
Problem Set 9 Answers 
On the Hydrogen atom  

and Matrix Representation of Operators and Eigenfunctions 
 

1. (a) Average distance of the electron from the nucleus for H atom in the state function 
Ψ1s = {1/√π} {Z/a0}3/2 exp[-Zr/a0] is given by 
Use Postulate  3, the expectation value is  
〈r〉 = ∫∫∫Ψ1s* r Ψ1s r2dr sinθdθdφ =  
∫∫∫{1/√π} {Z/a0}3/2 exp[-Zr/a0] r {1/√π} {Z/a0}3/2 exp[-Zr/a0]  r2dr sinθdθdφ 
〈r〉 = 4π(1/π) {Z/a0}3 ∫ r3 exp[-2Zr/a0]dr 
This integral is of the form, 
∫0∞ xn exp(-ax)dx = n!/an+1  for  a > 0, n positive integer;  here n=3,a=2Z/a0

〈r〉 = 4π(1/π) {Z/a0}3 3!(2Z/a0) - 4  = 4.3!(2)-4(Z/a0)-1   = (3/2) a0
 
(b) Probability for finding the electron at any one position is given by Ψ*Ψ . The 
probability of finding the electron within a spherical shell between r and r+dr is given by 
4πr2Ψ1s* Ψ1s . To get maximum probability, need to find the distance at which the 
derivative of this probability is zero. First differentiate 4πr2 Ψ1s* Ψ1s , then set the 
derivative to zero, then solve for r. 
Probability of finding the electron within a spherical shell, between r and r+ dr, is = 
{(1/π) (Z/a0)3 4πr2exp[-2Zr/a0] dr.  
d/dr{ 4 (Z/a0)3 r2exp[-2Zr/a0] } = 4 (Z/a0)3 exp[-2Zr/a0][ (-2Z/a0)r2+ 2r] = 0 
answer:  r=a0/Z 
 
(c) Outcomes of measurements are the eigenvalues. The eigenvalues of the operator Lz = 
(h/i)∂/∂ϕ are given by m = 0, ±h, ±2h, ... For the state whose function is Ψ1s = {1/√π} 
{Z/a0}3/2 exp[-Zr/a0] , m=0.  
Therefore measurements of Lz on this state can yield only the eigenvalue 0. 
 
(d) The average value of a series of measurements of Lz will be the average of a string of 
zeroes, which is zero. 
 

(e) H = -(h2/2m)∇2 - Ze2/r ,     Lz = (h/i)∂/∂ϕ  
∇2  = ∂2/∂r2 + (2/r) ∂/∂r + {r2sinθ)−1∂/∂θ(sinθ ∂/∂θ) + r2sin2θ)−1(∂2/∂φ2) 
∂/∂ϕ  commutes with any terms in r or θ, and ∂/∂ϕ  commutes with (∂2/∂φ2). Therefore, 
[H, Lz] = 0  
We have derived in lecture, (d/dt) 〈S〉 = (i/h)〈[ H, Lz] 〉 + (∂/∂t) S  
When (d/dt) 〈S〉 = 0 then S is said to be a constant of the motion. 
For S = Lz :    (∂/∂t) (h/i)∂/∂ϕ =0, no explicit t in the operator.  
And we have already seen that  [H, Lz] = 0. Therefore, (d/dt) 〈Lz〉 = 0 ; Lz is a constant of 
the motion. 



 
2. Given Ψ(r,θ,φ) = (1/81)(2/π)½ Z3/2 (6-Zr) Zr exp[−Zr/3] cos θ 
(a) We can find  n, l, m just by inspection 
n = 3 since the highest power in the polynomial in R(r) is given by n-1 and this has r2 . 
l = 1 since the Θ(θ) part of the function has cos in the first power 
m = 0 since the Φ(φ) part of the H-like function is always (2π)-½exp(imφ) this one has a 
constant for the Φ(φ) part 
 
