
Problem Set 7 
On commutators, constants of the motion, the uncertainty principle 

 
The precise statement of the uncertainty principle is:  
  σS  σR  ≥  ½ 〈 [ S , R  ] /i 〉 
where  σS 2  ≡ ∫ Ψ* ( S - 〈S〉 )2 Ψ dτ , where the operators for observables S and R are S 
and R  and the brackets have their standard meanings. Use no other form for a statement 
of the uncertainty principle in this class. 

 
1. Consider a hydrogen-like atom (ion) of charge Z when the atom (ion) is in its ground 
state: 
 Ψ1s = {1/√π} {Z/a0}3/2 exp[-Zr/a0]  
where a0 is the Bohr radius, a0 = h2/me2 = 0.529 x10−8 cm. 
 (a) Calculate the average distance of the electron from the nucleus for this state. 
You may leave your answer in terms of the Bohr radius. 
 (b) Calculate the most probable distance of the electron from the nucleus for this 
state. You may leave your answer in terms of the Bohr radius. 
 (c) What are the expected outcomes of the measurement of the z component of the 
electron’s orbital angular momentum for the atom in this state, given that the operator for 
this component is 
   Lz = (h/i)∂/∂ϕ ? 
 (d) Calculate the average z component of the electron’s orbital angular momentum 
for this ground state. 
 (e) Does Lz commute with the hamiltonian for a hydrogen-like atom ? Show 
whether the z component of the electron’s orbital angular momentum in this hydrogen-
like atom is a constant of the motion. Given that for this system, 
 H = -(h2/2m)∇2 - Ze2/r  
where ∇2  = ∂2/∂r2 + (2/r) ∂/∂r + {r2sinθ)−1∂/∂θ(sinθ ∂/∂θ) + {r2sin2θ)−1(∂2/∂φ2) 
Explain each application of the uncertainty principle in problems 2,3,4. The reasoning is 
more important here, not just the answers. 
 
2. (a) If the diameter of an atomic nucleus is taken to be 10−12 cm, compute 
approximately the least kinetic energy that a proton within the nucleus can have.  
 (b) Calculate in a similar manner the least kinetic energy of an electron in an atom 
10−8 cm in diameter. Compare with the ground state energy of the hydrogen atom. 
 (c) When an electron in an atom is excited into a level above the ground state, it 
remains in the excited state for a length of time on the order of   10−8 seconds. Use the 
uncertainty principle to compute the minimum width of the spectral line (λ = 5000 Å) 
emitted when the electron returns to the ground state. This minimum line width is called 
the natural line width of a spectral line. Give your answer in Angstroms. 



3. One of the long-standing problems of stereochemistry is that of determining barriers to 
pyramidal inversion of nitrogen in amines. While failures to separate enantiomorphs had 
indicated at an early stage that the barriers must be low, no quantitative estimates were 
reported prior to the discovery that the barriers in aziridines are large enough for study by 
the dynamic NMR method, lying in the range 15-20 kcal/mole.   Using only the 
uncertainty principle we can get an estimate of the barrier.   Let us do this for a specific 
example.  
In dibenzylmethylamine there are (among others) two kinds of protons HA and HB in a 
CH2 group, which are separated by a chemical shift of 30.5 Hz. Rapid inversion of the 
nitrogen pyramid makes the two hydrogens rapidly interchange environments.  
 (a) Based on the uncertainty principle, what is the (lower, upper, which one?) limit 
on the lifetime of each pyramidal configuration if the peaks in the NMR spectrum due to 
the two hydrogens in the CH2 group collapse at -135°C? 
 (b) From this (upper or lower?) limit of lifetime in seconds, estimate the (upper or 
lower?) limit for the rate constant of inversion, k, in s-1 at -135°C.  
 (c) Using Eyring’s absolute rate theory:  
 k = (kBT/h) exp[-ΔG‡/kBT]   where k  = rate constant, s-1 
      kB = Boltzmann’s constant = 1.987 cal mol-1 deg-1 
      h   = Planck’s constant = 6.62618x10-27 erg s 
find an approximate value for ΔG‡, the free energy barrier to inversion, in Kcal mol-1. 
 
4. The two C5H5 groups in Fe2(CO)4(C5H5)2 have chemically equivalent environments in 
any of the three possible structures proposed by A. R. Manning [J. Chem. Soc. A 1319 
(1968); 1498 (1969)] 
  
                   

 
   
 
 
 
 

 
cis bridged                 trans bridged   non-bridged 
         (you can draw this one) 
 



 
 
 
 
 
 
 
 
 
 
 
 
The proton NMR spectrum at -70 °C [J. Am. Chem. Soc. 92, 
2156 (1970)] shows two peaks , i. e., two kinds of C5H5 groups. 
At -44 °C the spectrum shows only one broad peak which upon 
warming to room temperature (+28 °C) showed considerable 
narrowing. The two peaks at -70 °C are separated by 9.2 Hz. 
Using the uncertainty principle, get a rough estimate of the 
lifetime at -44° C of either of the two structures corresponding 
to the two peaks. 
 

 
5. As you have seen above, coalescence of NMR signals is typically associated with rate 
constants in the order of 104 s-1. Similar coalescence of vibrational bands in the infrared 
spectra would imply that the underlying processes take their course in the picosecond 
time domain (proton transfer reactions and conformational rearrangements, for example). 
In J. Mol. Struct. 174, 107-112 (1988) it was reported that η4-norbornadiene)Fe(CO)3 and 
related complexes reveal a coalescence phenomenon involving the CO stretching 
vibrational bands. This is interpreted in terms of fast CO site exchange. A cartoon for this 
exchange is given in the paper for two cases with rather different barriers, depending on 
the nature of diene ligand, one barrier obtainable from NMR the other from IR: 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
   
 
The IR spectra show coalescence at 20°C of the two peaks that at low enough 
temperature (exchange rate extemely slow) are separated by 15 cm-1 (the 1971 and 1956 
cm-1 peaks).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) Based on the uncertainty principle what is the (lower, upper, which one?) limit 
on the lifetime of each configuration at 20°C when the peaks just coalesce?  
 (b) From this (upper or lower?) limit of lifetime in seconds, calculate the (upper or 
lower?) limit for the rate constant for CO site exchange at 20°C, k, s-1. 
 (c) Using Eyring’s absolute rate theory:  
 k = (kBT/h) exp[-ΔG‡/kBT]   where k  = rate constant, s-1 
      kB = Boltzmann’s constant = 1.987 cal mol-1 deg-1 
      h   = Planck’s constant = 6.62618x10-27 erg s 
find an approximate value for ΔG‡, the barrier height, in Kcal mol-1. 
 
 


