Name

Chemistey 344
Final Exam AN SWERS
Tuesday December 4, 2001
3:30 -5:30 PM

NO CALCULATORS PERMITTED. Additional information, integrals, etc.
are given on separate pages. Where a calculator is required, you do not need to
provide a final numerical answer. Just carry through all the way up to the complete
numerical expression, ready for punching numbers into the calculator.

Be sure to use the constants, variables and functions of the given
problem, not those of some other remembered problem in answering the
questions.

1. A particle of mass M is constrained to be on a line along the z axis in a
perpendicular to the earth’s surface in a gravitational field where g is the
acceleration of gravity. :

(a) Write down the Schrédinger equation for this system.

{ - (F*12M) d¥/dz* + Mgz} ¥(z) =E ¥(z)

(b) Determine the boundary conditions that must be satisfied by the
wavefunction for this system.

W(z) must be single-valued, continuous and finite, and its first derivatives also
'continutous and finite. Since V(z) = « for z <0, then ‘P(z < 0 ) = 0. This means
that one boundary condition is that ¥( z= 0 ) = 0 in order for the wavefunction to
be.single-valued and continuous. A second boundary condition is that W( z—w )
= (), that is, we must have a finite wavefunction. |

2. Consider a particle of mass M constrained to move on a circle of radius R
where its potential energy is zero. W(¢) = (1/¥2n)exp[-k¢] are the eigenfunctions
of H= - (#*/12MR?) d*/d¢* and E = k? (5% /2MR?) are the eigenvalues.
(a) Derive the values of k that are allowed. Show proof!

The wavefunction that describes the state of a system must be single valued. Since
the position on the circle corresponding to a value of ¢ is the same point that
corresponds to ¢ + 2w, and ¢ + 4=, etc. then

W($) = (1/\2m)exp[-k¢] must equal (12m)exp[-k(d+ 2m)]

or exp[-k¢] = exp[-&k(¢p+ 2m)] = exp[-ko]eexp|[-k2m)]

Thus, the condition that has to be satisfied is that exp[-&k2x)] =1
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Since exp [-ix] = cos x - &Sinx

exp[-k2m)] = cos k2x - isin k27 must equal 1

This can only be satisfied if cos k27 = 1 and also sin k2x = 0, conditions that
are satisfied by k = 0 or k = any integer, positive or negative. Thus, we find that
the single-valued condition for the wavefunction can be satisfied only by

k=0,%1,42, 3, ..

(b) The z component of the angular momentum of the particle is represented by
the operator L, = (#/i) d/d¢ . When the angular momentum of the system is
measured derive (show proof) the possible outcomes of the measurements.

The possible outcomes of measurements of the z component of the angular
momentum are the eigenvalues of L, ,

Since L, = (/i )(d/d$) commutes with H = - (#*/2MR?) d*/d¢* , then the

eigenfunctions of H are also the set of eigenfunctions for L,.
So let us use those functions to find the eigenvalues of L,

L, Wi(9) = (1N2m)expl-kd] = (/i) d/dd (1N2m)exp[-kd]

= (/i) (1N27) (d/do) exp[-kd] = (B/1) (1N27) (-k) exp[-k]

= (-hk) (1N2m) expl-ikg] = (k) Fi(9)
Thus, the possible outcomes of measurements of the z component of the angular
momentum, the eigenvalues of L, are -%k , that is, the possible outcomes are
0%, 15, F2h, F34, ...

Aside: Note that the results of having the wavefunction be either (1N2m)explké]
or (1/\/27!:)6){})[ k¢] are the same! When calculating any average values with these

wavefunctions, we use P, *(¢) and Wi(¢) together. Thus, for average values, the
results are not changed at all whether we choose to have the wavefunctions be

the set of functions { (IN2m)exp[kd] } or the set { (1\2m)exp[-kd] }.