(b) The most probable value of r for an electron in the state specified by the Ψ(r,θ,φ) 
given above, when Z = 1: 
Probability for finding the electron at any one position is given by Ψ*Ψ . The probability 
of finding the electron within a spherical shell between r and r+dr is given by ∫∫ cos2θ 
sinθdφ r2Ψ310* Ψ310 dr. The integral ∫∫ cos2θsinθdφ = 2π. To get maximum probability, 
need to find the distance at which the derivative of this probability is zero. First 
differentiate 2πr2 Ψ310* Ψ310 , then set the derivative to zero, then solve for r. 
For Z=1, the probability of finding the electron within a spherical shell, between r and r+ 
dr, is = 2πr2 (1/81)2(2/π) (6-r)2 r2 exp[−2r/3] dr.  
Differentiating, 
d/dr{2π(1/81)2(2/π) (6-r)2 r4exp[-2r/3]} =? We do not need the constants to find r that 
makes the derivative go to zero: 
 d/dr{ (6-r)2 r4exp[-2r/3]} = {-(2/3) (6-r)2 r4 }exp[-2r/3] + exp[-2r/3] {36x4r3-12x5r4+6r5} 
=0 = {-2/3(36-12r+r2)r4 + 36x4r3-12x5r4+6r5}=0 
Factor out r3 : {-2/3(36-12r+r2)r+ 36x4 -12x5r+ 6r2}=0 

{144-84r +14r2-(2/3)r3} =0 answer:  r = 3 . The most probable value for r for the electron 
is 3a0 

Easier way: r2 Ψ310* Ψ310 is maximum when rΨ310 is maximum. Easier to do d/dr{r(6-r)r 
exp[−r/3]}, again using Z=1 and ignoring the constants we get: 
 -(1/3)(6r2-r3)+(12r-3r2) =0 leaving out exp[−r/3]. Now factor out r too, we get  
36-15r+r2=0,  (r-12)(r-3)=0 from which we get r=3 or r=12.   
 

(c) The function with the same n and l and m +1  is Ψ311. Since m=0 has the function 
Φ0(φ)=(2π)-½ and we want Φ1(φ)=(2π)-½exp(iφ) However, we also need to change the 
Θlm(θ) since this also depends on |m|. To get the proper function we need to use the 
raising operator which will take our angular momentum function from Y10(θ,φ) to 
Y11(θ,φ). One form of the raising operator is  
 
 
The second term vanishes because the original function 
Ψ(r,θ,φ) = (1/81)(2/π)½ Z3/2 (6-Zr) Zr exp[−Zr/3] cos θ has no explicit φ 
Applying the first term expiφ∂/∂θ cosθ gives expiφ sinθ    



Ψ311(r,θ,φ) ∝ Z3/2 (6-Zr) Zr exp[−Zr/3] sin θ exp(iφ) 
 
(d) The hamiltonian for a hydrogen-like atom (only the internal motion of the electron 
relative to the nucleus) 
∇2 = (1/r2){∂/∂r (r2∂/∂r)  -  L2} 
H = -h2/2μ  {(1/r2)[∂/∂r (r2∂/∂r)  -  L2] -Ze2/r 
(e) It is possible to determine simultaneously the energy of a hydrogen atom and its 
angular momentum because [H, L2] = 0 and  [H, Lz] = 0. We see this by inspection:  
[H, L2] =[-h2/2μ (1/r2){∂/∂r (r2∂/∂r)} -Ze2/r, L2] = 0, since L2 is only a function of θ and φ 
and not a function of r, the two operators are in different independent variables and 
therefore the order of the operations is irrelevant. And of course L2 commutes with itself.  
By the same reasoning, [-h2/2μ (1/r2){∂/∂r (r2∂/∂r)} -Ze2/r, Lz] = 0 since Lz operator is in 
terms of φ only, and we already know from properties of any angular momentum that Lz 
commutes with L2.  
 
