CHEMISTRY 542

First Exam
October 6, 2003

1. Find the wavefunctions and energy levels of the stationary states of a particle of
mass M in a uniform gravitational field g for the case when the region of motion
of the particle is limits from below by a perfectly reflecting plane. Hint: This is a
one-dimensional problem subject to V(z) = o for z < 0 and V(z) = Mgz forz> 0
since the motion in the xy plane is free.

(a) Write the Schrédinger equation that has to be solved for ¥(z).

(b) What are the boundary conditions?

(c) Quite often, in quantum mechanics a change of variable leads to a
Schrédinger equation that is more easily solvable. If we use a change of variable

q=[2M’gn’]"” [z - (E/Mg)]
‘we get the following simple form of the equation to be solved:
d*¥(q)dq” - q¥(q) = 0
Assume that a friend of yours who is a mathematician gives you the

functions which are the solutions to this differential equation (they are called Airy
functions) and that you have been given the roots of the Airy functions, that is the
values of q at which the function ‘Y(q) goes to zero, are o, o, O3, 04, ...all of
which are negative numbers.
Question: What are the eigenvalues of energy E for the particle of mass M in a
uniform gravitational field g for the case when the region of motion of the particle
is limited from below by a perfectly reflecting plane?

(d) A limiting case is the semi-classical limit. The semi-classical limit is the
asymptotic expression for the Airy function:

®(q) =gl M sin { (2/3)lq| ** + 4}

Question: What are the eigenvalues of energy in the semi-classical limit?




2. Let the functions o and 3 represent the complete orthonormal set of one-
electron spin functions, that is, they are respectively the eigenfunctions of the

angular momentum operator S, with corresponding eigenvalues “2# and - Y27,
Furthermore, using S.. and S. operators, it is possible to find the following results:

S, =YhB S, P=Yha S, o = i%4hp S, B = -i¥ha

The magnetic dipole moment of a particle is directly proportional to its intrinsic
angular momentum. In the Stern-Gerlach experiment, a beam of particles is sent
through an inhomogeneous magnetic field which splits the beam into several
beams each having particles with a different component of magnetic dipole
moment in the field direction. For example, a beam of ground state Na atoms is
split into two beams, corresponding to the two possible orientations of the spin of
the valence electron. :
Question: If we set up a Stern-Gerlach apparatus with the field in the z direction
and then allow the +%# beam (electrons in the spin eigenfunction o) from this
apparatus to enter a second Stern-Gerlach apparatus that has the field in the x
direction, derive the relative beam intensities for +%7# and -%4#, respectively. That
is, find the results of measuring Sy in a system that is in a state described by the
function a.

Hint: First, find the eigenfunctions of S, in terms of the complete orthonormal set
of functions o and 3. What are the eigenvalues of S,? Then, find the average value
of the results of measuring Sy in a system that is in a state described by the
function o. What then are the relative beam intensities for +%2# and -¥# from the
second Stern-Gerlach apparatus?

3. For a one-electron atom the spin-orbit interaction term in the Hamiltonian is
E(r) Los/i?

where £ and s are the orbital and spin angular momentum vector operators,

respectively, and

E(r) = A {(1/2m*c*)(1/r)(8V/or) }

m-is the mass of the electron and c is the speed of light, V and r are the potential
energy and the distance of the electron from the nucleus, respectively.
For a state of the one-electron atom characterized by quantum numbers 1, s, j, m;,
What are the possible values of j? Derive the interaction energy Ego, given that

EOR @)r'dr = o°Z (ag’/t)u(e*/2a0),
where the symbols have their standard meanings, including Z= the number of
protons in the nucleus and o, in this instance, is the so-called fine structure
constant, a dimensionless quantity, o = 1/137.03604.




Ego in many-electron atoms can be treated approximately by the above equations,

provided Z is used for the valence electron, the core having zero angular
momentum. Apply your equation for Ego to the Na atom and calculate the splitting
of the yellow D line of sodium. [The experimental value is 17.2 cm™.]

This relation for Ego can be used to find empirical values of the average
(ag /1),y for the valence shell of atoms from the hyperfine splitting of the
transitions from the SO state, for example (2P3/2, 2P1;2) -8 (ground) in the case
of alkali atoms. In these designations of the states of atoms, the superscript is
2S+1, and the subscript is the j quantum number, while the P or S are the symbols
for the orbital angular momentum L =1 or 0, of course. For atoms of the
representative elements in the Periodic Table, the hyperfine splitting provides
(3> /1)y . Barnes and Smith, Phys. Rev. 93, 95 (1954) found that Z.¢ = Z-n worked
well enough for this purpose. Derive the equation they used
AEso = 0 Ze (80”/1 yui(*/220)(1+5)
and verify the following values of (303/r3)np , a dimensionless quantity. Note that
(€%/2a5) = 13.606 eV x 8065.5 cm/eV=109,737.3 cm™

Configuration State cm™ (g /1 )np

Na 3p ’p 17.2 0.244
Mg 3s3p °p 60.8 0.77

Al 3p °p 112.0 1.28

Si 3p* ’p 223.3 2.31

P 3p’ by interpoln.
S 3p" ’p 573.6 5.02

Cl 3p’ °p 881.0 7.16

These quantities are significant in that they were predicted to be a factor in the
magnitudes of NMR shieldings and were later found to correlate with the NMR
chemical shift ranges of the nuclei of representative elements, i.e., large (a03lr3}np

means large chemical shift range for the nucleus.