20




3. A particle of Problem 2 is in a physical state that is described by

F(¢) = A{cos 2¢ + 2cos 3¢}. Determine the results of the following sets of
experiments on this system, that is, determine the typical outcomes of the

experiments, the average values of the results:

(a) The z component of the angular momentum of the system is measured

Derivation of predictions here:
F(¢) is not one of the eigenfunctions given in Prob.2
Expand F(¢) in terms of the complete orthonormal set of functions

(1 2m)exp[kd] . F(9) = Xk Pi(9) and find the coefficients:

o= b WiH(0) F(¢) dbp = L™ F*(9)A{cos 2¢ + 2cos 3¢} do
Since we can write cos 2¢ = Y2fexp(2¢) + exp(-2¢)] and

cos 3¢ = Ya[exp(39) + exp(-3¢)], then

o= b7 Wik (0)V2A {exp(2¢)+exp(-2¢)+2exp(30)+2exp(-B3¢)} db

Observed
values here:

2h

20

3%

3h

3%

3k

o= (1N2m) MAA [P W (§){¥2(9) + Wa(0) + 2¥s(0) + 2 5(9)} do -3 7
ce = (1N271) M4A {8, +8.5 + 28,3+ 283} in shorthand 3k
where &, =1 if k=2 or else it is zero, since it was an orthonormal set -3h
A can be obtained by integration [ F*(0)F(¢)dd: A=[5m] i 3h
¢ = (10) "*{8y 5 +8y 2 + 28,3 + 28y 3} Average = 0%
ol =c2=(1/10)  c5°=c5*=(4/10)
(b) The energy of the system is measured
Derivation of predictions here: Observed
values here:

The average value is obtained by [ ;" F*(¢) (Lz or H) F(¢) d¢ : 22 (2 2MR?)
which by above algebra leads to X ¢,” @ k# or X ol o IP(H° 2MR?) |[(-2)*(H 12MR?)
The observed values should be 10% of the time the eigenvalue for | 3% (5% /2MR?)
k=2, 10% of the time the eigenvalue for k=-2, 40% of the time the 32 (7 2MR?)
eigenvalue for k=3, 40% of the time the eigenvalue for k=-3, 3% (72 /2MR?)
according to the probabilities given by the corresponding o 3% (B2 /2MR?)

(-3)2(5* 2MR?)

(-3)%(H* 12MR?)

(-3)’(%* /2MR?)

(-3)%(%* 2MR?)

Average =

8 (5° /2MR?)
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4. The eigenvalues of a linear (one-dimensional) harmonic oscillator are known:
HX) o(x) = E 0(x)

where H(x) = - (*/2M) d¥/dx*+ ¥ kx°

where M is the mass of the oscillator, and x is the Hooke’s law force constant.
That is, {- (B*/2M) ddx* + V2 kx*} 0(x) = (n +¥)ho ¢(x) where n=0,1,2,3, ...
A linear harmonic oscillator in its ground state is described by the normalized
function

0(x) = [2 @M/h]”* exp[-oMx2/2h]

Now consider a three-dimensional anisotropic harmonic oscillator that has three
different force constants for motion in the direction of each of the Cartesian
coordinates, i.e., V= Y [k X'+ K,y + K, 2]

[This is akin to the vibrations of a polyatomic molecule, in which there are several
vibrational coordinates, one normal mode coordinate for each normal mode of
vibration.] .

Write the Schridinger equation for this system (the three-dimensional
anisotropic oscillator).

{ - (F2M)[ 81052 +8Dy* +T07 1+ Vo[ X2+ Ky Yo+ 1, 2°] YE(X,Y,2)
=E ¥Y(x,y,2)

Show how you would find the eigenfunctions and eigenvalues of the three-
“dimensional anisotropic oscillator. [The harmonic vibrations of a polyatomic
molecule are found in this way.|

Use separation of variables:
Let W(x,y,z) = P(x)eQ(y)eR(z) , substitute it into the Schr. equation:
{ - (W2M)] &/3x° +&10y° +8/02° |+ Va[kx X+ %Y + K, 2°] } P(x)eQ(y)*R(2)