3. (a) Transition probability is proportional to the square of the integral 

 
M = ∫∫∫Ψnlm* x Ψn′l m′ ′ r2drsinθdθdφ  

 using x = r sinθ cosφ = r sinθ [expiφ +exp-iφ]/2 
M = ∫∫∫R(r)nlΘlm (2π)-½ exp-imφ r sinθ [expiφ +exp-iφ]/2 R(r)n′l′Θl m′ ′ (2π)-½ expim′φ  
           r2drsinθdθdφ  
Integration over r part does not vanish. 
Integration over the φ part: ∫ exp-imφ [expiφ +exp-iφ] expim′φ dφ gives  
∫ exp(-im+i+ im′)φ dφ + ∫ exp(-im-i+ im′)φ dφ. The first integral vanishes unless -m+1+ m′ =0, 
that is m′-m = -1. The second integral vanishes unless  -m-1+ m′ =0, that is m′-m = +1. 

Integration over the θ part: ∫Θlm sinθΘl′m′ sinθdθ. We can make use of the relation: 
cos θ Yl m  = {(l2 - m2)/[(2l-1)(2l +1)]}½ Yl-1, m  
     + {[(l+1)2 -m2]/ [(2l+1)(2l +3)]}½ Yl+1, m 

There is a similar relation for sinθ Yl m :        sinθ Yl m = ∼∼ Yl-1, m  + ∼∼ Yl+1, m
 
∫Θlm sinθΘl m′′  sinθdθ = ∼∼ ∫Θlm Θl -1m′′  sinθdθ +∼∼∫Θlm Θl +1m′′  sinθdθ  

Because of orthonormality of the Θlm functions, the integrals vanish unless  
l = l′-1 or l = l′+1 , that is,  l - l′ = ±1 
In summary, the selection rules of atomic spectroscopy are: m-m′=±1 and l - l′ = ±1 .  



There is also  ∫∫∫Ψnlm* z Ψn′l m′ ′ r2drsinθdθdφ using z=rcos θ we will get m-m′=0 and 
l - l′ = ±1 for light polarized in the z direction. 
 
(b) The displacement of the deuterium wavelength from the hydrogen wavelength for the 
first Balmer line. The first Balmer line corresponds to the transition n=2 to n=3.  
see http://hyperphysics.phy-astr.gsu.edu/HBASE/quantum/hydfin.html#c1
 
When the spectral lines of the hydrogen spectrum are examined at very high resolution, they are found 
to be closely-spaced doublets. This splitting is called fine structure and was one of the first experimental 
evidences for electron spin.  

The small splitting of the spectral line is 
attributed to an interaction between the electron 
spin S and the orbital angular momentum L. It is 
called the spin-orbit interaction.  

The familiar red H-alpha line of hydrogen is a single line 
according to the Bohr theory. The straight application of the 
Schrodinger equation to the hydrogen atom gives the same result. 
If you calculate the wavelength of this line using the energy 
expression from the Bohr theory, you get 656.11 nm for 
hydrogen, treating the nucleus as a fixed center. If you use the 
reduced mass, you get 656.47 nm for hydrogen and 656.29 nm for 
deuterium. The difference between the hydrogen and deuterium 
lines is about 0.2 nm and the splitting of each of them is about 
0.016 nm, corresponding to an energy difference of about 
0.000045 eV. This corresponds to an internal magnetic field on 
the electron of about 0.4 Tesla.  

 

http://hyperphysics.phy-astr.gsu.edu/HBASE/quantum/hydfin.html#c1
http://hyperphysics.phy-astr.gsu.edu/HBASE/hyde.html#c4
http://hyperphysics.phy-astr.gsu.edu/HBASE/spin.html#c1
http://hyperphysics.phy-astr.gsu.edu/HBASE/quantum/hydfin.html#c2
http://hyperphysics.phy-astr.gsu.edu/HBASE/bohr.html#c4
http://hyperphysics.phy-astr.gsu.edu/HBASE/orbv.html#rm


The reduced mass μ which appears in the motion of the electron relative to the nucleus 
after the separation of the center of mass motion (translation) is given by  
 1/μ = 1/me + 1/mN         

