
Answers to Problem Set 7 
On commutators, constants of the motion, the uncertainty 

principle 
1. (a) Average distance of the electron from the nucleus in the state 
described by Ψ1s = {1/√π} {Z/a0}3/2 exp[-Zr/a0] . Use Postulate  3, the 
expectation value is  
〈r〉 = ∫∫∫Ψ1s* r Ψ1s r2dr sinθdθdφ =  
∫∫∫{1/√π} {Z/a0}3/2 exp[-Zr/a0] r {1/√π} {Z/a0}3/2 exp[-Zr/a0]  r2dr sinθdθdφ 
〈r〉 = 4π(1/π) {Z/a0}3 ∫ r3 exp[-2Zr/a0]dr 
This integral is of the form, 
∫0∞ xn exp(-ax)dx = n!/an+1  for  a > 0, n positive integer;  here n=3,a=2Z/a0

〈r〉 = 4π(1/π) {Z/a0}3 3!(2Z/a0) - 4  = 4.3!(2)-4(Z/a0)-1   = (3/2) a0
 
(b) Probability for finding the electron at any one position is given by Ψ*Ψ . 
The probability of finding the electron within a spherical shell between r and 
r+dr is given by 4πr2Ψ1s* Ψ1s . To get maximum probability, need to find the 
distance at which the derivative of this probability is zero. First differentiate 
4πr2 Ψ1s* Ψ1s , then set the derivative to zero, then solve for r. 
Probability of finding the electron within a spherical shell, between r and r+ 
dr, is = {(1/π) (Z/a0)3 4πr2exp[-2Zr/a0] dr.  
d/dr{ 4 (Z/a0)3 r2exp[-2Zr/a0] } = 4 (Z/a0)3 exp[-2Zr/a0][ (-2Z/a0)r2+ 2r] = 0 
answer:  r=a0/Z 
 
(c) Outcomes of measurements are the eigenvalues. The eigenvalues of the 
operator Lz = (h/i)∂/∂ϕ are given by m = 0, ±h, ±2h, ... For the state whose 
function is Ψ1s = {1/√π} {Z/a0}3/2 exp[-Zr/a0] , m=0.  
Therefore measurements of Lz on this state can yield only the eigenvalue 0. 
   
(d) The average value of a series of measurements of Lz will be the average 
of a string of zeroes, which is zero. 
 
(e) H = -(h2/2m)∇2 - Ze2/r ,     Lz = (h/i)∂/∂ϕ  
∇2  = ∂2/∂r2 + (2/r) ∂/∂r + {r2sinθ)−1∂/∂θ(sinθ ∂/∂θ) + r2sin2θ)−1(∂2/∂φ2) 
∂/∂ϕ  commutes with any terms in r or θ, and ∂/∂ϕ  commutes with (∂2/∂φ2). 
Therefore, [H, Lz] = 0  
We have derived in lecture, (d/dt) 〈S〉 = (i/h)〈[ H, Lz] 〉 + (∂/∂t) S  
When (d/dt) 〈S〉 = 0 then S is said to be a constant of the motion. 
For S = Lz :    (∂/∂t) (h/i)∂/∂ϕ =0, no explicit t in the operator.  



And we have already seen that  [H, Lz] = 0. Therefore, (d/dt) 〈Lz〉 = 0 ; Lz is a 
constant of the motion. 
  
2.  
 (a) We can use the Uncertainty Principle for the conjugate variables: 
position x and the x component px of the linear momentum, 

σxσpx ≥ h/2 
If the diameter of the nucleus is 10-12 cm, then the position of a proton in the 
nucleus is known to be within this value. So we set  σx  = 10-12 cm. If so, then 
the linear momentum of the proton has to be ≥ (h/2)/10-12 .  
How is this related to kinetic energy? kinetic energy = p2/2m. Then the 
kinetic energy of the proton has to be ≥ [(h/2)/10-12 ]2/2m  or at least 
[6.62618x10 -27 / 2x10-12]2 / 2 × 1.67262158 × 10-24 =3.281×10-6 erg, 

using mass of a proton = 1.67262158 × 10-24 g  ; erg = g cm2 s-2

(b) Similarly, for an electron in an atom of 10-8 cm diameter. The uncertainty 
in the position of the electron is of the same order of magnitude as the 
diameter of the atom itself. As long as the electron is bound to the atom, we 
will not be able to say much more about its position than that it is in the 
atom. 
[6.62618x10 -27 / 2x10-8]2 / 2 × 9.10938188 × 10-28 = 0.60248×10-10 erg 
using electron mass = 9.10938188 × 10-28 grams 
This minimum kinetic energy is the same order of magnitude as the energy 
for an electron in a ground state H atom, 0.218×10-10  erg 
T+V= -0.218×10-10  erg So V has to be at least -0.82×10-10  erg 
 (c) We can use the Uncertainty Principle  

