CHEMISTRY 542

FINAL Exam
December 7, 2004

In applying the principles of Quantum Mechanics in answering each question, be sure to
state the principle you are using at each step.

1. A system has the energy eigenfunction ¥ = C x exp (i b-ax?) where C, b, a are scalar
constants. The zero of potential energy is taken to be the origin, i.e., V(x=0) = 0.

(a) Using the Schrddinger equation, determine the total energy of the system and
the exact form of the potential energy.

Hint: Write V(x) as V(x) = Vg + Vix + Vo + Vax" + ...




(b) Find the value of C.

2. Apply the variational method to a particle of mass M in a box of one dimension with
V =0 for -1<x<1 and V = « elsewhere.

Use a trial function of the form Wy = 1 + ¢1x% + cox* .

Be sure that the trial function has the proper behavior at the edge of the box.

Show in deftail how you would find the coefficients and the approximate energy
Evar-




3. Which of the following functions, when multiplied by a normalization constant, would
be acceptable one-dimensional wave functions for a bound particle and if not, why not?

(a) | exp[-x]

(b) | exp[-X’]

(©) | xexp[-x‘]

(d) | iexp[-x]

(e) | f(x) = exp[-x] for x<0;
f(x) = 2exp[-x? for x>0;

If A and B are two Hermitian commuting operators, and ¥; and W are eigenfunctions of
A with eigenvalues a; and ai respectively (a; = ax), prove that there are no matrix
elements of B between states 'V; and W,

The eigenfunction of a particle in a 3-dimensional box is an eigenfunction of which of
these operators?

(@ |px
(b) sz
© |pf
(d) |x
(e) | alox

For the ground state of the hydrogen-like atom, find the average value of r, the most
probable value of r.

the average value of r the most probable value of r




True or false, explain your answer

True/
False

Explain

(@)

The state function is always equal to a
function of time multiplied by a
function of coordinates

(b)

The state function is always an
eigenfunction of the Hamilionian

()

Any linear combination of
eigenfunctions of the Hamiltonian is
an eigenfunction of the Hamiltonian

(d)

If the state function is not an
eigenfunction of the operator A, then a
measurement of the property A might
give a value that is not one of the
eigenvalues of A

(e)

The probability density is independent
of time for a stationary state

If two operators do not commute, then
they cannot possess any common
eigenfunctions

(9)

If two operators commute, then every
eigenfunction of one must be an
eigenfunction of the other

(h)

The matrix representing a Hermitian
operator is always symmetric about
the diagonal

®

The experimental ground state energy
of the Li atom can be obtained from
Eos+2E+s, where Eo is the
experimental energy needed to
remove the 2s electron from Li and
E1s is the experimental energy needed
to remove the 1s electron from Li




4. For a hydrogen-like atom with Z protons in the nucleus, perturbed by a uniform
applied electric field in the z direction, the perturbation Hamiltonian is

h=ecz=e&rcosd, where £ is the magnitude of the electric field.
Consider the effect of 2 on the n = 2 energy level, which is four-fold degenerate. Since &

commutes with the angular momentum L.;, use the complex hydrogen atom orbitals 2s, .

2po, 2p+1 and 2p.¢ which are eigenfunctions of L. Find the first order corrections to
the energy and the correct zeroth order wavefunctions.




In general, what would be the effect of  on any energy level (any n) of the H-like
atom? Illustrate using n=3,

5. The diamagnetic shielding of the Be nucleus by the surrounding electrons can be
written in the form Bigca = (1-6)80 where By is the applied magnetic field, Bigca is the
field at the nucleus and & the nuclear magnetic shielding (which gives rise to observed
NMR chemical shifts). For s electrons, G has the form

2
o= 33 2 (zl) =17.75x10° (Zl) with » , the distance of the electron from the
mc” TE i b

nucleus, in atomic units

Show how o for Be atom can be calculated using Slater functions. Answer must be
complete but final numerical answer is not required.




6. The muonic helium atom is the neutral atom system composed of a helium nucleus,
an electron and a negative mu meson {or muon). A negative mu meson has the same
charge as an electron (g=-e), has spin ¥z and a mass 138 times that of the electron.

