CHEMISTRY 542

ANSWERS to Exam II November 8, 2004

In applying the principles of Quantum Mechanics in answering each question, be sure to state the principle you are using at each step.

1. Given the complete orthonormal set of functions $\{\alpha, \beta, \gamma\}$ which are eigenfunctions of the z component of angular momentum I_z with eigenvalues

 \hbar , $-\hbar$, and 0 respectively. The operators I_- and I_+ have the following properties:

$$I_{-}\alpha = \sqrt{2} \hbar \gamma$$
 $I_{+}\alpha = 0$
 $I_{-}\gamma = \sqrt{2} \hbar \beta$ $I_{+}\gamma = \sqrt{2} \hbar \alpha$
 $I_{-}\beta = 0$ $I_{+}\beta = \sqrt{2} \hbar \gamma$

$$I_{\chi} = (I_{+} + I_{-})/2$$
 $I_{y} = (I_{+} - I_{-})/2i$

(a) Find the matrix representation of the operators I_+ , I_- , I_z , I_χ , and I_y in this basis set.

ANSWER

$$I_{+} = \sqrt{2} \hbar \begin{vmatrix} \beta & \gamma & \alpha \\ \beta & 0 & 0 & 0 \\ \gamma & 1 & 0 & 0 \\ \alpha & 0 & 1 & 0 \end{vmatrix}$$

$$I_{-} = \sqrt{2} \hbar$$

	β	γ	α
β	0	1	0
γ	0	0	1
α	0	0	0

$$I_z = \hbar$$

	β	γ	α
β	-1	0	0
γ	0	0	0
α	0	0	1

$$I_{\chi} = \frac{1}{2}(I_{+} + I_{-}) = \frac{1}{2}\sqrt{2} \, \hbar \qquad \frac{\beta}{\beta} \qquad \frac{\gamma}{0} \qquad \frac{\alpha}{0}$$

$$\frac{\gamma}{\gamma} \qquad \frac{1}{0} \qquad \frac{0}{0}$$

$$I_{y} = \frac{1}{2}(I_{+} - I_{-}) = \frac{\sqrt{2}\hbar}{2i}$$

$$\frac{\beta}{\beta} = \frac{\gamma}{0} + \frac{\alpha}{0}$$

$$\frac{\beta}{\beta} = \frac{\gamma}{0} + \frac{\alpha}{0}$$

$$\frac{\gamma}{0} = \frac{1}{0}$$

(b) Find the eigenvalues of the I_x operator.

ANSWER

In units of $1/2\sqrt{2} \hbar$

$$I_x \Psi = \lambda \Psi$$

Use the matrix representation

0	1	0	•	C ₁			C ₁	
1	0	1		C ₂	=	λ	c_2	l
0	1	0		C ₃			C ₃	

Do matrix multiplication:

row 1
$$0c_1+1c_2+0c_3 = \lambda c_1$$

row 2
$$0c_1+1c_2+0c_3 = \lambda c_2$$

row 3
$$0c_1+1c_2+0c_3 = \lambda c_3$$

Rearrange:

$$(0-\lambda)c_1+1c_2+0c_3=0$$

$$1c_1 + (0-\lambda)c_2 + 1c_3 = 0$$

$$0c_1 + 1c_2 + (0-\lambda)c_3 = 0$$

Simultaneous equations will have a non-trivial solution (that is, other than c₁=c₂=c₃=0) if and only if the determinant of the coefficients of the unknowns equals zero.

det

0-λ	1	0	=0
1	0-λ	1	
0	1	0-λ	

Expanding in terms of row 1:

$$-\lambda \det \begin{array}{|c|c|c|c|c|} \hline 0-\lambda & 1 \\ \hline 1 & 0-\lambda \\ \hline \end{array}$$

$$-1 \det \begin{array}{c|c} \hline 1 & 1 \\ \hline 1 & 0-\lambda \end{array} = 0$$

leads to

$$-\lambda(\lambda^2-1)$$
 -1(- λ) =0; or $-\lambda^3$ +2 λ =0; or λ (λ^2 -1)=0 \rightarrow roots are λ =0, λ =± $\sqrt{2}$ in units of $\frac{1}{2}\sqrt{2}$ \hbar . Therefore the eigenvalues are 0, \hbar , and - \hbar .

(c) Find the eigenfunctions of the I_x operator.

