
Problem Set 13 
On molecular orbitals of diatomic molecules and the Pauli exclusion principle 

 
1. To describe the electronic structure of atoms having more than one electron, we first 
start out by solving the hydrogen-like atom; that is, we first solved the system having 
only one electron and found the eigenfunctions and the eigenvalues in terms of the charge 
on the nucleus, +Ze. The eigenfunctions we found are R n l ( Z, r ) •Yl m(θ, φ) ,  
and the eigenvalues E n =  -( Z/n)2 (e2/2a). 
Then to describe the electronic structure of atoms having more than one electron  we 
considered a model such as the central field approximation that permits us to consider 
one electron at a time, that is, the central field approximation Hamiltonian looks like 

H = ∑i { -(h2/2μ)∇i
2+ V(r i) }  

In  using the central field approximation, we find that the Schrödinger equation for the 
electronic motion is separable; i.e., we only need to solve the problem of one electron at a 
time and find functions of the coordinates of one electron only (so-called ‘orbitals’ or 
‘atomic orbitals’ since these are for an atom):  
Solving the equation,  
{ -(h2/2μ)∇3

2+ V(r3) }Ψ( r3, θ3, φ3) = ε3 Ψ( r3, θ3, φ3)  for electron 3 for example, 
leads to the functions Ψ( r3, θ3, φ3) = F( r3 )•Yl m(θ3, φ3).   
When the Slater approximation is also used, then  
F( r3 ) takes the form of R n l ( Zeff,3, r3 ) and ε3 takes the form of  -( Zeff,3/n)2  (e2/2a0) , the 
solutions to the hydrogen-like atom with +Zeff e as the nuclear charge. 
 
Now, for electronic motion in the H2 diatomic molecule, we do something analogous. We 
consider the simplest diatomic molecule with only one electron, the H2

+ molecule ion.  
H elec = { -(h2/2m)∇2+ V(r) } 

where V(r) includes attraction to both nuclear charges +ZAe and +ZBe and is a function of 
the position coordinates of the electron in the axis frame formed by the nuclei.  
The (+ZAe)(+ZBe)/RAB is a constant contribution to the potential energy for each 
internuclear distance, and can simply be added to the electronic energy eigenvalue found 
at each RAB . 
 
We assume that we have found all the electronic eigenfunctions for the H2

+ molecule ion, 
and these one-electron functions are called ‘molecular orbitals’.  Next we consider the 
two-electron diatomic molecule by thinking in terms of absorbing the  electronic 
repulsion hamiltonian term +e2/r12 partly into V(r1) and the rest into V(r2), where the bold 
r1 stands for the position coordinates of electron 1 in the nuclear frame of the molecule 
and of course V(r1) includes attraction to both nuclear charges +ZA,effe and +ZB,effe.  If we 
do this, then our Hamiltonian for electronic motion becomes 

H elec = ∑i=1,2 { -(h2/2m)∇i
2+ V(r i) } 



and, just as in the case of the many-electron atoms, we end up by using separation of 
variables, therefore our electronic eigenfunctions of energy will be expressible in terms 
of products like ψ(r1)•ψ(r2) where ψ(r1) is a one-electron function, therefore called a 
‘molecular orbital’ since the electronic coordinate (r1) describes its position in the frame 
of the several nuclei in the molecule (here only two, nucleus A and nucleus B). The H2 
molecule is simple enough that we can examine the Pauli exclusion principle at work. 
This is what the following question is about. 
 Let us write the lowest energy electronic eigenfunction of the H2

+ molecule ion in 
the simplest possible MO (molecular orbital) approximation: 
ψ(r1) = σg (1) = [2 + 2S]½ [φA(1)  + φB(1)] ,    φA is a 1s atomic orbital centered on 
nucleus A, S is an overlap integral 
Another eigenfunction of the H2

+ molecule ion, again in the simplest possible MO  
approximation is  
ψ(r1) = σu (1) = [2 - 2S]½ [φA(1)  - φB(1)] . 
If we use only the above one-electron functions (MOs), there are four spin-orbitals which 
are possible for one electron:  
 σg(1)•α(1)  σg(1)•β(1)    σu(1)•α(1)    σu(1)•β(1) 
 
