	Z		N		
Name	Ţ.	$_{Y}$ \searrow			├ ``
Chemistry 344				===	†
Exam II	X			7	
Monday November 12, 2001			S .		
2:00 -2:50 PM		Ī		_	•
NO CALCULATORS PERMITTED. Additional inform	mation	, inte	egrals, e	etc.	
are given on last page. Where a calculator is required, yo	u do no	ot nee	ed to pro	vide	
a final numerical answer. Just carry through all the way up	to the	com	plete		
numerical expression, ready for punching numbers into the	e calcu	lator.			
1 Suppose we are in a universe in which the onin averture	1				
1. Suppose we are in a universe in which the spin quantum electron is $s = 3/2$ instead of $s = 1/2$, as it is in our universe	n numr	er 10	r the		
(a) Describe in qualitative terms what would be observed v	J. Whan th	10 000	arnd sta	+	·
hydrogen atom is passed through an inhomogeneous magn	wiich ii etic fie	ld in	ounu sia the	ıc	
hypothetical universe.					
Instead of splitting into two beams of detector in two spots corresponding there will be 4 beams arriving at 4 4 spots corresponding to ms =+3/2	and a	vri	lina a	t 140	•
detector in two spots corresponding.	to +,	1/2 a	ve-1/2	$=m_5$	
there will be 4 beams arriving at 4	the d	rtec	tor 1	~	
4 spors corresponding to ms=+3/2	+1/2	ーク	r and	-3/2	
(b) What are the possible values for S _z for the electron in the	nat uni	verse	? What	is	
the value of S ² for the electron in that universe?					
Sz: 多方 生力 一之方 一之方					
S2: 圣太 生力 一生力 一之力 一之力 S2: 圣 (圣十)九2	<u>-</u>				
(c) With $s = 1/2$, there are 10 elements contained in each	h trans	sition	metal		
series in the periodic table. How many would there be, if	s for th	ie ele	ctron w	ere	
3/2? Explain. The 10 come from nd, nd, nd configur	- /5		.1 5.7		•
arise from m=2.1.01-2 and m	ation	w, v	vnon		
arise from $m_l = 2, 1, 0, -1, -2$ and m_s Instead there will the same m_l going leading to 20 elements in each tro	with	2) j	1 fferes	nt m	_
? (a) Marine 20 elements in each. tra	ans	TUD	1 Mesa	l serr	e
2. (a) Muonium is a transient atom with a proton nucleus a	nd a ne	egativ	e muon	•	
The muon is an elementary particle with a charge of -e and	a mass	206	.77 time	s as	
great as that of the electron. Calculate the ground state ener	gy of r	nuon	ium in e	<u>V.</u>	5-2
areund state values for an Hat	elect	ron	122	e ec	Sen
ao = tr2/mee can be used because	e m	~ </td <td>-<u>C</u></td> <td>200</td> <td></td>	- <u>C</u>	200	
in which case the reduced was is	given	be	10 +=	++	かべた
correct u: 1 = 1	We	hav	e fon	se to	ie ne
For a proton sucleus and a real and a state values for an Hat at a which case the reduced mass is for muorum this is no longer true correct u: $t_1 = \frac{1}{1836}$ me t_2 t_3 t_4 t_6 t_6 t_7 t_8	<u>0.11+1</u> 36 (206	177)m	 Dø:		
12	- 1 0	· (/)	-		

Detector plate

 $\alpha = \frac{\pi^2}{m_e e^2} \times \frac{206.77 + 1836}{1836(206.77)} \quad \text{Ground State muonium} = \frac{-1^2}{1206.77} \left(\frac{13.6057}{1836}\right) - \frac{13.6057}{1206.77} \left(\frac{1836}{1836}\right) - \frac{13.6057}{1206.77} = 0$

(b) Students Victor and Joyce have a demonstration (this question courtesy of Prof. Lionel Raff; student names have been changed to protect their privacy). Victor: "Joyce and I each have a dewar. One is filled with liquid N₂, the other with liquid O₂. As you see, we also have two large, powerful permanent horseshoe magnets on the table in front of us. I'm going to pour the contents of my dewar over this magnet while Joyce pours the contents of my dewar over the magnet in front of her. Watch what happens!" The contents of Victor's dewar pour over his magnet without sticking to it. The liquid hits the tabletop and runs over the surface, where it rapidly vaporizes. In contrast, most of the contents of Joyce's dewar stick to the magnet, completely filling the space between the magnet's poles with liquid that is held suspended in the air. Only a small amount of the liquid reaches the table top.

Joyce: "Isn't that amazing! Our questions are:

(1) Which dewar held the liquid oxygen, Victor's or mine?

Joyces

(2) How can we use simple molecular orbital theory to explain the results of the experiment we have just witnessed?"

