Answers to Problem Set 6

1. First the function has to be normalized:

Y= 04\|!1 + 05\|12 + Cys t+ 03\V4
by setting | ¥*Wdr = 1
That y1, v, w3 ,\y4 are all the eigenfunctions of an operator T, means they are
individually normalized and they are also orthogonal to each other since they
correspond to different eigenvalues. Integrating leads to
,[\P*\Pd’t =1= (04)2 J. Y1 *\Vl d’C + (05)2 J. Y2 *\Vz d’C + (C3)2 J. Y3 *\|!3 d’C
+(0.3)% | wa *y4dt + all other integrals [y, *y, dr etc. are zero.
Cs*C3= 0.5, C3= 112

The fraction of the time the eigenvalue az will be observed is c3*c3= 0.5 Also a, a,,
a, will be found the following fractions of time: (0.4)?, (0.5)?, (0.3)

The expected average of T is given by Postulate 3:

[W*TWd: =

[ (0.4y; + 0.5y, + 1\2y3 + 0.3y,)*T (0.4y, + 0.5y, + 1N2y; +0.3y,) dr

= (0.4)*a, + (0.5)%a, +1/2 a3 + (0.3)* aq

The expected average of T° is given by Postulate 3:

JW*T°%dr =

[ 0.4y, + 0.5y, + 1\2ys + 0.3y,)*T° (0.4y; + 0.5y, + 1/N2y; + 0.3y,) dr
= (0.4)* (1)’ + (0.5) (a2)° +1/2 (a5)* + (0.3)" (as)’

because Ty, = T?ayy: =a; T2yy = (a1)°Ty: = (a1)*yy and so on.

2. Particle on a line from x= 0 to x= a is described by YW= Nx(a-x) at to

(@) The only possible outcomes of a measurement of energy are the eigenvalues of
the Hamiltonian operator for a particle on a line system, which are n°h?/8ma?,
where n = 1,2,3,4, etc.

Which eigenvalues would be observed will depend on which eigenfunctions are
included in W= Nx(a-x) .

(b) Average of single measurements from multiple copies is given by:

Ave = [ Wi o* H W dx / | Wio*Wodx = [ N*x(a-x)H Nx(a-x)dx / | N?(a-x)%dx
- (R12m) d¥/dx? x(a-x) =? d/dx[x(a-x)]= -x+(a-x) = a-2x; d/dx [a-2x] = -2

- (7°12m) d %dx® x(a-X) = - (7°/2m) (-2)

Ave = - (h%/2m) | -2x(a-x)dx / [x*(a-x)’dx = ?

[ x(a-x)dx =|ax¥2 -x%3| ,*= a%2-a%3 =a%/6



[ x%(a-x)%dx =] a®? -2ax+ x*dx =|ax*/3 -2ax*/4 + x°/9] ,* = a*/3-a°/2+ a°/5 = a°/30
Ave = - (h%/2m) -2[ a%/6 ]/ a°/30 = +5 (#°/ma’)

Normalization of ¥ o: | N®x*(a-x)°dx = 1 = N* a°/30 thus, N* = 30/a°

and N = [30/a°]*

(c) Expand in terms of the complete set of eigenfunctions of the system:
Y= ZnCn\Vn

Operate on both sides with [ y; * dx, to get C;

[ wn* [30/a°]%x(a-x)dx = C,

since all other integrals in the sum X,C;J y, *w; dx vanish for i=n since the
eigenfunctions of the system are orthonornal.

[y * [30/2°]%x(a-x)dx = C, = [2/a]* [30/a°]* [ sin (n7x/a) x(a-x)dx

Cn = [60/a°]* {[ax sin (nnx/a)dx - | x*sin (nmx/a)dx }

Use known integrals
| x sin(bx)dx = (1/b?)sin(bx) - (x/b)cos(bx)
and | X? sin(bx)dx = -[(b°%* - 2)/b*]cos(bx) + 2xsin(bx)/b?