Now to build a description of H2 molecule. There are 2 electrons and from the above 
molecular orbitals we have the possible combinations:  
any of  σg(1)•α(1)  σg(1)•β(1)    σu(1)•α(1)    σu(1)•β(1) 
with any of σg(2)•α(2)  σg(2)•β(2)    σu(2)•α(2)    σu(2)•β(2) 
 

 space part spin part   space part spin part 
1 σg(1)•σg(2) α(1)•α(2)  9 σu(1)•σg(2) α(1)•α(2) 
2 σg(1)•σg(2) α(1)•β(2)  10 σu(1)•σg(2) α(1)•β(2) 
3 σg(1)•σu(2) α(1)•α(2)  11 σu(1)•σu(2) α(1)•α(2) 
4 σg(1)•σu(2) α(1)•β(2)  12 σu(1)•σu(2) α(1)•β(2) 
5 σg(1)•σg(2) β(1)•α(2)  13 σu(1)•σg(2) β(1)•α(2) 
6 σg(1)•σg(2) β(1)•β(2)  14 σu(1)•σg(2) β(1)•β(2) 
7 σg(1)•σu(2) β(1)•α(2)  15 σu(1)•σu(2) β(1)•α(2) 
8 σg(1)•σu(2) β(1)•β(2)  16 σu(1)•σu(2) β(1)•β(2) 

 
However, we can not use these spin functions as is because they are eigenfunctions of Sz 
, but are not all eigenfunctions of S2 . 
We can form the eigenfunctions of S2 from the above spin functions that are already 
eigenfunctions of Sz.  
Eigenfunctions of Sz  MS  S Eigenfunctions of S2 

α(1)•α(2) +½ + ½ = 1  1 α(1)•α(2) 



β(1)•β(2) -½ - ½ = -1  1 β(1)•β(2) 
α(1)•β(2) +½ - ½ = 0 degenerate 1 1/√2{α(1)•β(2)+ β(1)•α(2)} 
β(1)•α(2) -½ + ½ = 0 degenerate 0 1/√2{α(1)•β(2)- β(1)•α(2)} 

(a) Question: Classify each of the above 4 functions that are eigenfunctions of S2 

according to ‘symmetric’ or ‘antisymmetric’ with respect to interchange of 
electrons 1 and 2. 
Similarly, since electron 1 and 2 are indistinguishable, we can form linear combinations 
of the space part when only the labels 1 and 2 distinguish the product functions  

Eigenfunctions of H 
H(1) + H (2) :  
ψ(r1) • ψ(r2) 

   Eigenfunctions of H (1) + H (2)

σg(1)•σg(2) 2Eσg   σg (1) •σg (2) 
σu(1)•σu(2) 2Eσu   σu (1) •σu (2) 
σg(1)•σu(2) Eσg+ Eσu degenerate  1/√2{σg(1)•σu(2) +σu(1)•σg(2)}
σu(1)•σg(2) Eσg+ Eσu degenerate  1/√2{σg(1)•σu(2) - σu(1)•σg(2)}

(b) Question: Classify each of the above 4 functions that are eigenfunctions of H  

according to ‘symmetric’ or ‘antisymmetric’ with respect to interchange of 
electrons 1 and 2. 
We still have 4space x 4spin = 16 functions that we can use, just as before we made the 
linear combinations.  
(c) Question:  Determine which combinations are allowed by the Pauli exclusion 
principle [ The total wavefunction has to be ‘antisymmetric’ (must change sign) 
with respect to interchange of any two electrons (fermions).] 
 
Now, let us write out the functions in terms of the atomic orbitals within the MOs:  
σg (1) = [2 + 2S]½ [φA(1)  + φB(1)]  and σu (1) = [2 - 2S]½ [φA(1)  - φB(1)] 

Eigenfunctions   of (1) + (2):  

σg(1)•σg(2) [2 + 2S] [φA(1)•φB(2) + φB(1)•φA(2) + φA(1)•φA(2) + 
φB(1)•φB(2)] 

2Eσg 

σu(1)•σu(2) [2 + 2S] [-φA(1)•φB(2) - φB(1)•φA(2) + φA(1)•φA(2) + 
φB(1)•φB(2)] 

2Eσu 

1/√2{σg(1)•σu(2) - 
σu(1)•σg(2)} 

[2(1-S2)] ½ [-φA(1)•φB(2) + φB(1)•φA(2)] Eσg+ Eσu

1/√2{σg(1)•σu(2) + 
σu(1)•σg(2)} 

[2(1-S2)] ½ [ φA(1)•φA(2) - φB(1)•φB(2)] Eσg+ Eσu

(d) Question: Classify each of the above 4 functions that are eigenfunctions of H  

according to ‘symmetric’ or ‘antisymmetric’ with respect to interchange of protons 
A and B. 