Ozis para magnetia (S=1) whereas Nr is not (S=0)	
Ne has He with electronic configuration	
(Tg 15)2(Tu 15) (Tg 28)2(Tu 25) (Tg 2Pz)2 (TT, 2P)4	
On has the with electronic Configuration of the stand closed shell	5=0
Oz has 16e unth electronic configuration	
Oz has 16e inthe electronic configuration (Tg/s)2(Tu2Psy)4(Tg2Psy))2
5=1 ground state g Oz since A =1 7 3/9	
5=1 ground State g Oz Since =1 I x y This configuration gaudo reseto both (c) A rigid rotor is known to be in a state whose eigenfunction is Y ₄₃ (θ.Φ). What is	S=0
(c) A rigid rotor is known to be in a state whose eigenfunction is $Y_{43}(\theta,\phi)$. What is	nd 5=
the rotational energy of the rotor in terms of the moment of inertia = μR^2 and \hbar ?	
Rotational energy = JCJ+1)ti2 to J=4 1/18 4(4+1)ti2 10ti2	

What is the magnitude of the rotational angular momentum of the rotor?

\$\frac{1}{4(4+1)} ti since the eigenvalue for the equare is \frac{4(4+1)}{4}ti

Determine the z component of the rotational angular momentum.

ZMRZ

34

3. Suppose we use the central field approximation, and suppose that we had a table or formulas to obtain the effective charge seen by each electron [$Z_{\text{eff}}(i)$ for the ith electron] in a many-electron atom.

(a) Write down the Hamiltonian for the lithium atom in this central field approximation, after the center-of-mass motion has already been separated out.

$$H = -\frac{h^2}{2m_e} \left(\frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial y_i^2} + \frac{\partial^2}{\partial z_i} \right) - \frac{h^2}{2m_e} \left(\frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial y_i^2} + \frac{\partial^2}{\partial z_i^2} \right) - \frac{h}{2m_e} \left(\frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial y_i^2} + \frac{\partial^2}{\partial$$

(b) Explain, with equations, how the eigenfunctions and eigenvalues of this hamiltonian operator can be found.

To find eigenfunctions and eigenvalues of the hamil-tomian operator we ned to solve the following equation $H(\vec{r}, \vec{r}_2, \vec{r}_3)$ 里(京, 克, 克) = E 里(京, 克, 克) (1)where \vec{r} represents the vector position (x_i, y_i, z_i) of electronic with respect to the nucleus as origin. This is an eignation in q variables. Let us use the method of separation \vec{r} variables. Let $\vec{F}(\vec{r}_1, \vec{r}_2, \vec{r}_3) = \vec{F}(\vec{r}_1) \cdot \vec{G}(\vec{r}_2) \cdot \vec{F}(\vec{r}_3)$ Substitute this product function into eqn (1) where we have $H(\vec{r_1},\vec{r_2},\vec{r_3}) = H_1(\vec{r_1}) + H_2(\vec{r_2}) + H_3(\vec{r_3})$ Where H, (r,) = - \frac{t^2}{arne} (\frac{\partial^2}{\partial} + \frac{\partial^2}{\partial} + \frac{\partial}{\partial} = \frac{2}{\partial} - \frac{Zeff(0)}{\partial} \frac{e^2}{\partial} [H(r)+H(r)+H(r)+H3(r)] F(r)·G(r)·P(r)=EFG)·G(r)·P(r) and then divide by the product Function, to get [H, (F)) F(7)]·G(F)·P(F) + [H. (F)) G(F))·F(7)·P(F) FG). G(G). P(G) F(1). G(12). P(13) + [H3(F3)P(F3)]. F(F) ·G(F5)= Etri)·G(ti)·P(r3)

Leaving $H_1(\vec{r_1}) F(\vec{r_1}) + H_2(\vec{r_2}) G(\vec{r_2}) + H_3(\vec{r_3}) P(\vec{r_3}) = E$ $\frac{H_1(\vec{r_1}) F(\vec{r_1})}{F(\vec{r_1})} + \frac{H_2(\vec{r_2}) G(\vec{r_2})}{G(\vec{r_2})} + \frac{H_3(\vec{r_3}) P(\vec{r_3})}{P(\vec{r_3})} = E$ E is a number, an eigenvalue and since the 3 variables in F(r) can be assigned any set of values, and the same can be said of the 3 variables in G(r) and in P(r) the sum of the three expressions can always equal the same mumber if and only if each expression is itself equal to a constant, techen that the sum of the 3 codstaints is the number E. Therefore we need of to solve 3 equations eachin 3 variables instead of one egration in 9 variables, and they all have the same form: 1 2 - Exp (2 + 2 + 2) - Zep (e2) F(r) = E, F(r) (2) This is the same mathematical equation as for a hydrogen-like atom excepting only that instead of the actual Z of the nucleus we instead have Zep 12 which can be different for each electron. Therefore, we already know the solutions of this of wo are $F(\vec{r_i}) = Rne(\vec{r_i}) \cdot Y_{em}(\theta_i, \theta_i)$ and $E_i = -\frac{(E_e f_f^{(i)})^2}{N.2} \frac{e^2}{2A_0}$ Therefore the solutions to egn (1) are (\$\frac{1}{2}\tau_1, \bar{1}{2}\tau_2) \cdot \R_3(\bar{1}{3}) \cdot \R_3(\b and E = [-(Zop())2-(Zop())2-(Zop())2-(Zop())2]e/20

(c) Consider the lithium atom in its ground state. Use Slater's rules (attached) to find the $Z_{eff}(i)$. What is the energy of the lithium atom in its ground state (in addition to translational energy)?