ANSWER

The simultaneous equations are: where the coefficients c₁, c₂, c₃ are the coefficients of β , γ , α , respectively

$$(0-\lambda)c_1 + (1)c_2 + (0)c_3 = 0$$
 (1)

$$(1)c_1 + (0-\lambda)c_2 + (1)c_3 = 0$$
 (2)

$$(0)c_1 + (1)c_2 + (0-\lambda)c_3 = 0$$
 (3)

$$(0)c_1 + (1)c_2 + (0-\lambda)c_3 = 0$$
 (3)
Normalization is $c_1^2 + c_2^2 + c_3^2 = 1$

Into these, substitute the first λ =0 to find its corresponding eigenfunction.

2

- (1) $0 \cdot c_1 + c_2 = 0$ which gives $c_2 = 0$
- (2) $c_1 + 0 \cdot c_2 + c_3 = 0$ which gives $c_1 + c_3 = 0$ or $c_1 = -c_3$

Normalization gives $c_1^2 + 0 + (-c_1)^2 = 1$. which gives $c_1 = \pm 1/\sqrt{2}$.

These give $c_2 = 0$, $c_3 = 1/\sqrt{2}$ and $c_1 = -1/\sqrt{2}$; $\Psi = (1/\sqrt{2}) \cdot \{\alpha - \beta\}$ for eigenvalue 0

Next substitute $\lambda = \sqrt{2}$ into the equations to find its corresponding eigenfunction.

(1) $-\sqrt{2}c_1 + c_2 = 0$ from which, $\sqrt{2}c_1 = c_2$ (2) $c_1 - \sqrt{2}c_2 + c_3 = 0$ from which $c_3 = c_1$ Normalization $c_1^2 + c_2^2 + c_3^2 = 1$ gives $4c_1^2 = 1$, so that $c_1 = c_3 = \frac{1}{2}$; $c_2 = \frac{1}{\sqrt{2}}$

 $\Psi = \{ \frac{1}{2}(\beta + \alpha) + (\frac{1}{\sqrt{2}})\gamma \}$ for eigenvalue \hbar

Finally, substitute $\lambda = -\sqrt{2}$ into the equations to find its corresponding eigenfunction.

(1) $\sqrt{2}c_1 + c_2 = 0$ which gives $c_2 = -\sqrt{2}c_1$ and (3) gives $c_2 + \sqrt{2}c_3 = 0$ which gives

 $c_3 = c_1$ and normalization gives $c_1^2 + 2c_1^2 + c_1^2 = 1$ so that $c_1 = \frac{1}{2}$

Thus, $c_3 = \frac{1}{2}$, $c_2 = -\frac{1}{\sqrt{2}}$. $\Psi = \{ \frac{1}{2}(\beta + \alpha) - (\frac{1}{\sqrt{2}})\gamma \}$ for eigenvalue $-\hbar$.

(d) Suppose it is found that the system is described by the state function:

$$\Psi = 2^{-1/2}\alpha + 1/2\gamma + 1/2\beta$$

What values would result from a measurement of I_z on this system?

ANSWER

Since the eigenfunctions $\{\alpha, \beta, \gamma\}$ are all represented in this state, then values that would result from a measurement of I_z on this system are \hbar , $-\hbar$, and 0 with probabilities $\frac{1}{2}$ for \hbar , $\frac{1}{4}$ for $-\hbar$, and $\frac{1}{4}$ for 0 (Since we can see that the function is normalized.).

What is the expected average of a series of measurements of I_x on a system described by Ψ ?

ANSWER

Using the postulate on expectation values, $\langle I_{\chi} \rangle = \int \Psi^{\star} I_{\chi} \Psi d\tau$, where Ψ is normalized.

$$\langle I_{\chi} \rangle = \int (2^{-1/2}\alpha + 1/2\gamma + 1/2\beta)^* I_{\chi} (2^{-1/2}\alpha + 1/2\gamma + 1/2\beta) d\tau$$

=
$$\int (2^{-1/2}\alpha + 1/2\gamma + 1/2\beta)^* (I_{+} + I_{-})/2 (2^{-1/2}\alpha + 1/2\gamma + 1/2\beta) d\tau$$

