
Problem Set 8 
On angular momentum 

 
1. Angular momentum is a vector, call it L. The components of the angular momentum 
vector are defined classically as follows: 
 Lx ≡ ypz - zpy   Ly ≡ zpx - xpz  Lz ≡ xpy - ypx 
Replace the linear momentum components px, py, pz by their quantum mechanical 
operators to find the operators Lx , Ly , Lz , then prove that  
 [Ly, Lz] = i h Lx  [Lz, Lx] = i h Ly  [Lx, Ly] = i h Lz 
Prove also that [L2, Lx] = 0 [L2, Ly] = 0   [L2, Lz] = 0 
 
2. Consider an operator L+ which is a combination of the components of angular 
 momentum    L+ ≡ Lx + i Ly  
 find [L2, L+].   
Now consider the other combination:   L − ≡ Lx - i Ly  
 find   [L2, L −]. 
Prove that L2 = L+ L − - hLz + Lz

2 and that L2 = L −L+ + hLz + Lz
2 

L+ and L − are called “ladder operators” .  
Prove that you can write Lx in terms of the ladder operators  
 Lx  =   ½ [L + + L -] .  
 
3. Elementary particles have been found to have an intrinsic angular momentum, i.e., they 
have this fundamental property even when L = 0 (no rotational or orbital motion). For 
example an electron, a neutron, a proton, a deuteron, has intrinsic angular momentum 
called, for historic reasons, “spin” angular momentum. All angular momentum operators 
follow the same rules, such as those you derived in problem 1 : 
 [Ly, Lz] = i h Lx [Lz, Lx] = i h Ly [Lx, Ly] = i h Lz 
 [L2, Lx] = 0  [L2, Ly] = 0  [L2, Lz] = 0 
and those we will derive in class: 
 Lz Ylm = mh Ylm     L2 Ylm = l(l+1)h2 Ylm   such that m = -l, -l+1, ..., + l 
 L ± Yl m(1) =  [l (l +1) - m(m±1)]½ h Yl m±1  
Consider electron spin angular momentum vector S. Since it is angular momentum, its 
operators follows the rules: 
 [Sy, Sz] = i h Sx [Sz, Sx] = i h Sy [Sx, Sy] = i h Sz 
 [S2, Sx] = 0  [S2, Sy] = 0  [S2, Sz] = 0 
 Sz ψsm = mh ψs m     S2 ψsm = s(s +1)h2 ψs m    such that m = - s, - s +1, ..., + s 
 S ± ψ s m(1) =  [s (s +1) - m(m±1)]½ h ψ s m±1  



For one electron, call it electron 1, s = ½.  Thus, we can immediately write, from the 
above rules: 
  Sz(1)ϕ ½ (1) = ½ h ϕ ½ (1)      (1) 
  Sz(1)ϕ -½ (1) = - ½ h ϕ -½ (1)      (2) 
  S2(1) ϕ ½ (1)  = ½ (½+1) h2ϕ ½ (1) 
  S2(1) ϕ -½ (1)  = ½ (½+1) h2ϕ -½ (1) 
  S +(1)ϕ -½ (1) =  h ϕ ½ (1)   the raising operator  
  S −(1) ϕ ½(1) =  h ϕ -½ (1)  the lowering operator 
  S +(1) ϕ ½ (1) = 0 m can’t go any higher than +½ 
  S −(1) ϕ -½(1) = 0  m can’t go any lower  than  -½ 
 for electron 2, we can write similar equations, for example 
  Sz(2)ϕ ½ (2) = ½ h ϕ ½ (2)       (3) 
  Sz(2)ϕ -½ (2) = - ½ h ϕ -½ (2)        (4) 
 and so on.        
Vectors add by adding their components. The total spin angular momentum vector for 
two electrons is the vector sum: 
  S = S(1) + S(2),          (5) 
with total z component  
  Sz = Sz(1) + Sz(2).          (6) 
The other components of the vectors add similarly. 
 
The problem: Now consider a biradical (that is, two unpaired electron spins). 
(a) For the biradical, determine the complete orthonormal set of eigenfunctions of 
Sz, the z component of the total spin angular momentum, and the corresponding 
eigenvalues. Are any of them degenerate? Which ones? 
(b) Note, for the square of a vector, we can write  
 S2 = {S(1) + S(2)}2 = S(1)2 + 2 S(1)•S(2) +  S(2)2.    (7) 
Prove that S(1)•S(2) = { ½ S +(1) S −(2)  +  ½ S −(1) S +(2)  +  Sz(1) Sz(2) } (8) 
Start from the definitions  S +  ≡  Sx + i Sy      S −  ≡  Sx - i Sy   (9) 
(c) Prove that any linear combination of the degenerate eigenfunctions of  Sz also 
satisfies the operator equation for Sz . You may use a sum of  degenerate functions to try. 
(d) Using Eq. (7) demonstrate that the nondegenerate functions of Sz that you found in 
part (a) are also eigenfunctions of S2 , and find the corresponding eigenvalues. Find 
the correct linear combinations of the degenerate functions of Sz that are also 
eigenfunctions of  S2. When you are done,  you should have a complete list of functions 
that are simultaneously eigenfunctions of both Sz and S2. Write out the complete list of 
simultaneous eigenfunctions, and the corresponding eigenvalues of Sz and S2. 
 



