To:  Chemistry 344
From: Cynthia J. Jameson

Never mind that the physics behind how computers and TV sets work
depends on an understanding of the quantum behavior of electrons. As we
have seen in Chemistry 344, the fundamental nature of all of chemistry, the
structure of molecules, the empirical periodicity of properties as described
by the Periodic Table, the characterization of individual molecules by their
spectra (fransitions between energy states), and so on, requires quantum
mechanics. Unfortunately, we did not have time 1o show that the empirical
laws of thermodynamics, and rates of reactions, as well as chemical
equilibrium constants can be arrived at starting with molecular quantum
states and using statistical theory. Nevertheless, | hope that by the end of
the semester, | have enticed you to see Chemistry through the lens of
principles of quantum mechanics.

Let me just leave you with one philosophical bit. There is something
more profound that the wavefunctions and probability description that is
inherent in the QM description that quantum mechanics does for us. “By
introducing uncertainty and probability into the equations, quantum
mechanics does away once and for all with the predictive clockwork of
Newtonian determinism. If the universe operates, at the deepest level, in a
genuinely unpredictable and indeterministic way, then we are given back
our free will, and we can after all make our own decisions and our own
mistakes.”

*M. White and J. Gribbin, “Stephen Hawking: A Life in Science”



Chemistey 344

el Bam - ANSWERS

Look at the entire exam first, then decide which problems are easiest for you to start with

1. The helix is a very important structure for biochemistry. At least some parts of important
biological macromolecules have helical structure. In Problem Set 5 you could interpret the
variation of the wavelength of the three bands in the ultraviolet spectrum of series of
compounds containing aromatic rings by using the simple model of a particle on a circle. It
turns out that many qualitative aspects of the optical rotation spectra of helical systems can .
be interpreted entirely by using only the electron on a helix model system. Let us see how to
start. We have solved several Schrédinger equations in only one variable, for a particle on a
circle, as well as a particle on a line along the x axis. Now let us consider the case which is
sort of a combination of the two, that is, we take the line and wrap it on the outside of a right
circular cylinder to form a helix.

A particle of mass M is constrained to move a[o'ng a right-handed helix consisting of f turns
(shown below). The radius of the helix is @ and the pitch of the helix (the distance between
successive turns) is b2z, The position of the electron anywhere on the helix is given by:
X=acos 0o P asing  z=bho
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X :
Since there are f turns, at the bottom end of the helix 8 = 0°
and at the top end of the helix 8 = {(2xr).
For a free parttcle constrained to move on this helix of f turns, we specify that
V(x,y,z) = constant = 0 on the helix and V = « everywhere else. Obviously a complicated V!
The kinetic energy of this single partlcle is.of course, still glven by '
KE. = px12M+py/2M + p212M -
We replace the individual components of linear momentum by the corresponding guantum
‘mechanical operators,
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Therefore, in terms of x,y and z the Hamiltonian operator for this particle is
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As we have already found in other simple systems such as the particle on a circle, it is
possible to make use of a change in coordinate system to simplify the form of the
Schrédinger equation that needs to be solved. For the particle on a circle, we changed
coordinates from the set (x,y) into the set (R,$). Since the radius R of the circle is a constant
we solved a Schrédinger equation in ¢ only.

For the particle on the helix, instead of having the operators and the eigenfunctions in

terms of three variables (x,y,z), we can use a transformation to the new coordinates {a,b,0)
defined above: X=acos?b y= asino z=b6

By varying a, b, and 0 one could sweep all of 3-D space, but for the helix, @ and b are
constants. Thus, our operators and eigenfunctions can be written in terms of only one

variable, 8. In other words, to locate the particle on the helix, we only need to know the value
of 6. We express the derivatives with respect to x,y,z in terms of the derivatives with respect
to a, b, and 8, and since a and b are constants for the helix, we afterwards leave out all
derivatives 8"/8a", & "/0b" from the Hamiltonian, that is, we can do the following:

&1ox* +PIoy* +3%07° = (a*+b%)" 5%160° for a and b are constants

Thus, in terms of 0, the Schrédinger equation to be solved is
(write the equation explicitly in terms of @, b, and 6):
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Examine the above Schrédinger equation for this system, and figure out what kind of function
will satisfy this equation. Remember that this system is similar in some way to the particle on
a line along the x axis from 0 to L, except that here the line is wound around the outside
surface of a right circular cylinder.