Now consider the nuclear spin of  nuclei A and B, the two protons. The proton has spin 
I=½ . We can form the eigenfunctions of square of nuclear spin angular momentum I2 
from the above spin functions that are already eigenfunctions of I z.  
Eigenfunctions of I z  MI  I Eigenfunctions of I 2 

α(A)•α(B) +½ + ½ = 1  1 α(A)•α(B) 
β(A)•β(B) -½ - ½ = -1  1 β(A)•β(B) 
α(A)•β(B) +½ - ½ = 0 degenerate 1 1/√2{α(A)•β(B)+ β(A)•α(B)}
β(A)•α(B) -½ + ½ = 0 degenerate 0 1/√2{α(A)•β(B)- β(A)•α(B)}

(e) Question: Classify the above 4 functions that are eigenfunctions of I 2  
according to ‘symmetric’ or ‘antisymmetric’ with respect to interchange of protons 
A and B. 
 
Of course to have the total wavefunction of a diatomic molecule we still have to multiply 
the functions that we have considered above by the missing parts of the wavefunction, 
i.e., translation, vibration, and rotation. Assume that the vibrational part of the 
wavefunction can be approximated by a harmonic oscillator function. (See your text book 
for these functions.) These functions do not change when nuclei A and B are 
interchanged since the harmonic oscillator functions depend only on displacements from 
the equilibrium (minimum energy geometry) distance RAB.  
We already derived the translational wavefunctions of any molecule, these are the 
functions of a particle in a three-dimensional box of dimensions L1, L2, L3. These 
functions do not change when nuclei A and B are interchanged.  
We already derived the rotational wavefunctions for a rigid rotor. We can approximate 
the rotational wavefunctions of a diatomic molecule with those of a rigid rotor; they are 
the same mathematical form as the energy eigenfunctions of a particle on the surface of a 
sphere: YJ,M (θ,φ). Interchanging nuclei A and B in a rigid rotor (when A and B ends are 
indistinguishable, i.e., same mass) is the same as inverting the two masses through the 
center of mass of the molecule, the result of which depends on the θ part as follows:  

 PAB YJ,M (θ,φ)  = (-1)JYJ,M (θ,φ) 
(f) Now put all the functions together, write the total wavefunction of H2 molecule, 
including everything. Determine which of the above 4 nuclear spin functions may 
be used with your set of all other functions so that the total wavefunction of H2 
molecule obeys the Pauli exclusion principle with respect to interchange of the 
two indistinguishable protons A and B.  
You may express your wavefunction in terms of the usual variables and constants for the 
H2 molecule, but define the symbols you use. 
 (g) Consider the rotational energies of the H2 molecule. For the ground electronic state 
and ground vibrational state of the H2 molecule, calculate the rotational energy in 
terms of (h2/2μRAB

2), up to rotational quantum number J = 4. For up to J = 4, write 
the total energy of the H2 molecule (in addition to translational energy) and write an 



expression for the total wavefunction for each of the two lowest J. For up to J = 4, in 
the ground electronic and ground vibrational state of H2 molecule, calculate the number 
of degenerate states (including electron spins, nuclear spins, electronic and vibrational 
states) that have the same energy. Draw the rotational energy level diagram to scale, 
up to J = 4. To each energy level attach the labels: J, the total degeneracy, and the 
rotational energy.  
 
(h) Now consider the heavy hydrogen molecule D2. The deuteron has spin I = 1. Look 
carefully at the constants and functions that you have written down in the above H2 
molecule case and identify every part that will become different upon going from H2 
to D2 . [Hint: Look everywhere there are masses and spins I that are involved, and follow 
through for the D2 molecule the same arguments as are shown in part (e) above for the H2 
molecule.] Prepare a table for D2 as shown in part (e) for H2.  
 
(i) and (j) Demonstrate that you understand the differences by writing out the D2 
case just as you did the H2 case in parts (f) and (g).  
 
 



2. Assign the appropriate molecular orbital designation [σ, π, δ, ..., u or g, bonding 
or anti-bonding (*), atomic orbital composition]  to each of the following one-electron 
functions. For consistency of notation, designate the plane of the paper as the xz plane. 
The identity of the atoms are indicated by the symbols at the nuclei. 



3. The K2 potential functions are shown in the figure below. The labels correspond to the 
electronic states of the 38-electron diatomic molecule. If, subsequent to the Born-
Oppenheimer separation, these 38 electrons were to be considered as describable by an 
antisymmetrized product of 38 one-electron functions, which product function 
approximately describes the ground state? In other words, what is a likely “electronic 
configuration” in terms of molecular orbitals for the electronic ground state of K2 
molecule?  Provide electronic configurations for as many as you can of the excited 
electronic states as well. 
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