Name
Chemistry 344
Exam I
Monday September 24, 2001
2:00 -2:50 PM
NO CALCULATORS PERMITTED
1. A particle of mass m in a potential well (with infinitely high walls) in the x
dimension is known to be in either the $n = 2$ or $n = 3$ eigenstates with equal
probability. The eigenfunctions of these states are $\psi_2(x) = (2/a)^{1/2} \sin [2\pi x/a]$
and $\psi_3(x) = (2/a)^{1/2} \sin [3\pi x/a]$, respectively.
(a) Write an appropriate wavefunction Ψ for the system that reflects our
knowledge of the state of the system.
,
(b) <i>Prove</i> that $\psi_2(x) = (2/a)^{1/2} \sin [2\pi x/a]$ is an eigenfunction of the Hamiltonian
operator for this particle.

more space on next page

(c) What ener	rgies might be obta	ained if the	energy of the	narticle is measi	ired?
(c) What one	gico illigiit de obta	anned if the C	mergy of the	particle is measo	arou.
•					
		~			
(1) Datamaina	the expected of	(0 K0 C) 0 - C	:		
	the expected av	erage of a s	series of meas	surements of the	energy
of the particle.		· · ·			
	•				
					ŧ
4				•	
Z > 5 # 45 # 4					
	stulate predicts the	standard de	eviation of suc	ch a series of	
measurements's	! State it.				

Write the equation that shows how the expected mean square deviation of any				
series of measurements of the energy of th	e particle can be calculated.			
(f) Carry out the solution of (e), and then	from the final result, determine the			
expected standard deviation of the series of				

(e) Illustrate a typical table of results from 10 such measurements. *Fill in* the column "Results". What is the probability of each outcome?

	Result	Deviation	Probability
1			
2			
3			
4			
5			
6			
7		8	
8			
9			
10	•		
Ave			

- (g) Sketch (1) $\psi_2(x)$
- (2) $\psi_3(x)$
- (3) one of the wavefunctions in (a)

(h) Suppose an electron is contained in a two-dimensional potential well (with infinitely high walls) whose shape is that of a rectangular sheet with dimensions $a \times b$. Write the Schrodinger equation that needs to be solved for this system.

(i) Show that the method of separation of variables may be used to solve this problem, i.e., to find the eigenfunctions and eigenvalues.
problem, non, to find the eigenfunctions and eigenfunctions
(j) Given the results of your proof above, write down the possible energy
eigenfunctions for an electron confined to a sheet with dimensions $a \times b$. Given
the results of your proof above, <i>write down</i> the corresponding <i>energy eigenvalues</i> opposite the eigenfunction

List of possibly useful integrals that will be provided with each exam

```
\int \sin(ax) dx = -(1/a)\cos(ax)
\int \cos(ax) dx = (1/a)\sin(ax)
\int \sin^2(ax) dx = \frac{1}{2} x - (\frac{1}{4}a) \sin(2ax)
\int \cos^2(ax) dx = \frac{1}{2} x + (\frac{1}{4}a) \sin(2ax)
\int \sin(ax)\sin(bx)dx = [1/2(a-b)]\sin[(a-b)x] - [1/2(a+b)]\sin[(a+b)x],
\int \cos(ax)\cos(bx)dx = [1/2(a-b)]\sin[(a-b)x] + [1/2(a+b)]\sin[(a+b)x], \ a^2 \neq b^2
\int x \sin(ax) dx = (1/a^2) \sin(ax) - (x/a) \cos(ax)
\int x \cos(ax) dx = (1/a^2)\cos(ax) + (x/a)\sin(ax)
\int x^2 \cos(ax) dx = [(a^2x^2 - 2)/a^3] \sin(ax) + 2x\cos(ax)/a^2
\int x^{2} \sin(ax) dx = -[(a^{2}x^{2} - 2)/a^{3}]\cos(ax) + 2x\sin(ax)/a^{2}
\int x \sin^2(ax) dx = x^2/4 - x \sin(2ax)/4a - \cos(2ax)/8a^2
\int x^2 \sin^2(ax) dx = x^3/6 - [x^2/4a - 1/8a^3] \sin(2ax) - x\cos(2ax)/4a^2
\int x \cos^2(ax) dx = x^2/4 + x \sin(2ax)/4a + \cos(2ax)/8a^2
\int x^2 \cos^2(ax) dx = x^3/6 + \left[ \frac{x^2}{4a} - \frac{1}{8a^3} \right] \sin(2ax) + x\cos(2ax)/4a^2
\int x \exp(ax) dx = \exp(ax) (ax-1)/a^2
\int x \exp(-ax) dx = \exp(-ax) (-ax-1)/a^2
\int x^{2} \exp(ax) dx = \exp(ax) \left[ x^{2}/a - 2x/a^{2} + 2/a^{3} \right]
\int x^{m} \exp(ax) dx = \exp(ax) \sum_{r=0 \text{ to } m} (-1)^{r} m! x^{m-r} / (m-r)! a^{r+1}
\int_0^\infty x^n \exp(-ax) dx = n!/a^{n+1}
                                                         a > 0, n positive integer
\int_0^\infty x^2 \exp(-ax^2) dx = (1/4a)(\pi/a)^{1/2}
                                                        a > 0
\int_0^\infty x^{2n} \exp(-ax^2) dx = (1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)/(2^{n+1}a^n) (\pi/a)^{1/2}
\int_0^\infty x^{2n+1} \exp(-ax^2) dx = n!/2a^{n+1}
                                                        a > 0, n positive integer
\int_0^\infty \exp(-a^2 x^2) dx = (1/2a) (\pi)^{\frac{1}{2}}
                                                                a > 0
\int_0^\infty \exp(-ax)\cos(bx)dx = a/(a^2+b^2)
                                                                a > 0
\int_0^\infty \exp(-ax)\sin(bx)dx = b/(a^2+b^2)
                                                                        a > 0
\int_0^\infty x \exp(-ax) \sin(bx) dx = 2ab/(a^2+b^2)^2
                                                                        a > 0
\int_0^\infty x \exp(-ax) \cos(bx) dx = (a^2 - b^2) / (a^2 + b^2)^2
                                                                        a > 0
\int_0^\infty \exp(-a^2 x^2) \cos(bx) dx = [(\pi)^{1/2}/2a] \cdot \exp[-b^2/4a^2]
                                                                                 ab \neq 0
```