Try ‘¥(0) of the form: Asin( k6) + Bcos(k0) g /4”’”{/‘9/ (Lﬁak@ W\
lrﬁ)’ﬁ k f ~5n

Substitute it into the Schrodtnger equation and establish whether it can satlsfv the equation.
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What are the conditions that a function describing the state of this physical system (the
single particle of mass M on the helix) has to meet in order to be an acceptable description?
Hint; The particle is not allowed {o exist beyond either end of the helix.

In general Explicitly, for this system®
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*That is, apply each of the requirements of acceptable state functlons if mathematical termsg =
specific to this system (in terms of the constants &, b, {, and the variable ).

Calculate the energy eigenvalues of this system in terms of the constants a, b, {
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Specify the conditions that must be satisfied by the quantities appearing in your expression
for the energy eigenvalue.
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Normalize the function that satisfies the above conditions: e
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Summarize: Explicitly write the 3 lowest energy eigenvalues and corresponding normalized
eigenfunctions below:

quantum
number | Energy eigenvalue /4 N Eigenfunction
Rz
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In this coordinate system, the z component of linear momentum is

(P2 )op = (A1) b (@>+b°)" 6160

For the system of a particle on a hehx determine whether (P, )op commutes with H
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What are the constraints, if any, on simultaneously measuring the energy and the z
component of linear momentum for this system? Explain.
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2. In field-free space the states having different z components of spin anguiar momentum are
degenerate in energy. When placed in a magnetic field along the z direction, the formerly
degenerate states become separated in energy on the order of several hundred MHz.

The ™C NMR spectrum of CDCl; shows 3 equally spaced peaks of equal intensity. On the
other hand, the NMR spectrum of the 1P nucleus in a solution containing PH;, PHD™, and
PD, ions is shown below: ' '

~ Nuclear spins are | = YaforH, 1forD, Yfor>'P, Vafor °C
PH;

b PHD™

R PD;
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concrete explanation of the ohserved intensities

Using angular momentum properties and separation of variables, devise a

The PH, intensities are 1:2:1

2t g g

W

:J"I’-&* arA -4

n i ot pa. bane 2T

Lk AAA W%ﬁ“wj 4 %
ﬁ%+®$ =% b e b ) Thee ane Y
+h "J'v)% = 0 %% > i ales /
L Vhe
-t —.LJ-,) = O_k - | Protnsd
AT L Y e Go Gen Koy
Tt 3%3“%*—&&‘/«&@
'The PHD intensities are 1:1:1 and 1:1:1 L
Frk f)WiLM -{’.iv + ﬁ\/\zﬁ( ‘.;f\’_' Wfﬁﬂﬂ% wa'wlﬂiﬁ"”"é@@%’w‘“ WW
o Ktk 4o T - ki,
Yoy borbeia Loy T Thuar At R [ 9@
132 BRI Y S SN
_{_.,l—_?"}!‘, - P W%m
ok h 1 ae e by 92, VP
_ _7/7"5 4 I %/C&W
—L 4 - :
The PD2 intepsities are 1:2:3:2:1
2 a@/wﬂwj*;g; Mé? W / Thsnt Cina
(it = U ugetm g 2 HedAle
) -0k M;jq i /) 77t
o +1)% = /% - W 3 deviearss
0 400 = o ek P e
(”*;)i = O T >/
~/ -t = .
((,; — = —-72K W’)‘fﬁw / M&ﬁ.ﬁm
L c;»;f;w
6




3. The orbital energies of the first 97 elements, based oh photoelectron spectroscopy
experiments, are shown below from a Freshman chemistry textbook (Oxtoby, Gillis and
Nachtrieb): Note the logarithmic energy scale. One rydberg is 13.6057 eV.

1

Energy of orbital (rydbergs)
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You have seen the photoelectron spectrum of Ar in Problem Set 11 and calculated the
expected peaks. Pick element 10 (Ne) from this figure. Write down the electronic
configuration of the ion that is produced for each of the 3 peaks that are observed for Ne:
“label 4 Electronic configuration
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Using SlateF's approximation, calculate the energy of the most energetlc peak in the
- photoelectron spectrum of Ne. Compare your answer with the value in the figure,
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4, Write down the electronic configurations for the Li, N, and F atoms.

#e _ I electronic configuration

0 [ 3 Ga) Z5)

N | 7 [ > [28) [ P)°

F 17 {7 (25y% (20

Assuming that the ordering of the orbital enérgies for these molecules are the same, write |
down the electronic configurations expected for the Liz, N2 and F2 diatomic molecules.