= E P(x)*Q(y)*R(2)
Then divide both sides of the equation by P(x)eQ(y)eR(z) to get
[- (BP2M)E /X + Vo ke XTP(x)  + [ (B2MF/OV°+ Va1, v°] Q(y)

P(x) Q)
+ [ (M0 + Yok, Z]R(Z) =E
R(z)

Since each term involves only x or only y or only z, then each must be equal to a

constant and the sum of the constants must equl the eigenvalue E
Therefore we find that we have to solve 3 equations, one in x, one in y, one in z.
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[- (F12M)P/0x* + V4 x, X°] P(x) = ¢ P(x)
and the others look just like this except in the variables y and z.
We already have the eigenfunctions and eigenvalues of the x equation:

¢(x) and energies are (17 +¥2)fim
Since the y and z equations are analogous then we know those eigenfuncitons and
energies as well. We need the x, y, z subscripts to identify the various quantum
numbers and harmonic frequencies which are different from each other
(since ky # Ky # Kz) :
E = (n,+)ho, + (0, Ao, + (N, H2)ho,
F(x,y,2) = o(x)e o(y)e 0(2)

Write down the eigenvalues of the ground state of the three-dimensional
anisotropic harmonic oscillator.

E= (n.+%)ho, + (n,+Y2)he, +(n, +Y2)ho , are the general eigenvalues of
this system where n, =0,1,2,3,4 ... n,= 0,1,2,3,4 n,=0,1,2,34 ..
Ground state E = (0+%2)ho , + (0+42)ho , + (0+H2)ho,

Write down the eigenfunction of the ground state of the three-dimensional
anisotropic harmonic oscillator.

- H(xy,2) = o) 0(y) o(2) o
= [20,M/h] “exp[-o,Mx*/2A]e[20,M/h] “exp[-o,My*/24]
| o [20.M/h] ‘exp[-0.MZ2/2%]

Using this three-dimensional oscillator as a model for the vibrations of a
polvatomic molecule, derive the number of distinct frequencies that could be
observed as infrared fransitions of such an oscillator, specifying the
attributes that are required for such observations.

Three fundamental frequencies ®, ®, ®, will be observed in the infrared,
provided that (Op/0x)x=p and (OW/0y )= and (OW/0z),=) are non-zero .




5. Interstellar molecules that have been detected by their radiofrequency or
millimeter wave spectra are given below:

Diatomics | OH, CO, CN, C§, SiO, SO, SiS, NO, NS, CH, CH

~ [Triatomics | H,O, HCN, HNC, OCS, HZS N,H", SO,, HNO, C,H, HCO, HCO",
HCS™

Tetratomics | NH;, H,CO, HNCO, H,CS, HNCS, N=C-C=C, H30

S-atomics [HCOOH, CH,=NH, NH,CN N=C-C=CH

6-atomics |CHs;OH, CH;3CN, etc. _

9-atomics |CH3;0OCH;, CH;CH,0H, N=C-C=C-C=C-C=CH

Some of them were actually found in the interstellar medium before they were
searched for and found in the laboratory. In all molecules, except OH and NH;, the
transitions observed are rotational in nature.

There is known to be large quantities of H, and no doubt there are such molecules

as C,p, N3, O, HC=CH and polyacetylenes to be found in the interstellar clouds,
yet they are not listed in this table. Explain why, from first principles

mP"V‘EMﬁ)W@ M owlf ke obsenned
AL ST Y S—fWﬁ?

b i Wh&f& @«aﬁ@@% ( %ﬁ% 56,4
Y, (e,cb)w;%g;\)é« (%@M«M#@ fore

WWY MW Foraht febom M(Re) vowrine, . Sy .//Mq&)
(3 2o MWY‘OWM Cw—n ﬁ,e bl>tevesf’

