
Problem Set 11 
Electronic configurations of many-electron atoms 
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Here, the repulsion between pairs of electrons have been replaced by the average 
effect, by assuming that the positive energy contribution of the repulsion can be 
represented by shielding or screening effects, such that the ith electron sees an 
effective charge +(Zeff)ie , rather than the full charge +Ze of the nucleus. The 
effective charge depends on the number of electrons in each s, p, and d subshell in 
the atom.  
(a) Suppose you have a recipe for determining (Zeff)i  for each electron in the atom. 
Then, the problem  H Ψ = EΨ can be solved for any atom. What would the 
solutions be? (Use separation of variables to find the eigenfunctions of a general 
atom with more than one electron, in terms of the known eigenfunctions Ψ(r,θ,φ) 
and eigenvalues -(Z2/n2)e2/2a0  (= 13.56 eV) of the hydrogen-like atom with 
nuclear charge  +Ze on the nucleus.) 
(b) Write out the general energy eigenvalues for an atom of 4 electrons under these 
assumptions. That is, show your eigenvalues in terms of quantities such as (Zeff)1, 
(Zeff)2 etc. defined for i = 1, 2, 3, 4. Since each electron has spin angular 
momentum, let us for the moment, ignore the fact that the orbital angular 
momentum and the spin angular momentum can couple. Introduce the ms quantum 
number for each electron, which is either +½ or −½, corrresponding to having z 
component of the spin angular momentum equal to either +½h or −½h. Thus, every 
one of the electrons can have either one of these ms values, subject only to the 
restriction that no more than one electron may have exactly the same set of 
quantum numbers n, l, ml , ms .  Specifying the set of four quantum numbers n, 
l, ml , ms to each hydrogen-like function Ψn, l, ml , ms(ri,θ i,φ i) is sufficient to define 
the function Ψn, l, ml , ms(ri,θ i,φ i) itself. A short-hand for the set n, l, ml , ms is 
usually used: such as 3d0↑, where n=3, l=2, ml=0, and ↑ denotes ms = + ½  or 
3d+1↓, where ↓ denotes ms = − ½ . Consider the quantum numbers of the two 
electrons of He in its lowest (ground) energy level. The product of two hydrogen-
like functions Ψ1 0 0 ↑ (r1,θ 1,φ 1) ⋅ Ψ1 0 0 ↓ (r2,θ 2,φ 2)  with this set of four quantum 



numbers is denoted by the simple notation 1s2. This simple notation is called the 
“electronic configuration” of the He atom in its ground state. 
Given on the next page is the table of values for (Zeff)i /ni , determined by Clementi 
and Raimondi. Using this table, it is clear that electrons in the same subshell, say 
2p, have the same contribution to the overall energy of the atom, regardless of the 
values of ml or ms . Thus, a short-hand notation to specify the states of an atom that 
has 5 electrons, corresponding to the quantum numbers of the electrons of the with 
n=2, l=1, (with ml=0, or 1 or -1, ms = + ½  or − ½ ) is the electronic configuration 
2p5. Specify the quantum numbers of the three electrons of Li in its lowest 
(ground) energy level. Calculate the energy of the Li atom in its lowest (ground) 
energy level. The product of three hydrogen-like functions is denoted by what 
electronic configuration? 
What is the electronic configuration of the lowest energy state of Na atom? 
 
From Chemistry 112: “Ionization energy (also called ionization potential for 
historical reasons) is defined as the energy required to remove an elelctron from an 
atom or molecule. Electron affinity is defined as the energy released when an 
electron is added to an atom or molecule. Note that the definitions of ionization 
energy (IE) and EA appear to be opposite,  
 IE1 ≡  E(+ion)  -  E(neutral)     EA ≡  E(neutral) - E(- ion)  
but the energy change is associated with electron detachment process in both cases, 
with the energy difference IE and EA being defined for the neutral atom 
  Na(g)  → Na+

(g) + e-  IE1 for Na ≡  E(Na+)  -  E(Na) 
 
  Cl-(g)   → Cl(g)  + e-      EA for Cl ≡  E(Cl)  -  E(Cl-) 
 
 
Note:  EA of Cl is the IE of Cl- ” 
 
 (c) Use the (Zeff)i /ni from the Clementi and Raimondi table on the next page 
to do the following calculations:  
 (i) Calculate the energy of the ground state of He atom in units of (e2/2a0). 
 (ii) The energies of the 4 lowest energy states of the Li atom (with 3 
electrons) in units of (e2/2a0). Draw the energy  level scheme for the Li atom and 
label each energy level with an electronic configuration. Calculate the first 
ionization potential of Li atom corresponding to the process 

Li(ground state) → Li+ ion (ground state).  
Calculate the second ionization potential. 



