CHEMISTRY 542

Exam III
November 22, 2004

In applying the principles of Quantum Mechanics in answering each question, be sure to
state the principle you are using at each step.

1. Given the complete orthonormal set of functions { ¢1 , @2, 93, ©4 } which are
eigenfunctions of operator & with eigenvalues (3/2)k, ¥2h, -V2h, -(3/2)h respectively. The
operator @ has this relation to F: [B, ¥] = 0, and G is a function.

(a) Determine the results of the following, where possible; otherwise say “more
information needed":

Answer Principles

for*@idr

fpi*padt

fo2* T gt

[p1* F padr

[p1*B padr

Jo*F pidr

Jpa* {F - [(3/2)A]°} Gdz

fo1* B> F padr

(b) Suppose the system is in a state ¥ = 2% ¢4 + 33 + 674
When the property F is measured for the system, what values would result with what
probability”?

(c) What is the matrix representation of & in the basis set { 1, @2, @3, 94 }?




2. Consider a Li atom.
(a) Write the time-independent non-relativistic Schrédinger equation for the Li atom.

(b) Neglecting both electron-electron repulsion and electron spin, consider the form of
the wavefunctions of the Li atom which satisfy the above equation. Write the total
wavefunction, including all the parts as explicitly as you can. Briefly explain how you

arrived at this answer.




(c) Neglecting electron-electron repulsion but taking into account electron spin, and
neglecting spin-orbit interaction, consider the form of the wavefunctions of the Li atom.
Write out the terms in the total wavefunction, including all the parts as explicitly as you
can. Briefly explain how you arrived at this answer.

(d) Including electron-electron repulsion by using a central field and Slater’s rules, and
taking into account electron spin, consider the form of the wavefunctions of the Li atom.
Start by writing out the potential energy terms in the time-independent non-relativistic
Hamiltonian using Slater’s rules.




Now show the time-independent non-relativistic Schrédinger equation for the Li atom
that you will have to solve, assuming the translational part has already been separated
out. Be as explicit s possible, including variables and quantum numbers where

appropriate.

Write out the terms in the total wavefunction, taking into account electron spin, but

neglecting spin-orbit coupling, including all the parts as explicitly as you can.




3. Consider a particle of mass M in a nonstationary state in a one-dimensional box of
length a. Suppose that at time 1y, its state function is the parabolic function

¥ (o) = Nx{(a-x) 0<x < a, where N is the normalization constant.

(a) Expand this non-stationary state function in terms of the energy eigenfunctions of
the particle. Calculate the expansion coefficients.

(b) If at time t, we were to make a series of measurements of the particle’s energy, what
would be the possible outcomes of such measurements?

(c) What would the average of such measurements be?
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Slater’s rules:
The effective charge seen by the ith electron whose quantum numbers aren £ in an
atom whose atomic number is Z is given by

(Zeff)l — L= Sy

Slater provides s,, as follows:
1.Fori havingn {=1s
Sts = 0-3Oksame

where
kome = number of other electrons in the same 1s shell

2.For ihavingn>1and /=0or 1
Sne = 0.35kgame + 0.85k;, + 1.00K 00

where

k..me = number of other electrons in the same shell as the screened electron
of interest )

ki, = number of electrons in the shell with principal qguantum number n-1

Kinmer = number of electrons in the shell with principal quantum number n-2

3. For the ith electron having quantum numbers n £ = 3d

S3g = 035k3d + IOOkm

where
ks;4 = number of other electrons in the same 3d shell

k;; = number of electrons withn<3 and £ <2
For the purposes of Slater’s rules, the “subshells” are taken to be in the order
innermost 1s (2s,2p) (3s,3p) 3d (4s,4p) outermost

ADDITIONAL INFORMATION

8y = (F*/mee?) the “Bohr radius”, 0.529177x107"° m
(e*/2a5) = 13. 6057 eV one rydberg, a unit of energy = (1/2) hartree
c = frequencyewavelength = 2.997924 x10"® cm sec”  the speed of light
1 eV =8065.6 cm™
L= -H{ (1/sin0)(8/00)sind 8160 + (1/sin?)348p%}
H= -(FI2M{(1ne%or r}

~(R12MP?){ (1/sin0)(8/00)sind 8/66  + (1/sin0)d%d¢*} + V(1)