"\

Cop Ny 05 Heen L W%

m/mrvw(—»&, WMWW



6. Alkali halides are highly ionic diatomic molecules. Very little was known
about the covalent states of the alkali halides until laser spectroscopy gave some

detailed information about the crossing of the ionic potential M"X with some of

the covalent states that asymptotically lead to neutral M and X atoms. A newly
discovered excited covalent state is found to be consistent with dissociation into
an excited K(...4p) and ground I(...5p5) neutral atoms. The emission spectrum
from a specific v’ level of this excited state of KI, that was reached bya
37953.783 cm™ laser line in this experiment, is shown in the figure below, |
together with the simulation. For the ground state and the new excited covalent
state, a complete analysis of the spectra (including J-resolved lines not shown
here) leads to a set of spectroscopic constants that could be deduced by fitting
energy differences between the states to the observed line frequencies. [ e.g., The

- ground state of KI has a harmonic frequency that is 186.294 cm™.] For such an.

analysis, a provisional assignment in v’ was required. The authors had no _
difficulties in making this provisional assignment from the figure below. From
the observed spectrum, deduce the specific v’ level of this excited state of

Kl from which the emission in the figure was observed. It is worth

molecular fluorescence ©

om .

© sensitivity

remembering that the intensities in emission have a cubic dependence on

frequency. Explain your answer with the help of sketches of energy level
diagrams. = . |
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7. Th; lowest ionization energy of N, molecule (15.58 eV) corresponds to
removal of an electron from the outermost 6,2p molecular orbital. The second
(16.69 eV) and third (18.76 V) lowest correspond to removal from 7,2p and
0,*2s respectively. The ultraviolet photoelectron spectrum and the molecular
orbitals of N, are shown below: By drawing connecting lines, associate each

of the three sets of bands in the photoelectron spectrum with the
molecular orbital from which the electron has been removed.
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8. CN molecules are found in many extraterrestrial sources such as the Sun,
stellar atmospheres, comets, and interstellar clouds by the techniques of
microwave, infrared and ultraviolet spectroscopy. _

~ The red system of CN (A’TT <> ground X°2.%) is observed in emission from comets
and in absorption in carbon stars and the Sun. The violet system (B*Y" <> ground
X*¥") has also been observed in the laboratory by Bernath in the University of
Waterloo. The potential energy functions for these mentioned states are shown
below from their paper in J. Mol. Spéctljoscop}‘?, 156,327 (1992):
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From these potentials, predict the band structure (agBLoximate frequencies

and intensities) of the red system and of the System of CN.
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In doing the\complete analysis of excited

electronic state properties, it is usually

necessary to use other parts of the electromagnetic spectrum to help provide
spectroscopic constants for the ground state. Can this be done for CN molecule?
Which spectroscopic constants describing the ground electronic state of
CN can be obtained from which region of the electromagnetic spectrum
and how? To answer, in each case, sketch a spectrum and indicate which

constants correspond to which spacin

gs.
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9. Show whether it is theoretically possible to simultaneously know the following . |

quantities:

(a) The position and the linear momentum of a particle along the same direction in
any physical system.
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(b) The energy and the z component of the angular momentum of the partlc e1n
the system of Problem 2
[ o —h ’) O eviee beth Lo arHly

(¢) The x position and the linear momentum along the y direction of the physical
system in Problem 4.
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10. Most empirical trends predicted from the Periodic Table can be predicted or
explained by using the central field approximation for many-electron atoms. From
a Chemistry 112 Final exam comes the following set of questions:

Froblem:

(a) For each of the following properties that can be predicted from the Periodic
Table, identify the trend (choose: increases, decreases, or is not systematic) and

choose the most appropriate explanation(s) based on electronic configurations of
the atoms (choose as many as appropriate from A,B.C.D, E):

increasing atomic number within
each period with the major
exception being the noble gas

atoms

Properties Trend |[Expln Possible explanations

1. The first ionization energy of the| increases | B,C | A. The principal quantum

atom with increasing atomic number of the outermost

number within each row (petiod) electrons are increasing, with a
corresponding increase in
average distance from the
nucleus

2. The first ionization energy of the| decreases | A | B. The inner core electrons

atom with increasing largely shield the outermost

atomic number within each column electrons from the nucleus so

(group) the effective nuclear charge
seen by the outermost elec-
trons is not varying greatly.