From the given relations on page 1, we get

$$\langle I_{\chi} \rangle = \frac{1}{2} \int (2^{-\frac{1}{2}}\alpha + \frac{1}{2}\gamma + \frac{1}{2}\beta)^{*} (2^{-\frac{1}{2}}0 + \frac{1}{2}\sqrt{2} \hbar \alpha + \frac{1}{2}\sqrt{2} \hbar \gamma) d\tau$$

$$+ \frac{1}{2} \int (2^{-\frac{1}{2}}\alpha + \frac{1}{2}\gamma + \frac{1}{2}\beta)^{*} (2^{-\frac{1}{2}}\sqrt{2} \hbar \gamma + \frac{1}{2}\sqrt{2} \hbar \beta + \frac{1}{2}0) d\tau$$

$$= \frac{1}{2} \{\frac{1}{2}\hbar + \frac{1}{4}\sqrt{2} \hbar\} + \frac{1}{2} \{\frac{1}{4}\sqrt{2} \hbar + \frac{1}{2}\hbar\} = \frac{1}{4}\sqrt{2} \hbar + \frac{1}{2}\hbar$$

2. The matrix representations of χ , χ^2 and χ^4 in the basis of the complete orthonormal set of harmonic oscillator eigenfunctions $\{\phi_0, \phi_1, \phi_2, \phi_3, ...\}$ are given by: (where $a = \hbar/4\pi v_e \mu$), and the corresponding energy eigenvalues are $(v+1/2)\hbar v_e$

		0	√1	0	0	0	
		√1	0	√2	0	0	
χ =	$a^{\frac{1}{2}}$	0	√2	0	√3	0	
		0	0	√3	0	√4	
					,		

	1	0	√2	0	0	0	0	0	
	0	3	0	√6	0	0	0	0	l
	√2	0	5	0	√12	0	0	0	
$\chi^2 = a$	0	√6	0	7	0	√20	0	0	
	0	0	√12	0	9	0	√30	0	

	3	0	6√2	0	√24	0	0	0	
	0	15	0	10√6	0	√120	0	0	
$\chi^4 = a^2$	6√2	0	39	0	14√12	0	√360	0	
	0	10√6	0	75	0	18√20	0	√840	
	√24	0	14√12	0	123	0	√1680	0	• • •

Suppose a harmonic oscillator is placed in an electric field, i.e., perturbed by $h = c x_i$ where c is a constant,

what is the energy of the v=2 level in the presence of the perturbation? Provide an answer that is correct to second order.

ANSWER

$$\mathcal{H} = \mathcal{H}^{(0)} + \hbar$$
 given $E_v^{(0)} = (v + \frac{1}{2})\hbar v_e$ and $\Psi_v^{(0)} = \text{harmonic oscillator}$
 $E = E^{(0)} + E^{(1)} + E^{(2)}$

Use v quantum number as the index to indicate member of basis set: $E_2^{(0)} = (2+\frac{1}{2})\hbar v_e$ (given)

Since non-degenerate, $E_2^{(1)} = h_{22} = 0$ (read from the first matrix)

Summing up over all $v\neq 2$, $E_2^{(2)} = \sum_v - |h_{2v}|^2/[\varepsilon_v - \varepsilon_2]$

There are only two non-zero matrix elements of h matrix for each level.

For v=2 there are only v=1 and v=3 that have h matrix elements that are non-

zero:
$$\mathbf{h}_{21} = \sqrt{2} \, \mathbf{c} \, \mathbf{a}^{\frac{1}{2}}$$
, and $\mathbf{h}_{23} = \sqrt{3} \, \mathbf{c} \, \mathbf{a}^{\frac{1}{2}}$. And $\varepsilon_{\text{V}} = (\text{V} + \frac{1}{2}) \hbar v_{\text{e}}$

$$E_{2}^{(2)} = \frac{-|\mathbf{h}_{21}|^{2}}{[(3/2) - (5/2)] \, \hbar v_{\text{e}}} = -\frac{|\mathbf{h}_{23}|^{2}}{[(7/2) - (5/2)] \, \hbar v_{\text{e}}} = -\frac{c^{2} \mathbf{a}}{(-2 + 3)} / \hbar v_{\text{e}} = -\frac{c^{2} \mathbf{a}}{(-2 + 3)} / \hbar v_{\text{e}}$$

$$E_2 = (2+\frac{1}{2})\hbar v_e + 0 - c^2 a/\hbar v_e$$

What is the wavefunction for this level, correct to first order?

