has been nullified by the gravitational term in the imaginary 
 universe.  
 
(f) Atomic structure in this universe is predictable entirely from hydrogen atom states.  
 Energy level diagrams will be given entirely by a sum of -Z2{Σi(1/ni

2)} •e2/2a0 

 where the ni quantum numbers are assigned according to Pauli principle. Since 
 there is no “screening”, every electron sees the full charge of the nucleus.  Because 
 of this, the ground state energies will be much lower, the atomic radii will be much 
 smaller, the ionization energies will be greater than in our universe. Because the 
 relationship between the quantum numbers n,l,ml , s and ms are the same as in our 
 universe, the Periodic Table for the first 2 rows will be the same, as the filling H 
 1s; He 1s2; Li 1s22s degenerate with 1s22p; Be 1s22s2 degenerate with 
 1s22s2p,1s22p2; B 1s22s22p degenerate with 1s22s2p2, 1s22p3; C 1s22s22p2, 
 degenerate with 1s22s2p3, 1s22p4; N 1s22s22p3, degenerate with 1s22s2p4, 1s22p5; O 
 1s22s22p4, degenerate with 1s22s2p4, 1s22p5, F 1s22s22p5, Ne 1s22s22p6, Na 
 1s22s22p63s, degenerate with 1s22s22p63p, 1s22s22p63d; Mg 1s22s22p63s2, 
 degenerate with, among others, 1s22s22p63p2, 1s22s22p63d2; and so on. Note that Li 
 and Na will have a valence electron that is in the next higher n than the core, just as 
 in our universe. Similarly Mg will have 2 valence electrons that are in the next 



 higher n than the core. Al  1s22s22p63s23p, degenerate with, among others, 
 1s22s22p63d3; Si 1s22s22p63s23p2, degenerate with, among others, 1s22s22p63d4. 
 Since C and Si will have 4 valence electrons that are in the next higher n than the 
 core, they will have similar properties that arise from this. Thus, periodicity in 
 properties will be preserved in the imaginary universe, however, after the first two 
 rows, the positions of the elements in the Periodic Table of the imaginary universe 
 will be different from ours.  The inert gases will be different. Ne is a closed shell, 
 but the next closed shell is not Ar 1s22s22p63s23p6 degenerate with, among others, 
 1s22s22p63d8, instead it will be Z= 28 or Ni 1s22s22p63s23p63d10 . And then the next 
 closed shell will be Z= 60 or Nd 1s22s22p63s23p63d104s24p64d104f14 . There would 
 be no transition element series, because the d and f subshells will be degenerate 
 with the s and p subshells for the same n. Compare with ours below: The 
 imaginary universe will have a Periodic Table but different from ours starting from 
 the 3rd row. 

    



 As we have seen above, because of the degeneracies which remain in the various 
 subshells due to lack of screening in the imaginary universe, the closed shells come 
 with Z=2, 10, 18, 60, ..., so besides atomic radii being much smaller and ionization 
 energies much larger, the periodicity in the atomic radii and in the ionization 
 potentials will be very different from ours.  