3. The atomic radius with | decreases | C |C. As each additional electron

increasing atomic number within " |is added to the electron

each row ' configuration, the charge on
the nucleus increases by one
also. Because of the imperfect
shielding by other electrons
within the same shell, each

4. The atomic and ionic radius increases | A,D [addition leads to a net increase

with increasing atomic in the effective nuclear charge

number within each group, but the seen by the electrons within

rate of change is less after the third that shell.

[OW. D. Filling of the d subshells

5. The electron affinity with | increases | C |E. Electrons in inner shells

are closer to the nucleus, on
the average and more strongly
bound than valence electrons.
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(b) The following properties change in a way that can be predicted from the
positions of the atoms in the Periodic Table. Identify the change (choose increases,
decreases, or is not systematic) and choose which of the trends 1,2,3,4,5 (more
than one may apply) from part (a) above are most closely associated with or
responsible for the change.

Properties Change (increases, | which of
decreases, 1s not |1,2,3,4,5?
systematic)

1. The metallic character of the elements of increases 2
group 2A with increasing atomic
number.
2. The shortest cation-anion distances in LiF, increases 4
NaF, KF, RbF, CsF with increasing
atomic number. .
3. The lattice energy of the chlorides of the decreases 4
alkaline earths with increasing atomic
number.
4. The polarity of the bond to hydrogen increases 5

in going from Be-H, to B-H, to C-H,
to N-H, to O-H, to F-H
5. The melting point of the solid elements of increases 4
group 6A with increasing atomic
number.
6. The density of the solid elements of the increases 4
halogen group with increasing atomic
number.

Answer the above questions, in the spaces provided, just as the Chemistry 112
student is instructed. Now, as a Chemistry 344 student, derive the very first

trend [from part ()] for the second row, using as examples the B and C
afoms. You may use Slater’s rules given at the end of this exam.
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The quantum numbers 1, [, m;, m; that are strictly valid for the hydrogen atom
only from solving the Schrodinger equation exactly, have been used by many a
Chemistry 112 student to write electronic configurations for the ground states of
the atoms. Demonstrate the nature of the approximation that could permit
the quantum numbers | and my to arise for a many-electron atom despite the
electron-electron repulsion terms in the energy. | '
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The electronic _conﬁguration learned in Chemistry 112 is an oversimplification.
Describe the ways in which the 1s°2s°2p* description of the electronic
ground state of the oxygen atom is incorrect or incomplete.
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The atomic radius (and the ionic radius) is an empirical quantity obtained from
lattice parameters of the solid element or its compounds. Provide a quantum-
mechanical description that relates to the empirical concept of atomic
radius. For simplicity, conmder the atomic radii of the rare gas elements as your
‘example.
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11. The Bi, spectrum obtained from the paper in Journal of Molecular
Spectroscopy vol. 194, 1-7 (1999). is the subject of this problem: _

The emission (fluocrescence) spectrum of the Bi, molecule that has been
prepared in the v' = 3 vibrational level of the excited state studied in this
paper, is shown below. In order to show all the observed bands in the range 5800

to 6300 A in this figure, the spectrum is displayed such that the P and R branches -

- do not appear individually resolved, although the spectra were actually recorded
for a wide range (0 <J <211) of rotational levels. Draw a set of ground and -
excited state potential surfaces that are consistent with the intensities of the v’ = 3
—> v’ = 6 to 13 transitions displayed here. Hint: The ground state is a stable
diatomic molecule with a harmonic frequency of about 170 cm™ and the excited
state has a harmonic frequency of 132.38 cm™.
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The paper also provides in the figure below the values of ~H o ()F P (x)dx 2 |
from v’ = 5 as experimentally observed (-----), compared? various calculated
values (IJO &) also shown in the figure below: I "
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for v’ and v”. In other words, predict a figure that looks just like this, that would

Vibrational Quantum Number (v")

Explain this figure, with the help of sketches of vibrational wavefunctions

be the outcome starting from some reasonable description of the upper and ground

electronic states.
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