After the smoke clears in the integrations, we find that
when n is odd, we get Coqg =0
when n is even, we get

C, =[60/a°]* 4a% (nn)®

3. Consider a particle of mass M constrained to move on a circle of radius R
where its potential energy is zero. The particle is in a physical state that is
described by F(¢) = A{cos 2¢ + 2cos 3¢}. Determine the results of the
following sets of experiments on this system, that is, determine the typical
outcomes of the experiments, the average values of the results:

(a) The z component of the angular momentum of the system is measured

Derivation of predictions here: Observed
F(¢) is not one of the eigenfunctions of L, or # . values here:

Expand F(¢) in terms of the complete orthonormal set of functions 2 h
(1N2m)exp[kd] . F(0) = ke Pi(9) and find the coefficients: -2 h
k= Jo™™ Wi*(0) F(0) dd = [o*™ P (9)A{cos 24 + 2cos 3¢} db 37
Since we can write cos 2¢ = Y2[exp(2¢) + exp(-2¢)] and 3n
cos 3¢ = Y2[exp(3¢) + exp(-3¢)], then 37
ok = [0 Wir(0)YeA{exp(i29)+exp(-29)+2exp(B)+2exp(-B3¢)} d¢ 37
Ok = (LUN2m) BA [0 Wi (O){ Wa(0) + P2(9) + 2'¥5(9) + 2¥5(9)} dob 37




e = (LN21) MAA {8 » +8¢ 2 + 2813 + 28,3} in shorthand 37

where 8y, =1 if k=2 or else it is zero, since it was an orthonormal set -3h

A can be obtained by integration Jo™* F*(¢)F(¢) dd: A =[5n]™* -3 h

Ck = (10) {2 +8i-2 + 283 + 25¢.a} Average = 07
c,’=c,”= (1/10)  c5°=c.4’ = (4/10)

(b) The energy of the system is measured

Derivation of predictions here: Observed

values here:

The average value is obtained by [o™™ F*(¢) (L, or #) F(¢) do : 2% (2 12MR?)

which by above algebra leads to Y ¢’ ki or Yy ¢’ @ K*(7° 2MR?)  |(-2)*(#° [2MR?)

The observed values should be 10% of the time the eigenvalue for 32 (H* 2MR?)

k=2, 10% of the time the eigenvalue for k=-2, 40% of the time the 32 (H* 2MR?)

eigenvalue for k=3, 40% of the time the eigenvalue for k=-3, 32 (H* 2MR?)

according to the probabilities given by the corresponding c,? 32 (H* 12MR?)

(-3)%(H* 2MR?)

(-3)%(%* 2MR?)

(-3)%(h? 12MR?)

(-3)%(H* 2MR?)

Average =

8 (h*/2MR?)

4. A particle of mass m in a potential well (with infinitely high walls) in the x
dimension is known to be in either the n = 2 or n = 3 eigenstates with equal

probability. The eigenfunctions of these states are y(x) = (2/a)"?

and ys(x) = (2/a)*?sin [3nx/a], respectively.

sin [2nx/a]

(a) Write an appropriate wavefunction ¥ for the system that reflects our

knowledge of the state of the system.

According to the conditions of the problem both states are equally probable, thus
we need to have the wavefunction be a superposition of y,(x) and y3(x) with
coefficients whose absolute squares are equal. W(x) = coy2(X) + cays(X) such that

C,°=C5°=1/2 since c,*+c3” = 1 (normalization). Therefore,
W(x) = (LN2){ (2/a)* sin [2nx/a] + (2/a)Y2 sin [3nx/a]} or
¥(x) = (IN2){ (2/a)* sin [2nx/a] - (2/a)"2 sin [3nx/a]}

(b) What energies might be obtained if the energy of the particle is measured?

The energy eigenvalues 2°h%/8ma” and 3*h%/8ma’ only.




(c) Determine the expected average of a series of measurements of the energy
of the particle.

Postulate 3 says the expected average is (E) = [;*¥*(x) # ¥ (x)dx , since we have
already normalized ‘Y (x).

