
Problem Set 14 
On Molecular Spectroscopy 

 
Use the attached formulas (see last page) for the energy of a diatomic molecule in 
terms of its molecular constants in order to have uniform notation. 
Part I 
1. Derive an expression in terms of B, D, and Jlower giving the energy spacing between 
adjacent rotational states for a diatomic rotor. Does the deviation from the rigid rotor 
result increase or decrease as J increases?  From your derived expression and the 
selection rule ΔJ = ±1, draw a stick diagram of a microwave spectrum for a diatomic 
molecule, for example CO. Label each peak with values of Jlower . From your derived 
expression, determine the frequency spacing between adjacent peaks in the microwave 
spectrum of a diatomic molecule. Suppose you have measured the frequencies in the 
microwave spectrum of the CO molecule. Determine a suitable choice of a straight line 
plot that would provide directly (from slope and intercept) the molecular or spectroscopic 
constants that can be extracted from the microwave spectrum.  Sketch such a plot and 
identify what the slope and intercepts are equal to.  A portion of the CO microwave 
spectrum is shown below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Derive an expression in terms of the spectroscopic constants giving the frequencies 
of transitions between v = 0 and v = 1 accompanied by rotational transitions for a 
diatomic molecule, for example CO. The selection rule is ΔJ = ±1, unless the molecule 
has other angular momentum (non-vanishing net S or net Λ), in which case also ΔJ = 0 
is allowed.  From your derived expression, draw a stick diagram of an infrared 
spectrum. Label each peak with values of Jlower. From your derived expression, 
determine the frequency spacing between adjacent peaks in the center of the infrared 
spectrum of a diatomic molecule. Determine the frequency spacing between adjacent 
peaks in the low frequency side of the infrared spectrum in terms of the spectroscopic 
constants and Jlower . Show one such spacing in your stick diagram, labeled with the 
appropriate expression frequency spacing for the chosen peaks. Do the same for the 
high frequency side of the spectrum. Suppose you have measured the frequencies in 
the infrared spectrum of the CO molecule. Determine a suitable choice of a straight line 
plot that would provide directly (from slope and intercept) the molecular or spectroscopic 



constants that can be extracted from the infrared spectrum.  Sketch such a plot and 
identify what the slope and intercepts are equal to. An example of an infrared spectrum 
is shown below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Derive an expression, in terms of the spectroscopic constants, giving the frequencies 
of transitions between v′′= 0 of the ground electronic state of a diatomic molecule and 
the v ′=0 of an excited electronic state, accompanied by rotational transitions.  An 
example of such transitions is shown here for CO molecule [from Ubachs et al. J. Mol. 
Spec. 388-396 (1995)]  
 
 
 
 
 
 
 
 
 
 
 
 
 
 Be sure to distinguish the spectroscopic constants of the two electronic states (upper = 
′, lower = ′′). From your derived expression, determine the frequency spacing between 
adjacent peaks in the low frequency side of the spectrum in terms of the spectroscopic 
constants and Jlower .  Do the same for v′′= 0 to v ′=1. CN molecules are found in many 
extraterrestrial sources such as the Sun, stellar atmospheres, comets, and interstellar 
clouds. Its violet spectrum (electronic transitions B2∑+ ↔ ground X2∑+) has also been 
observed in the laboratory. Suppose you have a list of the measured frequencies in the 
high resolution (rotational transitions are individually resolved) spectrum of the violet 
system of CN molecule for v′′= 0 to v ′=0, the most intense vibrational progression. 
Determine a suitable choice of a straight line plot that would provide directly (from slope 
and intercept) the molecular or spectroscopic constants that can be extracted from this 



electronic spectrum.  Sketch such a plot and identify what the slope and intercepts are 
equal to. The potential energy curves for the three lowest energy states of CN are 
shown below: [from Ito et al., J. Mol. Spec. 127, 283-303 (1988)]  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. The rotational Raman spectrum is obtained under the selection rule ΔJ = ±2. Derive 
an expression, in terms of the spectroscopic constants and Jlower, giving the frequencies 
of transitions  in the rotational Raman spectrum of a diatomic molecule such as 14N2. 
[Since Raman spectroscopy involves measuring the scattered frequency minus exciting 
frequency, for “frequencies of transitions” use directly the difference, νscattered - νexciting .] 
Draw a stick diagram of the spectrum and label each peak with values of Jlower . 
Suppose you have measured the frequencies in the rotational Raman spectrum of the 
14N2 molecule. Determine a suitable choice of a straight line plot that would provide 
directly (from slope and intercept) the molecular or spectroscopic constants that can be 
extracted from the rotational Raman spectrum.  Sketch such a plot and identify what the 
slope and intercepts are equal to. An example of rotational Raman data is in problem 1 
of Part II below. 
 