(e) Suppose we wish to measure the observable that corresponds to the operator 
    Rop = a1Sz(1) +  a2Sz(2) + JS(1)•S(2)     where a1 = 2/h, a2 = 2/h, J = 4/h 2. (10) 
Determine whether or not it is possible to simultaneously know Sz for the biradical and 
also R. That is, determine whether there are any limitations to the errors in their 
simultaneous measurements. 
(f) Find the average value of R  
    (i) that would be found in a series of measurements if the biradical system is prepared 
in an eigenstate of Sz corresponding to the eigenvalue 1h.  
   (ii) that would be found in a series of measurements if the biradical system is prepared 
in an eigenstate of Sz corresponding to the eigenvalue -1h.  
  (iii) that would be found in a series of measurements if the biradical system is prepared 
such that it is simultaneously in an eigenstate of Sz corresponding to the eigenvalue 0h 
and in an eigenstate of S2 corresponding to the eigenvalue 2h2. 
The eigenstates of R are also the states of the biradical in a magnetic field, thus this 
problem is relevant to electron spin resonance (ESR) spectroscopy of organic free 
radicals. 
 
4. In high-resolution NMR spectroscopy, the observed transitions are between eigenstates 
of the nuclear spin angular momentum operators for the NMR nuclei, such as protons. 
Suppose there are only two protons in a molecule, and they are in non-equivalent 
electronic environments, and all the other nuclei have zero intrinsic angular momentum 
(or else effectively so).  An example of such a molecule would be 2-bromo-5-
chlorothiopene. Here you have a situation which is identical to problem 3.  The Rop given 
there was, 
  Rop = a1Sz(1) +  a2Sz(2) + JS(1)•S(2) 
For NMR the symbols used for the nuclear angular momentum operators are used:  
 Rop  = a1Iz(1) +  a2Iz(2) + JI(1)•I(2) 
Rop determines the energy states of the two-proton-spin system in an NMR magnet, 
where, a1 is a measure of the chemical shift of proton (1) , a2 is a measure of the chemical 
shift of proton (2) , and J is the ‘spin-spin coupling’ between the two protons. For this 
example, let a1 and a2 be respectively, - (ν0 - 150) Hz and  - (ν0 - 350) Hz where the 
resonance frequency of the reference substance (tetramethylsilane liquid) is ν0 , and let 
the spin-spin coupling constant J be 20 Hz. With a1, a2, and J in these units, we write 
  Rop  = a1Iz(1)/ h +  a2Iz(2) /h + JI(1)•I(2) / h2   such that 〈Rop〉 is in Hz 
 
 
As in problem 3, you can determine all the states corresponding to the eigenvalues of this 
operator Rop. You have already done the work in the previous problem, now simply write 
down the answers appropriate to this problem: 



 
 (a) If  for proton 1 
 Iz(1) α(1) = ½ h  α(1)        (1) 
 Iz(1) β(1) = - ½ h β(1)        (2) 
and for proton 2  
 Iz(2) α(2) = ½ h α(2)        (3) 
 Iz(2) β(2) = - ½ h β(2)        (4) 
Applying separation of variables, what are the eigenvalues and eigenfunctions of 
Iz,total =  [Iz(1) + Iz(2)] ? call them ϕ1 , ϕ2 , ϕ3 , ϕ4 ,  such as to arrange them in order of 
increasing eigenvalue. 
 (b) Two of the eigenfunctions are nondegenerate in Iz,total and are already 
eigenfunctions of Rop. Call the eigenfunctions of Rop Ψ1 , Ψ2 , Ψ3 , Ψ4 .   
Thus, Ψ1 = ϕ1 ,  Ψ4  = ϕ4 , Any linear combination of the two that are degenerate in Iz,total 
are also acceptable solutions for the Iz,total eigenfunction-eigenvalue equation. The 
particular linear combinations that are also eigenfunctions of Rop are:  
Ψ2 = (cos x ) ϕ2 - (sin x) ϕ3   and Ψ3 = (sin x ) ϕ2 + (cos x) ϕ3  ,  where:  
cos 2x ≡  δ / [J2 + δ2 ] ½  , sin 2x ≡ J / [J2 + δ2 ] ½ , and    δ = (350-150) Hz.   
Show that these four functions Ψ1 , Ψ2 , Ψ3 , Ψ4  are indeed eigenfunctions of Rop and 
find the corresponding eigenvalues (in Hz). You may leave the ν0   
 in the expressions for the eigenvalues.  
 (c) Now draw the energy level diagram (the eigenvalues of Rop) for the two 
protons in the NMR magnet; label each level with eigenvalues and eigenfunctions.  
 (d) The intensities of the NMR transitions are given by the square of the transition 
integral. In NMR the transition integral is: (Ix total) integrated between the two nuclear spin 
state functions involved in the transition. 
For example, the transition integral between states 3 and 4 =  ∫ Ψ3 * Ix totalΨ4 dτ  . 
To evaluate this integral, first write out the operator Ix total = Ix (1) + Ix (2) in terms of 
raising and lowering operators, e.g., start with  Ix (1) =   ½ [I+(1) + I-(1)]  analogous to Lx  
=   ½ [L + + L -] in problem 2.  
Now you are ready to calculate the intensities of the transitions between the energy 
levels of the two protons in the NMR magnet. Do this for all pairs of levels in absorption 
mode, i.e., transition from lower energy to higher energy. Hint: although there are 6 such 
unique pairs, some transition integrals are zero (transition is not allowed) ! 
 (e) Using your calculated eigenvalues,  calculate the energy differences (in Hz) and 
use the calculated intensities to draw the NMR spectrum of the two protons.  
 (f) Prove that if the chemical shifts of the two protons are identical (same 
electronic environment, say a1 = a2 = - (ν0 - 350) Hz, only one peak can be observed even 
if the spin spin coupling J is still 20 Hz. 
 