σEσt ≥ h/2 
From lecture, we saw that we can also write this as 
      4πσν σt ≥ 1 
For a Lorentzian line, full width at half maximum is 4πσν  = 2σω the natural 
linewidth in rad s-1 , where the lifetime of the state is σt . Here the lifetime of 
the excited state was given,  10-8 s, which gives a full width at half 
maximum equal to 108 rad s-1. 
We use  hc/λ= hω/2π;  σω = 2πc σλ/λ2

Substituting, we get,
108 rad s-1 = 2π3x1010cm s-1σλ cm /(5000x10-8)2  ;  
σλ  = 108 25x10-10 / 2π3x1010 = 1.33 x10-12 cm = half-width at half 
maximum peak height  



3 4 & 5. For questions 3,4 and 5, the approach is the same: 
  
When the individual conformations are long lived, they can be distinguished 
and each individually observed as a separate peak. The spectral separation 
then provides the energy or Hertz or cm-1 difference between the two 
conformations. At the point (a given temperature) when the peaks just 
coalesce, the peak for one conformation is indistinguishable from the other, 
we can use the Uncertainty Principle  

σEσt ≥ h/2 
We may rewrite this, using  σE  = hσν ,  to get hcσνσt ≥ h/2, 

σνσt ≥ [4π]-1       σt ≥ [4πσν]-1   

 

or else, if in wavenumbers, σE  = hcσν~ , hcσν~σt ≥ h/2 or  
σν~σt ≥ [4πc]-1   

σt ≥ [4πcσν~]-1   

At coalescence, the uncertainty principle provides a LOWER LIMIT to the 
lifetime  of each conformation (lower limit because of the ≥ in the 
inequality). This lower limit will be obtained from σν~ the wavenumber cm-1 
separation, for example, by calculating  
 σt (seconds) =  [4πcσν~]-1  

If conversion occurs every σt (seconds), for a first order kinetic process, the 
rate constant has units of 1/time. Thus, the UPPER limit to the rate constant 
for the process is 4πcσν~ . 
Now that we have an upper limit to the rate constant, we can use Eyring’s 
absolute rate theory:  
 k = (kBT/h) exp[-ΔG /kB

‡
BBT]   where k  = rate constant, s-1

    kB = Boltzmann’s constant = 1.987 cal mol  degB

-1 -1

    kB = Boltzmann’s constant = 1.38 x10  erg degB

-16 -1

    h   = Planck’s constant = 6.62618x10-27 erg s 
find an approximate value for ΔG‡, the free energy barrier to inversion, in 
Kcal mol-1. Using the upper limit for the rate constant, gives the LOWER 
LIMIT for ΔG‡, the free energy barrier for the process. Aside: Of course 
there is an accurate way of determining the free energy barrier for the 
process from a temperature dependent study, but this exercise is to show that 
the Uncertainty Principle alone can provide a good limiting value. 
 
3. Given here from the NMR spectrum,  σν = 30.5 Hz  from which   
[4πσν]-1  = [4π 30.5 s-1]-1 =0.0026 seconds, the lower limit for the lifetime of 
each conformer at -135°C or 138 K. 



From this we get the upper limit for the rate constant, the reciprocal of the 
lifetime, k = 383 s-1 

383 s-1  = 
 1.38x10-16 erg deg-1 

• 138 deg   exp[-ΔG‡/1.987 cal mol-1 deg-1138 deg] 
 6.62618x10-27 erg s 
-ΔG‡ cal mol-1/1.987•138 = ln [12.59x1011]  
gives the lower limit for ΔG‡, the free energy barrier for the process.  
 
4. Given here from the NMR spectrum,  σν = 9.2 Hz  from which   
[4πσν]-1  = [4π 9.2 s-1]-1 =0.0086 seconds, the lower limit for the lifetime of 
each conformer at -44°C or 229 K. From this we get the upper limit for the 
rate constant, the reciprocal of the lifetime, k = 116 s-1 

116 s-1  = 
 1.38x10-16 erg deg-1 

• 229 deg   exp[-ΔG‡/1.987 cal mol-1 deg-1229 deg] 
 6.62618x10-27 erg s 
-ΔG‡ cal mol-1/1.987•229 = ln [2.43 x1011] 
gives the lower limit for ΔG‡, the free energy barrier for the process.  
 
5. Given here from the IR spectrum,  σν~ = 15 cm-1 from which   
[4πcσν~]-1  = [4π 3x1010 cm s-1 15 cm-1]-1 =1.8x10-13 seconds, the lower limit 
for the lifetime of each conformer. From this we get the upper limit for the 
rate constant, the reciprocal of the lifetime, k = 5.65 x1012 s-1 

 5.65 x1012 s-1  = 
 1.38x10-16 erg deg-1 

• 293 deg   exp[-ΔG‡/1.987 cal mol-1 deg-1293 deg] 
 6.62618x10-27 erg s 
-ΔG‡ cal mol-1/1.987•293 = ln 0.926 
gives the lower limit for ΔG‡, the free energy barrier for the process. 


	using mass of a proton = 1.67262158 × 10-24 g  ; erg = g cm2 s-2
	using electron mass = 9.10938188 × 10-28 grams