Ground configmation
$$15^{2}$$
 Z=3
 $E = E_{1} + E_{2} + E_{3}$ $E_{1} = \frac{Z_{ep}(i)^{2}}{N_{1}}$ (13.6eV)
 $E_{1} = -(\frac{3-0.30}{12})^{2}$ (B.6eV) $E_{2} = -(\frac{3-0.30}{12})^{2}$ (13.6eV)
 $E_{3} = -(\frac{3-0.85(2)}{12})^{2}$ (13.6eV)
 $E = \left[-(\frac{3-0.30}{12})^{2} - (\frac{3-0.30}{12})^{2} - \frac{[3-0.85(2)]^{2}}{2^{2}}\right]$ (13.6eV)

(d) What is the energy of the ground state of the Li⁺ ion?

Configuration Li^t:
$$15^{2}$$

 $E = E_{1} + E_{2} = -(3-0.30)^{2}(13.6 \text{ eV}) - (3-0.30)^{2}(13.6 \text{ eV})$

(e) What is the first ionization energy of lithium atom?

First ionization energy = E(L;tion) - E(L;atom)We note that in this case $E_1 + E_2$ for ion and ground state atom happen to be identical (not usually the case) So E(I) = E(L;tion) - E(L;atom)So ionization energy = E(L;tion) - E(L;atom) E(L;atom) - E(L;atom) E(L;atom) - E(L;atom)E(L;atom) - E(L;atom)

4. Assign the appropriate molecular orbital designation to each of the following one-electron functions. Designate plane of paper as XZ plane

(b) When the Born-Oppenheimer separation is carried out, what are the two equations to be solved? Answer by writing out the two equations explicitly using symbols that have the standard meanings as used in class. Define completely all symbols used for eigenvalues. For a diatomic molecule AB

Need to solve egns (1) and (2): At fixed nuclear positions, emdens A and nucleus Batfixed points in the laboratory frame, RAB = Constant Egn(1) is solved for each (F, V2 RAB) to Fiztion
The points that are individual eigenvalues UlfaB)
for RAB = 0 to an acollectively used as a potential
energy in the variable RAB for each electronic state (2) $\left[-\frac{t^{2}}{2m_{A}}\nabla_{A}^{2} - \frac{t^{2}}{2m_{B}}\nabla_{B}^{2} + U(R_{AB})\right]F(\vec{R}_{A},\vec{R}_{B}) = EF(\vec{R}_{A},\vec{R}_{B})$ E= Etranslation † Evibration-rotation † Eelectronic Eqn (2) is solved for each electronic state

BONUS QUESTION (to go beyond 100 points on this exam):

5. A particle of mass m in a potential well (with infinitely high walls) of length L in the x dimension is known to have eigenfunctions $\psi_n(x) = (2/L)^{1/2} \sin [n\pi x/L]$ and eigenvalues $n^2h^2/8mL^2$. Consider a particle in a one-dimensional potential box as a model for four non-interacting pi electrons of butadiene. Let the box be of length L such that $h^2/8mL^2 = 0.1$ in some energy unit.

(a) Write down the hamiltonian for one electron in the box.

(b) Write down the Schrödinger equation for the model system of 4 pi electrons in the box as explicitly as you can.

$$-\frac{t^{2}}{2m_{e}}(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}})F(X_{1},X_{2},X_{3},X_{4})=EF(X_{1},X_{2},X_{3},X_{4})$$

(c) Draw the energy level diagram for <u>one</u> electron in this system, in the energy units specified above. Your diagram should show, to scale, at least the lowest 4 levels and should be labeled with energy values

(d) If not more than two electrons can be assigned the same quantum number n, calculate the lowest possible energy for the four pi electrons in this model for butadiene.

$$E = E_1 + E_2 + E_3 + E_4 = 2(0.1) + 2(2^2 \times 0.1)$$

(e) Write down the explicit wavefunction for this state (ground state) of the four pi electrons, excluding spin.

$$F(x_{1}, x_{2}, x_{3}, x_{4}) = \frac{2}{L} \sin \left(\frac{Tx_{1}}{L}\right) \cdot \left(\frac{2}{L}\right)^{x_{2}} \sin \left(\frac{2Tx_{3}}{L}\right) \cdot \left(\frac{2}{L}\right)^{x_{1}} \sin \left(\frac{2Tx_{4}}{L}\right)$$