#e electronic configuration
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The Pauli exclusion pnnmple states that the total wavefunction of an atom or molecule has to
be antisymmetric with respect to interchange of any two indistinguishable fermions (particles
having half-integer spin) and symmetric with respect to interchange of any two
indistinguishable bosons (particles with mteger sp[ns) The SPInS of the most abundant

isotopes in the above molecules aré: |=1/2 for '°F, 1 = 1 for "N, and 1=3/2 for Li nuclei.
Supposing someone took the spectra of the above molecules and did not identify which
molecular species the Raman spectra belonged to, is it possible to determine whether or not
the molecules are homonuclear diatomics rather than heteronuclear diatomics, if you were
shown the Raman spectra (v’ « v" : 1«0, for example) of the molecules without
identification? Explain.
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5. With what you have learned in Chemistry 344, it is now possible for you to derive or

explain from first principles

some facts you had learned in earlier chemistry classes. For each

of the following which you would have learned in Chemistry 112, provide a quantitative
explanation that is based on quantum mechanics, using mathematical equations as needed,

starting from first principles.

Within a group in the
Periodic Table, bond
lengths in diatomic
molecules usually
increase with increasing
atomic number Z. Thus,
bond lengths increase in
the series F; to Clz to Br;
to Ez.
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The tendency of an atom
to donate or accept
electrons in a chemical
bond is indicated by the
value of the
electronegativity, which in
the Mulliken definition is
proportional to (IE{+EA)/2.
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from the 4s rather than the
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Excited lithium atoms emit
light strongly at a
wavelength of 671 nm.
This emission
predominates when Li
atoms are excited in a
flame.
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7. Speciroscopy provides a means by which we identify the compounds that we have made
by organic or inorganic synthesis, provides a means by which we determine the composition
of mixtures in quantitative analytical chemistry, provides a means by which we identify
interstellar matter. That each molecule has a distinct fingerprint absorption/emission
spectrum in each region of the electromagnetic spectrum comes about because of the
following fundamental reason: Each molecule has a unique Hamiltonian which leads to a
unique set of energy eigenfunctions and eigenvalues, between which set of energy states, -
transitions can be induced by light. The transitions that are “allowed” by the symmetry of the
molecule and the symmetry of its eigenfunctions are the only ones that can be observed
under absorption and emission. Demonstrate your understanding of the energy
eigenfunctions and eigenvalues of a molecule by answering the following spectroscopy
questions: ' - ‘ : :

(a) Below we see the molecular orbital energies of N2 molecule can be related to its
photoelectron spectrum [in which one electron is kicked off by a photon, leaving an ion;
various ionization energies are found, just as in atoms (problem 3 of this exam)]. The one-
‘electron functioris (molecular orbitals) for N; molecule are shown on the right, in randomized
order! Draw a line connecting the orbitals on the right to the peaks in the spectrum on the
left: ' : '
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{(b) The qround electronlc confiquratlon of Naz molecule 1S

(109) (1o*)? (2csg) (26,) (17cg) (17.*)* (309) (409(35)) The exmted electronic conflgurat[on
(1og) “(1og*)? (209) (Zcu*) (17:9) (17.*)* (309) (409(33)) (509(43)) gives a bound state 2 Zg , as
can be seen from the plot of the U(R). The electronic transitions from the bound state of Na;
molecule 2 3Zg+ to the free (that means, the molecule dissociates into free Na atoms after it
gets there) a *s." state of Nay is shown below. A particular vibrational state v’ of the excited
2 3Zg+ state was prepared by a pump laser and the emitted light from that prepared state to
the lower free a°%," (') state was collected. |dentify the V' and draw the vibrational level and
vibrational eigenfunction on the U(R) plot below.

U(R) of the excited 2 °%," state Spectrum bound 2 *%" — free a°%,"
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Intensity
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v
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[dentify electronic configurations of the fwo Na atoms that the above U(R) plot would
approach if extrapolated well beyond 10 A. Hint: Look at the molecular electronic
configuration.

U PN O IR

The dissociative a°y,* state of Na, gives rise to one excited and one ground state Na atom.
When the excited Na atom gives up its excitation, it produces the characteristic double yellow
D lines that one sees in a flame test for Na in elemental analysis. These two yellow lines are
seen in the spectrum at the right hand side at wavelength 5890 and 5896 A with one peak

" more intense than the other. Explain why the longer wavelength peak of the yellow doublet is

less intense than the shorter wavelength peak in the atomic emission spectrum of excited Na

atom. Hint: Consider the electronic configurations of the excited Na atom and the ground -
electronic state Na atom and remember that angular momentum vectors add.