5. The vibrational spacings observed in the emission spectrum of a diatomic molecule 
from a particular v ′ (v ′=1, for example) to various v ′′ can be used to determine the 
dissociation energy of the ground electronic state. Draw a sketch of two electronic 
states with vibrational levels depicted for both. On your sketch, show three electronic 
transitions, for example v ′ = 1 to v ′′  = 2, 3, 4, measured frequencies are 23549.46 cm-

1, 22278.53 cm-1, 21050.85 cm-1 . Derive an equation that gives the difference: 
(23549.46 - 22278.53) cm-1,  and another equation that gives the difference (22278.53 - 
21050.85) cm-1 . Derive the equation that provides the difference [Gv ′′+1 -Gv′′] in terms of 
the molecular and spectroscopic constants of the molecule and v ′′. Sketch a plot of 
such differences (ordinate) against v ′′(abscissa) from v ′′  = 0 all the way to v′′max . 



Show on your sketch of two electronic states the sum of all such differences from v ′′  = 
0 all the way to v′′max . 
 
You will use your derived expressions to find the spectroscopic constants from the 
observed frequencies in the examples that follow. 
Part II 
 
1. Using all the experimental points Δνob in the table below, determine B0 to ±0.00003 
cm-1 and De to ± 6x10-6 cm-1. Δνob = νscattered - νexciting . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. The band origins of the v′ - v′′ =  0-1, 0-2, 0-3, ... bands of the Ångstrom system, the 
spectrum corresponding to the (B1∑+ ↔A1Π) electronic transition in CO molecule, in 
particular the heavy isotopomer 13C18O,  are  shown below, expressed relative to the v = 
0 level of the A1Π electronic state, which is 718.43 cm-1 above the minimum of the 
potential energy curve of state A1Π. In turn, A1Π is Te = 65 075.77 cm-1 above the 
ground electronic state of CO. [Te is measured from the bottom of the ground potential 
surface to the bottom of the A1Π potential surface.] The rotational constants for each 
vibrational level is also given. 

vibrational 
level 

 vibrational term 
cm-1 

rotational constants cm-

1 
Data from Prasad and 
Reddy, J. Mol. Spec. 

0 0.0 1.4574(3) 130, 62-68 (1988) 
1 1406.51(4) 1.4366(1)  
2 2788.17(4) 1.4173(2)  
3 4139.71(4) 1.3931(3)  
4 5458.41(4) 1.3772(1)  
5 6745.52(4) 1.3561(2)  

 
Make the appropriate fits to straight lines in order to obtain from intercepts and slopes 
as many precise values of spectroscopic constants from these numbers as you can. 
 



3. In the Raman spectrum of  14N2 and 15N2 in the electronic ground state, ΔJ = 0 (Q 
bands) and ΔJ = -2 (S bands) have been observed [Orlov et al., J. Mol. Spec. 185, 128-
141 (1997). Shown below are portions of the Q branch of the v′ ←v′′ : 1←0 and 7←6 , 
respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Make an energy level diagram for the energy levels involved and indicate on your 
diagram the transitions shown in the spectra above, labeling each level with the v and J 
quantum numbers, and labeling each transition with the same label used by Orlov et al., 
e.g., Q(11). Discuss why, for 15N2 molecule Q(12), Q(10), Q(8), Q(6), Q(4) and Q(2) are 
so much smaller intensity than the adjacent peaks in the top spectrum (1←0). Ditto for 
Q(10), Q(8), Q(6), Q(4) and Q(2) in the bottom spectrum (7←6). What do you expect for 
14N2 molecule? [HINT: Use the Pauli exclusion principle.] Sketch the spectrum for 14N2 
corresponding to the portion of (7←6) shown for 15N2 above.  