 (iii) The first ionization potentials of atoms in the periodic table are shown in 
the following figure. Explain with examples, why the IPs behave in this periodic 
fashion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (d) The Clementi-Raimondi values of (Zeff)i /ni are only applicable to the 
electronic configuration for which the calculations have been done (as shown in 
the table provided), and does not permit us to find the (Zeff)i /ni for each electron 
when other than the ground electronic configuration is being considered.  
(Zeff)i can be also be approximated by using Slater’s rules (attached), which 
provides the estimate for (Zeff)i for the ith electron in any electronic configuration 
of an atom or ion.  
 
Calculate the following quantities using Slater’s rules: 
  (i) The energy involved in the transfer of one electron from Na to F. Is 
the energy absorbed or evolved? 
  (ii) A common method of producing x-rays is to bombard a piece of 
metal with electrons of sufficient energy to knock an inner shell electron out of a 
metal atom. The remaining electrons in the atom rearrange themselves by falling 
into the “holes” created and emit x radiation. The wavelengths of the x-rays vary 
with the target substance . Calculate the energy of the x-ray emitted when a 2s 
electron falls into the hole left in the 1s shell of a Na atom.  
  (iii) Electronegativity according to R.S. Mulliken’s definition is  



(IP + EA )/2  
where IP is ionization potential and EA is electron affinity. Using Slater’s rules, 
calculate the electronegativity of these atoms: F, O, N, C, Li, Na, H. You can leave 
your electronegativity scale in units of (e2/2a0). Compare with the electronegativity 
scale from any textbook.. 
 
2. “Orbital energies of Atoms” 
By photoelectron spectroscopy, XPES or ESCA or variants thereof, a variety of 
ionization energies are found for the atoms of a sample. In this analytical 
technique, the sample is irradiated with high-energy radiation and electrons are 
expelled. Some of the energy of the incident radiation is carried off as kinetic 
energy of the expelled electrons. The energy required to produce a particular 
ionization (IE) is equal to the energy of the incident photon (hν) less the kinetic 
energy of the expelled electrons (εkin). We can describe this by  

IE = hν -εkin      or        εkin = hν - IE 
The pattern of electron kinetic energies thus yields a display (spectrum) of the 
various ionization energies of the atoms or molecules of the sample.  Now if we 
have a model of an atom, such as the Slater model, in which the total energy (not 
including translation) of the atom for a given electronic configuration can be 
written in terms of a sum over the one-electron-at-a-time (i.e., ‘orbital’) energies, it 
will be possible to use the following language about each measured IE:  “Each 
ionization energy is a measure of the energy required to expel an electron from one 
of the orbitals of the atom. Or we can think of the measured IE as the energy 
released when an electron with zero kinetic energy is dropped into the empty 
orbital of the ion of the atom. Thus the measured ionization energies can be taken 
to be measures of orbital energies.” The ionization spectrum of argon is shown 
below: 

 
For each frame, the atomic term symbol for the Ar+ ion formed (e.g., 2S½ ) is the 
label used under each frame. The orbital of the parent argon atom from which an 
electron has been expelled (e.g., 1s) in each case is shown as a label within the 
frame.  
 



Use the Slater rules to calculate  
(a) the energy of the Ar atom in its ground electronic state, in eV.  
(b) for each of the 5 frames: the energy of the Ar+ ion with the one electron missing  
      from the orbital indicated, in eV. 
(c) for each of the 5 frames: the IE corresponding to the difference: 
      [E(Ar+ ion) - E (Ar)]. Compare these values with the 5 spectra and explain the  
      deficiencies of the Slater model in predicting these IEs. 
 