(A@WMWJM%@F% @f) (Af +1)

' \2
W?{-"D?ﬁ) .“"’L"é //""M‘ ﬂf’%
- add w ’V‘“j:ﬁ LT Q‘;

=

“””"@

I

/ L

/

{;-5"(55 z

13

/ ﬁﬁ%:w

> ?W’»Wﬁ/ :;”ﬁ'i 3




{c} The microwave spectra of CO moleculeand NNO molecules are shown below:
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Which specific spectroscopic.constants can be obtained from each of these spectrag}?

~ Determine the equation that provides the frequency of each peak (the calculated peaks are
shown in those regions where the spectrometer was not operational) You may neg!ect Ds

~ which is obviously very small in these cases.
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What is the frequency spacing (between adjacent peaks) equal to?
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Why is the frequency Specing so much larger in CO than in NNO?
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8. Assume that you have solved the hydrogen-like atom problem and know all the
eigenfunctions and eigenvalues in terms of the number of positive charges in the nucleus.

(a) What is the hamiltonian for the motion of nuclei and electrons in the He atom?
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{(b) After the motion of the center of mass of the atom has been separated out, what is the
hamiltonian for the electronic motion in the He atom?
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(c) If we simply neglect the electron-electron repulsion in the above hamiltonian, what would
the Schrédinger equation for the electronic motion in the He atom be?
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(d) What are the eigenvalues and eigenfunctions of the above Schrédinger equation?
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(e) If instead of total neglect of electron-electron repuIS|on we use Slater's approxmatlon
what would be the effective Hamiltonian for the He atom?
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(f) If we use Slater’s approximation for the He atom, what would be the electronic
configuration of the ground state? Calculate the ground state energy of the He atom under
this approximation.
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(g) If we use Slater's approximation for the He atom, what would be the electronic
configuration of the first excited state?

(I5)(5)

(h) If we use Slater's approximation for the He atom, what would be the energy difference
between the first excited state and the ground state? Calculate your answer in terms of
(e?/2ag) which is 13.6 eV,
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9. In each of the following cases, state the particular principle (don't just name it), or the
definition that has been applied in order to arrive at your answer.
The set of functions {¥+(¢), ¥2(9), ¥s(d), F4l9) , ...} are eigenfunctions

of the operator (#/i1)0/0d where ¢ is an angle that ranges from 0 to 2% and the particle is
restricted to the circle X +y2 = R?in the xy plane and x = Rcos¢ and y=Rsin¢.

(a) What is the general form of the functions {4, P, W3, ¥4, ...}? Note: these subscripts
are merely running labels to distinguish one function from another in the complete list, not "
necessarily parameters or quantum numbers. You will choose the identity of the functions
and order the functions in your own way, according to your own choices below.

Answer Statement of Principle
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(b} Normalize each function

Answer Statement of Principle
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(c) What are the restrictions on the parameters that are involved in each of the
eigenfunctions?
Answer Statement of Principle
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(d) Now that you have identified the functions and the parameters involved in them, what are
the eigenvalues of the operator (%/1)0/0¢ corresponding to the first four eigenfunctions ¥,

Yo, W, ¥, in the list? Write the function down and then the eigenvalue for it.
Answer Statement of Principle

R "“’”‘"’? \ The only) paroanble valuns oot

[ mgﬁ.&& Ayt AL ] MM‘;ZAO
%--ﬁeé/%‘%ﬂ"%ﬁ%ﬁm i Gan gl Ans oS- _’)

: S gl n e e
tiEet, R R
Yo Vo ‘e/‘?.»gfcb >x E .‘:L SEF =

\orr ) '

(e) If the physical system is found in the state described by the function ¥, (whose identity is
as you have specified it above) what would be the outcomes of four measurements of the

property whose operator is (7/1)0/0¢ ?

Answer Statement of Princip[e
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(f) If the physical system is found in the state described by function ¥» you have
specified it above, what would be the outcomes of any four measurements of the property

whose operator is -(72/2uR?)&*/0° ?

Answer d \ Statement of Principle
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(9) If the physical system is found in the state described by function ¥ = (1V5)(2%¥,+ ¥,) , as
you have specified these functions above, determine the average value of the

measurements of the observable whose operator is (f/1)0/8 ? Write down a typical set of
measurement outcomes, as they would appear in your lab notbook.

Answer ‘7‘/ ” Statement of Principle
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(g) Determine whether or not rt is theoretically poss:b[e to find for this physical system that
both the observables described in (e) and (f) are measured with zero standard deviation for -
both observables at the same time.
Answer Statement of Principle e
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