4. The experimental vibrational spacings ΔG′ and ΔG ′′ (in cm-1) are given in Table III 
below for the electronic states A1∑+ and X1∑+ of 7LiH. Making use of your answers to 
no. 5 of Part I of this problems set, make the appropriate plot that will allow you to 
determine the dissociation energy of the ground X1∑+ state of 7LiH. You will have to 
extrapolate your plot because not all the vibrational spacings have been observed. 
Specify whether you are reporting dissociation energy as D0 (from the v′′ = 0 level) or De 
(from the bottom of the potential well).  
 



How to obtain molecular constants from spectroscopic constants 
 

(1)  If Be  is given in cm-1 and masses in amu, how to find the Re  in Å  ? 
 
Erot = Be J(J+1)  where Be =    h2     . 
     2μ Re

2 

hcBe =    h2       •     1 . 
       2            μ Re

2 
 
Be   =     h    •            1 . 
   8π2c            μ Re

2 
cm-1                    amu Å2 
 
    h        =    6.62618x10-34 J s     •   m2 kg s-2    •      ⎡ 1010 Å  ⎤ 2 
  8π2c           8π 2  x 3 x108 ms-1                J                 ⎣  1 m     ⎦ 
 
   •   6.0224x1023 amu    •      103 g          •          1 m 
     1 g                     1 kg              102 cm 
 
   h        =   16.846 amu Å2   cm-1 
 8π2c 
 
Be   =    (16.846 amu Å2   cm-1 )  •          1   . 
       μ Re

2 
cm-1                        amu Å2 
 
(2)  If vibrational frequency νe  and the U(R) potential energy function are 
given in cm -1  and masses in amu, how to find the second derivative of 
U(R) at the equilibrium bond length  in  units of cm -1 Å-2  ? 
hcνe     = (h/2π) [ U”(Re) / μ ] ½ 

 
U”(Re)   =    ⎡   ∂2 U(R)  ⎤       =   4π2μc2 νe

2                U(R) in joule per molecule 
           ⎣    ∂ R2   ⎦ Re 
U”(Re)   =  4π2μνe

2   •     (3x108 m s-1) 2  •     1 kg                 •  ⎡    1 cm . ⎤ 2 
J Å-2       amu (cm-1)2    6.022x1026 amu      ⎣ 108 Å   ⎦  



If U(R) is in cm-1 , then we want U”(Re) in units of cm-1 Å-2 .  To get this,  
 
U”(Re)   =  4π2μνe

2 
cm-1 Å-2   hc 
 =  4π2μνe

2 •  (3x108 m s-1) 2  •     1 kg                •  ⎡    1 cm . ⎤ 2 
   amu cm-1    6.022x1026 amu      ⎣ 108 Å   ⎦ 
   •                       1                            •      1 J   .  
      6.62618x10-34 J s  x 3x1010 cm s-1    m2 kg s-2 
 
U”(Re)   =   ( 0.029681 amu-1 cm Å-2 )   •    μ    (νe ) 2 
cm-1 Å-2                amu  (cm-1 ) 2 
 
(3)  If the vibrational-rotational coupling constant  frequency αe  is given in 
cm -1  and masses in amu, how to find the third derivative of U(R) at the 
equilibrium bond length  in units of cm -1 Å-3  ? 
 
αe  = - 2 Be

2  •  ⎡ 3   +   2Be  U’”(Re) Re
3   ⎤ 

   hνe            ⎣                      (hνe )2                   ⎦ 
 
Rearrange to find 
 U’”(Re) =    ⎡   ∂3 U(R)  ⎤     =    ⎡ - αe νe   - 3⎤    •   ⎡ νe  ⎤    •   ⎡ νe  ⎤ 
           ⎣    ∂ R3   ⎦ Re           ⎣    2Be

2         ⎦          ⎣2Be ⎦          ⎣ Re
3 ⎦ 

cm-1 Å-3             dimensionless  dimensionless   cm-1 Å-3 
 
 
Some conversion factors 
 
 Δ E   =  hν  =  6.62618x10-34 J s •    ν 
J per molecule          s-1 or Hz 
 Δ E     =  6.62618x10-34 J s •   s-1   • 106 Hz  •       ν 
J per molecule                Hz       1 MHz      MHz 
 
Δ E   = hc(1/λ) = 6.62618x10-34 J s  • 3x108 m s-1  • 102 cm  •     (1/λ) 
J per molecule                          1 m     cm-1 
 
1 eV = 8065.46 cm-1                   1 eV per molecule = 96, 485  J mol-1 


