CHEMISTRY 542

Exam II November 8, 2004

In applying the principles of Quantum Mechanics in answering each question, be sure to <u>state the principle you are using at each step</u>.

1. Given the complete orthonormal set of functions $\{\alpha, \beta, \gamma\}$ which are eigenfunctions of the z component of angular momentum I_z with eigenvalues \hbar , $-\hbar$, and 0 respectively. The operators I_z and I_z have the following properties:

$$I_{-}\alpha = \sqrt{2} \hbar \gamma$$
 $I_{+}\alpha = 0$

$$I_{-\gamma} = \sqrt{2} \hbar \beta$$
 $I_{+\gamma} = \sqrt{2} \hbar \alpha$

$$I_{-}\beta = 0$$
 $I_{+}\beta = \sqrt{2} \hbar \gamma$

$$I_x = (I_+ + I_-)/2$$
 $I_y = (I_+ - I_-)/2i$

(a) Find the matrix representation of the operator I_+ , I_- , I_z , I_x , and I_y in this basis set.

$$I_z =$$

$$I_{\chi} =$$

$$I_y =$$

(b) Find the eigenvalues of the I_{χ} operator.

(c) Find the eigenfunctions of the \emph{I}_{x} operator.

(d) Suppose it is found that the system is described by the state function:

$$\Psi = 2^{-1/2}\alpha + 1/2\gamma + 1/2\beta$$

What values would result from a measurement of I_z on this system?

What is the expected average of a series of measurements of I_{x} on a system described by Ψ ?

2. The matrix representations of χ , χ^2 and χ^4 in the basis of the complete orthonormal set of harmonic oscillator eigenfunctions $\{\phi_0, \phi_1, \phi_2, \phi_3, ...\}$ are given by: (where $a = \hbar/4\pi v_e \mu$), and the corresponding energy eigenvalues are $(v+1/2)\hbar v_e$

$$x = a^{\frac{1}{2}} \begin{bmatrix} 0 & \sqrt{1} & 0 & 0 & 0 & \dots \\ \sqrt{1} & 0 & \sqrt{2} & 0 & 0 & \dots \\ 0 & \sqrt{2} & 0 & \sqrt{3} & 0 & \dots \\ 0 & 0 & \sqrt{3} & 0 & \sqrt{4} & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \end{bmatrix}$$

	1	0	√2	0	0	0	0	0	
	0	3	0	√6	0	0	0	0	
	√2	0	5	0	√12	0	0	0	
$\chi^2 = a$	0	√6	0	7	0	√20	0	0	
_	0	0	√12	0	9	0	√30	0	

	3	0	6√2	0	√24	0	0	0	
	0	15	0	10√6	0	√120	0	0	
$x^4 = a^2$	6√2	0	39	0	14√12	0	√360	0	
	0	10√6	0	75	0	18√20	0	√840	
	√24	0	14√12	0	123	0	√1680	0	

Suppose a harmonic oscillator is placed in an electric field, i.e., perturbed by h = c x, where c is a constant,

what is the energy of the v=2 level in the presence of the perturbation? Provide an answer that is correct to second order.

What is the wavefunction for this level, correct to first order?

3. Using the complete orthonormal basis set $\{ \phi_1, \phi_2, \phi_3, \phi_4 \}$, the **H** matrix for a physical system is given by:

Find the energy eigenvalues and the eigenfunctions of this system.