Slater’s rules: 
The effective charge seen by the ith electron whose quantum numbers are n l in an 
atom whose atomic number is Z is given by   
     (Zeff)i = Z - snl
 
Slater provides snl  as follows:  
1. For i  having n l = 1s 
 s1s = 0.30ksame
 where 
 ksame =  number of other electrons in the same 1s shell 
2. For  i having n > 1 and l = 0 or 1 
 snl = 0.35ksame + 0.85kin + 1.00kinner
 
 where 
 ksame =  number of other electrons in the same shell as the screened electron 
of    interest 
 kin =  number of electrons in the shell with principal quantum number n-1 
 kinner =  number of electrons in the shell with principal quantum number n-2 
 
 
3. For the ith electron having quantum numbers n l = 3d 
 s3d = 0.35k3d + 1.00kin
  
 where 
 k3d =  number of  other electrons in the same 3d shell 
 kin =  number of electrons with n ≤ 3 and l < 2 
For the purposes of Slater’s rules, the “subshells” are taken to be in the order 
innermost    1s  (2s,2p)  (3s,3p)   3d   (4s,4p)    outermost 
 

ADDITIONAL INFORMATION 
a0 = (h2/mee2)       the “Bohr radius”, 0.529177x10-10 m  
(e2/2a0) = 13. 6057 eV    one  rydberg, a unit of energy = (1/2) hartree  
c = frequency•wavelength = 2.997924 x1010 cm sec-1      the speed of light 
1 eV = 8065.6 cm-1 



The Clementi and Raimondi table can be summarized as follows, 
applying only to the ground electronic configuration:  (Zeff)i = Z - snl
 
s1s = 0.30[N1s -1] + 0.0072[N2s+N2p] + 0.0158[N3s+N3p +N4s +N3d +N4p]  
s2s = 0.8604[N1s] + 0.3601[N2s+N2p-1] + 0.2062[N3s+N3p +N4s +N3d +N4p] 
s2p = 2.5787 + 0.3326[N2p-1] - 0.0773[N3s] - 0.0161[N3p +N4s] - 0.0048[N3d]  
             + 0.0085[N4p] 
s3s =  1.0[N1s] +0.8116[N2s+N2p] + 0.2501[N3s+N3p-1] + 0.0778[N4s] + 0.3382[N3d]  
  + 0.1978[N4p] 
     = 8.4927 +0.2501[N3s+N3p-1] + 0.0778[N4s] + 0.3382[N3d] + 0.1978[N4p] 
s3p =  9.3345 + 0.3803[N3p-1] + 0.0526[N4s] + 0.3289[N3d] + 0.1558[N4p] 
s4s = 1.0[N1s] +1.0[N2s+N2p] + 0.6881[N3s+N3p] + 0.8433[N3d] + 0.0971[N4s -1]  
  + 0.0687[N4p] 
     = 15.505 + 0.8433[N3d] + 0.0971[N4s -1] + 0.0687[N4p] 
s3d = 13.5894 + 0.2693[N3d-1] - 0.1065[N4p] 
s4p =  24.7782 + 0.2905[N4p-1] 
 
where N3d is the number of electrons occupying the 3d subshell, for example.  
These equations were obtained by fitting to their calculated (Zeff)i for He through 
Kr atoms. 
 
In comparison: 
Using Slater’s rules, for the ground electronic configuration, we would get 
s1s =  0.30[N1s -1] 
s2s =  0.85[N1s] + 0.35[N2s+N2p-1] 
s2p =  0.85[N1s] + 0.35[N2s+N2p-1] 
     =  2.40 +  0.35[N2p-1] 
s3s = 1.0[N1s]  + 0.85[N2s+N2p] + 0.35[N3s+N3p-1] 
     = 8.80 + 0.35[N3s+N3p-1] 
s3p = 1.0[N1s]  + 0.85[N2s+N2p] + 0.35[N3s+N3p-1] 
     =  8.80 + 0.35[N3s+N3p-1] 
s4s = 1.0[N1s]  + 1.0[N2s+N2p] + 0.85[N3s+N3p] + 0.85[N3d] + 0.35[N4s +N4p-1] 
     = 16.8 + 0.85[N3d] + 0.35[N4s +N4p-1] 
s3d = 1.0[N1s]  + 1.0[N2s+N2p] + 1.0[N3s+N3p] + 0.35[N3d-1] 
     = 18.0 + 0.35[N3d-1] 
s4p = 1.0[N1s]  + 1.0[N2s+N2p] + 0.85[N3s+N3p] + 0.85[N3d] + 0.35[N4s +N4p-1] 
     =  26.0 + 0.35[N4p-1] 



 
 