H = -h2/2μ  {(1/r2)[∂/∂r (r2∂/∂r)  -  L2] -Ze2/r 
The energies of the hydrogen atom are given by -(Z2/n2)(e2/2a) where a = h2/μe2 or a = 
4πε0h2/μe2 

For the transition n=2 to 3 the energy difference is - (e2/2a)[1/22 -1/32] = and the 
wavelength corresponding to this energy difference is hc/λ   
λ = (2a/hce2)(36/5) = 2(36/5)(h2/μe2)/hce2 = 2(36/5)(h/4π2)/μce4  

Taking the ratio of two such equations, one for D atom the other for H atom: 
mp =1.672 621 637(83) x 10  g    -24 md = 3.343 583 20(17) x 10  g -24

m  = 9.109 382 15(45) x 10  g              e
-28

λD/λH = μH/μD = 0.9997 so the isotope shift is very small. 
 
The difference between the H and the D atom Balmer line wavelengths would be given 
by  Δλ = {2(36/5)(h/4π2)/ ce4}(1/μH -1/μD) = λH μH(1/μH -1/μD) 
where  (1/μH -1/μD) = 1/me+1/mp - 1/me-1/md =1/mp -1/md  = (md-mp)/(mpmd) 
Δλ =  λH μH (1/mp -1/md) =  λH me (md-mp)/(mpmd)] 
Δλ =  λH 2.7217 x 10   -4

 
on Matrix Representation of Operators and Wavefunctions 
Using the eigenfunctions of Sz as a complete set of basis functions, (we found these in 
Problem Set 8): 
ψ1 = ϕ ½ (1)•ϕ ½(2) 
ψ0a = ϕ½(1)•ϕ-½(2) 
ψ0b = ϕ-½(1)•ϕ½(2) 
ψ-1 = ϕ-½ (1)•ϕ-½ (2) 
 

the matrix representation of  
S(1)•S(2) = { ½S+(1)S−(2)  +  ½ S−(1)S+(2)  + Sz(1) Sz(2) } 
 ϕ ½ (1)•ϕ ½(2) 

 
ϕ½(1)•ϕ-½(2) 
 

ϕ-½(1)•ϕ½(2) 
 

ϕ-½ (1)•ϕ-½ (2) 
 

ϕ ½ (1)•ϕ ½(2) (½)2h2 0 0 0 
ϕ½(1)•ϕ-½(2) 0 -(½)2h2 (½)h2 0 
ϕ-½(1)•ϕ½(2) 0 (½)h2 -(½)2h2 0 
ϕ-½ (1)•ϕ-½(2) 0 0 0 (-½)2h2

 
 



the matrix representation of  S2 : From Problem 8 we found: 
S2 = S(1)2 + 2 S(1)•S(2) +  S(2)2 = ½ S +(1) S −(1) +½ S−(1) S +(1) + Sz(1)2  
+ ½ S +(2) S −(2) +½ S−(2) S +(2) + Sz(2)2 +{S +(1)S −(2)  + S −(1)S +(2)  + 2Sz(1)Sz(2)} 
 ϕ ½ (1)•ϕ ½(2) 

 
ϕ½(1)•ϕ-½(2) 
 

ϕ-½(1)•ϕ½(2) 
 

ϕ-½ (1)•ϕ-½ (2) 
 

ϕ ½ (1)•ϕ ½(2) 
 

2h2 0 0 0 

ϕ½(1)•ϕ-½(2) 
 

0 h2 h2

  
0 

ϕ-½(1)•ϕ½(2) 
 

0 h2

  
h2 0 

ϕ-½ (1)•ϕ-½(2) 
 

0 0 0 2h2

 
the matrix representation of  
Hop = a1Sz(1) +  a2Sz(2) + JS(1)•S(2) 
 ϕ ½ (1)•ϕ ½(2) 

 
ϕ½(1)•ϕ-½(2) 
 

ϕ-½(1)•ϕ½(2) 
 

ϕ-½ (1)•ϕ-½ (2) 
 