(E) = Jo (1N2){w2(x) + wa(X)}* #H (LN2){ wa(X) + wa(X)}dx

= (12)[o* {w2* Hyo0x+yo* Hysdx+ys* Hydx+ys™* Hysdx}

= (U2){E; [o*wo*wadx + Ez Joya*yadx+ E; [o'wa*yadx+ Es [otys*yadx}

(E) = (1/2){Ex+ E3} = (1/2){ 2%+ 3°}h?%/8ma’

For the - combination the results are the same as above:

(E) = lo* (AIN2){wa(X) - wa(¥)}* 7 (LN2){ wa(X) - wa(X)}dX

= (1/2){E Joa\lfz*\lfzdx - E;3 Ioa\llz*\llsdx' E> joa\lfs*\lfzdx"‘ Es Ioa\Vs*\lfst}
(E) = (1/2){Ex+ E3} = (1/2){ 2%+ 3°}h?%/8ma’

(d) Write the equation that shows how the expected mean square deviation of any
series of measurements of the energy of the particle can be calculated.

The operator for the square of the deviation in measurements of energy is
Op = (#- (E))*

Postulate 3 gives the average, thus the mean square deviation

= Jo" (LN2){w2(X) + ws(X)}* (- (E) ) (UN2){ wa(X) + wa(x)}dx

(e) Carry out the solution of (e), and then from the final result, determine the
expected standard deviation of the series of measurements.

mean square dev =) (LN2){w2(X) + wa(X)}* (7 - (E) ) (LUN2){ w(X) + wa(x)}dx
=[o* (UN2){wa(X) + wa(x)}* (37 - 2(E) H+(E)’) (UN2){ wa(X) + ws(X)}dx
Note that #*y,(X) = H Ewa(X) = E; Hya(X) = Eywa(X)
and (E) Hy,(X) = (EYEwa(x) and (E)Y2y,(X) = (EYy(X) since(E)* is a number,
mean square dev =
(U2)Io* (w2 + wa}* (Eo"wotEs’ys- 2(E)Eay, - 2(E)Eays + (E)y; + (E)ys}dx
= (U2){ E;*+ Eg™- 2(E)( Eo+ Ea)+2(E)} = (U2){ E,"+ Es™- 4E)*+2(E)}
= (U2){ E*+ 5%} - (E)* = [(1/2){2"+3"} - {(2°+3")/2}°{h*/8ma’}*
= [25/4] {h*/8ma°}?
standard deviation is the square root of this =(5/2)( h*/8ma?)




(e) Illustrate a typical table of results from 10 such measurements. Fill in the
column “Results” . What is the probability of each outcome? .
Result Deviation Probability
1 2°4%5/9 nn” — 25" ] . V2
2 | Z7h /R s
3 | W /&g +2,5 gy iz
4 | 27K fernA ™ |
5

6

2 h* (@ o™
2 /% ma®
7 2" h /g o
8 2" W /e o>
9 1 =27 h/R va>
10 2> W ervnp ™
Ave (.S~ WR ™

(g) Skefch (1) ya(x) | (2) w3(x) (3) one of the wavefunctions in (a)

”’2("3 . qu(}é) /\ LP(XD? B o "--‘.1 o~
\VA Y Ve
/,\_ .

5 ($a0) — %0
0 X—> a 0 X —> a 0 X —> a

(k) Suppose an electron is contaihed_ in a two-dimensional potential well (with |
_infinitely high walls) whose shape iz that of a rectangular sheet with dimensions
axb. Write the Schrodinger equaiion that needs to be solved for this system.

Felfatn) + $0)

o) _rig;\j%* " %J W o) = B E,y)




(i) Show that the method of separation of variables may be used to solve this
problem, i.e., to find the eigenfunctions and eigenvalues.
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(j) Given the results of your proof above, write down the possible energy
eigenfunctions for an electron confined to a sheet with dimensions a xb. Given
the results of your proof above, write dowr: the corresponding energy
eigenvalues opposite the eigenfunction
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