FINSWER

$$\Psi_2 = \Psi_2^{(0)} + \Psi_2^{(1)}$$

where $\Psi_2^{(0)} = \varphi_2$

and
$$\Psi_2^{(1)} = -h_{21} - \phi_1 - h_{23} - \phi_3 = \frac{\sqrt{2\phi_1 - \sqrt{3\phi_3}} \times ca^{\frac{1}{2}}}{[(3/2) - (5/2)] \text{ five}}$$

$$\Psi_2 = \phi_2 + \frac{\sqrt{2\phi_1 - \sqrt{3\phi_3}} \times ca^{\frac{1}{2}}}{\text{five}}$$

3. Using the complete orthonormal basis set $\{ \phi_1, \phi_2, \phi_3, \phi_4 \}$, the **H** matrix for a physical system is given by:

Find the energy eigenvalues and the eigenfunctions of this system.

ANSWER

Solve the problem $\mathbf{H} \ \Psi = \mathbf{E} \ \Psi$ in matrix representation.

Write out the results of matrix multiplication:

 $H_{11}C_1+H_{12}C_2+H_{13}C_3+H_{14}C_4=EC_4$

 $H_{21}C_1+H_{22}C_2+H_{23}C_3+H_{24}C_4=EC_4$ etc.

These form a set of simultaneous linear equations in the unknowns c₁, c₂, c₃, c₄:

 $(H_{11}-E)c_1+H_{12}c_2 +H_{13}c_3+H_{14}c_4=0$

 $H_{21}C_1 + (H_{22}-E)c_2 + H_{23}C_3 + H_{24}C_4 = 0$ etc.

which have non-trivial solutions if and only if the determinant of the coefficients of the unknowns equals zero.

We see that we can do the 2x2 blocks separately.

det

=0

Solve for E: (-7-E)(-9-E) = 9; E = $\frac{1}{2} \{ -16 \pm [16^2 - 4(54)]^{\frac{1}{2}} \}$ E = $-8 \pm (10)^{\frac{1}{2}} = -4.838$ and -11.162

det

Solve for E: (-7-E)(-9-E) = 49; E = $\frac{1}{2} \{ -16 \pm [16^2 - 4(14)]^{\frac{1}{2}} \}$ E = $-8 \pm (50)^{\frac{1}{2}} = -0.929$ and -15.071

To find the eigenfunctions, substitute each root into the equations:

 $(-7-E)c_1 - 3c_2 = 0$

$$-3c_1 + (-9-E)c_2 = 0$$

(2) and use $c_1^2 + c_2^2 = 1$ (Normalization)

To find the other set, substitute each root into the equations:

 $(-7-E)c_3 - 7c_4 = 0$

$$-7c_3 + (-9-E)c_4 = 0$$

(4) and use
$$c_3^2 + c_4^2 = 1$$

$$E_a = -11.162$$
: From (1): $(-7-E)c_1 = 3c_2$, $c_2 = c_1 [(-7+11.162)/3] = 1.387c_1$
 $c_1^2 + c_1^2 [1.387]^2 = 1$; $c_1 = 0.585$; $c_2 = 0.811$

$$E_b = -4.838$$
: From (1): $(-7-E)c_1 = 3c_2$, $c_2 = c_1 [(-7+4.838)/3] = -0.72067c_1$
 $c_1^2 + c_1^2 [0.72067]^2 = 1$; $c_1 = 0.811$; $c_2 = -0.585$

$$E_c = -15.071$$
: From (3): $(-7-E)c_3 = 7c_4$, $c_4 = c_3 [(-7+15.071)/7] = 1.153c_3$
 $c_3^2 + c_3^2 [1.153]^2 = 1$; $c_3 = 0.655$; $c_4 = 0.755$

$$E_d = -0.929$$
: From (3): $(-7-E)c_3 = 7c_4$, $c_4 = c_3 [(-7+0.929)/7] = -0.8673c_3$
 $c_3^2 + c_3^2 [0.8673]^2 = 1$; $c_3 = 0.755$; $c_4 = -0.655$

summary:

Eigenvalues	Eigenfunctions
E _a = -11.162	$Ψ_a$ = 0.585 $φ_1$ + 0.811 $φ_2$
$E_b = -4.838$	$Ψ_b$ = 0.811 $φ_1$ - 0.585 $φ_2$
E _c =-15.071	$Ψ_c$ = 0.655 $φ_3$ + 0.755 $φ_4$
$E_d = -0.929$	Ψ_d = 0.755 ϕ_3 - 0.655 ϕ_4