ϕ ½ (1)•ϕ ½(2) 
 

a1(½)h  
+ a2(½)h 
+J(½)2h2

0 0 0 

ϕ½(1)•ϕ-½(2) 
 

0 a1(½)h 
 - a2(½)h 
-J(½)2h2

 
J(½)h2

0 

ϕ-½(1)•ϕ½(2) 
 

0  
J(½)h2

- a1(½)h  
+ a2(½)h 
-J(½)2h2

0 

ϕ-½ (1)•ϕ-½(2) 
 

0 0  
0 

- a1(½)h  
- a2(½)h 
J(-½)2h2

 



for a1 = 2/h, a2 = 2/h, J = 4/h 2

 ϕ ½ (1)•ϕ ½(2) 
 

ϕ½(1)•ϕ-½(2) 
 

ϕ-½(1)•ϕ½(2) 
 

ϕ-½ (1)•ϕ-½ (2) 
 

ϕ ½ (1)•ϕ ½(2) 
 

1 
+ 1  
+1 

0 0 0 

ϕ½(1)•ϕ-½(2) 
 

0 1 
 - 1 
-1 

 
1 

0 

ϕ-½(1)•ϕ½(2) 
 

0  
1 

- 1  
+ 1 
-1 

0 

ϕ-½ (1)•ϕ-½(2) 
 

0 0  
0 

- 1  
- 1 
+1 

The solutions are (see problem below for more detailed solution of a similar matrix): 
E1 = 3   Ψ1 (1,2) = ϕ ½ (1)•ϕ ½(2)  by inspection 
E4 = -1   Ψ4 (1,2) = ϕ -½ (1)•ϕ -½(2) by inspection 
 

det -1-E 1 = 0  
  1 -1-E   

Evaluating the determinant,   (-1-E)2 -1 =0 
The roots are E = 0, or -2 
For E = 0:  (-1-0)Ca +1Cb = 0  Ca = Cb , normalization gives  
Ψ2 (1,2) = (1/√2) ϕ½(1)•ϕ-½(2) + (1/√2) ϕ-½(1)•ϕ½(2) 
 
For E = -2:  (-1+2)Ca +1Cb = 0  Ca = - Cb , normalization gives 
Ψ3 (1,2) = (1/√2) ϕ½(1)•ϕ-½(2) - (1/√2) ϕ-½(1)•ϕ½(2) 
Energy level diagram: 
 3 ------Ψ1 (1,2) = ϕ ½ (1)•ϕ ½(2) 
 
 
 0 ------Ψ2 (1,2) = (1/√2) ϕ½(1)•ϕ-½(2) + (1/√2) ϕ-½(1)•ϕ½(2) 
-1 ------Ψ4 (1,2) = ϕ -½ (1)•ϕ -½(2) 
-2 ------Ψ3 (1,2) = (1/√2) ϕ½(1)•ϕ-½(2) - (1/√2) ϕ-½(1)•ϕ½(2) 
 



2. To find the simultaneous eigenfunctions of the operators 
  Fz ≡ Iz(1) + Iz(2)    and      F2 ≡ Fx

2 + Fy
2 + Fz

2  

Given 
Iz(1)α(1) = ½ h α(1)  Iz(1) β(1) = - ½ h β(1) 
Ix(1)α(1) = ½ h β(1)  Ix(1) β(1) =   ½ h α(1) 
Iy(1)α(1) = ½ ih β(1)  Iy(1) β(1) = - ½ ih α(1) 
 
We start with a complete orthonormal set of eigenfunctions of Fz using separation 
of variables: Since Fz is a sum of two operators, the eigenfunctions of Fz  can be 
written as products of the eigenfunctions of each of the operators Iz(1) and Iz(2) 
and the eigenvalues can be obtained by operating on the functions 

 eigenfunctions of Fz eigenvalue of Fz

ψ1 α(1)• α(2) h 
ψ2 α(1) • β(2) 0 
ψ3 β(1) • α(2) 0 
ψ4 β(1) • β(2) -h 

 
F2 ≡ Fx

2 + Fy
2 + Fz

2  

We could just find the matrix representation of F2 in this complete orthonormal set and 
then find the eigenvalues and eigenfunctions of the matrix. 
F2 = I(1)2 + 2 I(1)•I(2) +  I(2)2 = ½ I +(1) I −(1) +½ I−(1) I +(1) + Iz(1)2  
+ ½ I +(2) I −(2) +½ I−(2) I +(2) + Iz(2)2 +{I +(1)I −(2)  + I −(1)I +(2)  + 2Iz(1)Iz(2)} (this 
identity derived for another angular momentum in Problem Set 8) 
The matrix representation of F2 is 

 α(1)• α(2) α(1) • β(2) β(1) • α(2) β(1) • β(2) 
α(1)• α(2) 2h2 0 0 0 
α(1) • β(2) 0 h2 h2  0 
β(1) • α(2) 0 h2  h2 0 
β(1) • β(2) 0 0 0 2h2

 
Matrix diagonalization of the matrix above will give both the eigenvalues and the 
eigenfunctions of F2 . We solve the matrix equation F2C = Cf where f are the 
eigenvalues. When this matrix multiplication is carried out the matrix equation is written 
out as simultaneous equations to be solved,  
F11 C1 + F12C2 + F13C3+F14C4 = fC1
F21 C1 + F22C2 + F23C3+F24C4 = fC2
F31 C1 + F32C2 + F33C3+F34C4 = fC3 
F41 C1 + F42C2 + F43C3+F44C4 = fC4



The linear equations will have a non-trivial solution if and only if the determinant of the 
coefficients vanishes. 

 F11 - f F12 F13 F14  
det F21 F22 - f F23 F24  
 F31 F32 F33 - f F34 =0 
 F41 F42 F43 F44 - f  

The integrals which constitute the matrix elements are eva;uated:  
 2h2

 - f 0 0 0  
det 0 h2 - f h2 0  
 0 h2 h2 - f 0 =0 
 0 0 0 2h2 - f  

 

ψ1 does not mix with any other function and is therefore an eigenfunction of F2

because, as we can see, when F2 operates on this function, only the same 
function results and no others. Also ψ4 does not mix with any other function, and 
is therefore an eigenfunction of F2. 
Now evaluating the 2x2 determinant, setting it to zero : 

h2 - f h2

  h2 h2 - f 
(h2 - f)2 - h4 = 0         leads to ±(h2 - f) = h2              or f = 0, 2h2   
Substituting f = 2h2 leads to  -h2C2 + h2C3 =0, which means C2 = C3  
Normalization gives Ψ2 =   [α(1) • β(2) + β(1) • α(2)]/√2 
Substituting f = 0 leads to  h2C2 + h2C3 =0, which means C2 = -C3  
Normalization gives gives Ψ3 =   [α(1) • β(2) - β(1) • α(2)]/√2 
Simultaneous eigenfunctions of  F2 and Fz eigenvalues f eigenvalues of Fz

Ψ1 = α(1)• α(2) 2h2 h 
Ψ2 =   [α(1) • β(2) + β(1) • α(2)]/√2 2h2 0 
Ψ3 =   [α(1) • β(2) - β(1) • α(2)]/√2 0 0 
Ψ4 = β(1) • β(2) 2h2 -h 
We could have also used the properties of commuting operators: 
Since I is an angular momentum operator, then F is an angular momentum operator, thus, 
[Fz,F2] = 0. Since these operators commute, they have the same set of eigenfunctions, 
except that any linear combination of  the degenerate eigenfunctions of one operator Fz 
are also eigenfunctions of Fz , so that the specific linear combination that is an 
eigenfunction of F2 has to be found.  
From the above table, Ψ1 =  α(1)• α(2) is an eigenfunction of F2

Ψ4 =  β(1) • β(2) is an eigenfunction of F2 

Now we need to find the linear combination of ψ2 = α(1) • β(2)  and  ψ3 = β(1) • α(2) 
to make Ψ2 and Ψ3  that are eigenfunctions of F2.  Etc. 