(i) From one point of view, the muonic helium atom is analogous to helium atom in
which one electron is replaced by a negative muon. The intrinsic magnetic moment of
the muon is given by (q/2M,c)g,1,=(-e/2-138mec)g.], where g, is the muon gyromagnetic
ratio which is very similar to that for an electron (2.0023), and 1, is the muon spin
operator. In Hep'e™, the electron angular momentum operator is J and the electron g
value in this atomis g, . ‘

(i) From another viewpoint, the muonic helium atom is similar to a hydrogen atom in
which the proton is replaced by the pseudonucleus (Heu’)+, since the radius of the
muonic orbit in the 1s state of the muonic helium atom is small compared to that of the
electron. When the He nucleus is of spin zero (*He) the electron sees a pseudonucleus
with a unit positive charge and a magnetic moment equal to that of a negative muon.
Apart from the reduced mass correction, the principal difference between the electron in
the muonic helium atom and the electron in the hydrogen atom is the penetration of the
electron charge inside this pseudonucleus.

(a) Now consider the muonic helium atom as analogous to a hydrogen atom: (Hep)' e,
that is, as if there are only the two particles, the pseudonucleus that has angular
momentum I, and the electron that has angular momentum J.

Find the angular momentum functions, which are the eigenfunctions of

F, = (I,+ J),, for this system in its ground state.

(b) Find the linear combinations of these functions that are eigenfunctions of F,




(¢) In a static magnetic field By, the relevant part of the Hamiltonian for the ground state
of (*Hep') e is

a(l e J) + - (-e/2mec)g JeBy + -(-e/2-138meC)g, 1, *Bo
where a is the hyperfine coupling constant that is a measure of the energy of interaction
between the two magnetic moments. Draw an energy level diagram, energy along the y
axis and magnitude of By along the x axis, that illustrates how the energies calculated
from this Hamiltonian would vary from Bg =0 to higher values of magnetic field. Label the
states with F, Mg, M, M, quantum numbers as appropriate.
Hint: Use perturbation theory: Think of the two limiting cases Bo =0 and Bgvery
large. The z axis is along By. At each limit, consider which of the 3 terms in the
above Hamiltonian you should assign to #'” and which to h, and find the zeroth
order functions and E® that you will have. Draw the levels at each limit and then
simply connect which levels become which.




{(d) Now consider the muonic helium atom as analogous to a normal helium atom.
Assume that you have separated out the translational motion of the entire atom. Write
the non-relativistic, time independent Schrédinger equation for this atom. Do you
have to worry about anti-symmetrization?

To solve the problem of electron-muon repulsion, think about the fact that the radius of
the muonic orbit in the 1s state of the muonic helium atom is small compared to that of
the electron (the mass of the muon is 138 times that of an electron). As a consequence,
the screening by the muon of the nuclear charge seen by the electron is nearly
complete, whereas the muon is hardly screened by the electron. From the muon’s point
of view what would be the nuclear charge close to? From the electron’s point of view,
what would be the nuclear charge close to? On this basis, write down the Schré-
dinger equation that approximately describes the system and find its solutions.

If we use perturbation theory, we can put back the part that was left out in the above
treatment. What do we need to use for h?




7. Some of the states of the Li; molecule are shown in the diagram below:
[from C. Linton et al., J. Mol.. Spectrosc. 175, 340 (1996)]

—

This paper is a study of the A state of Li;
From v=0 up to v=84 of the A state was
observed, extrapolation to v=109 (the
dissociation limit) was possible. X is the
ground state. There are other excited

. states besides those shown in the

| figure, in particular there is a B'TI,, and
- a G'I,. The A state dissociates to the

- atomic (2s)°Sy, + (2p)°Py, states. The

- energy difference between the Li atom

. states E[(2p)*Py] - E[(25)°Sy] is known
. accurately as 14903.296792 ¢cm™. From

- the ground state v=0 to the dissociation
limit of the A state is 23231.36 cm™.

From the ground state v=0 to the A v=0
is 13879.087 cm™. In this work, the
information from 84 vibrational levels in
the A state permits a very accurate
determination of the potential function
which is shown in the figure.

(a) From the given data, it is possible to determine the dissociation energy, Dy, of the
ground state X. Find it, you may give your answer in units of cm™.

(b) From the given data, it is possible to determine the dissociation energy, Dy, of the
- state A. Find it, you may give your answer in units of cm™.




(c) From the electronic configuration of the atoms, use linear combinations of atomic
orbitals to discover the MOs that can be formed when they overlap with + or —
coefficients. Include all electrons. Draw the MOs (sketch contour plots or Jorgensen-
Salem orbital pictures) indicating signs of the wavefunction in the various regions.
Assign complete MO labels including the value of &, symmetry with respect to i
operation, bonding or antibonding.




(d) Draw the correlation diagram that connects these orbitals, from separated atoms to
molecule to united atom. Label all orbitals completely

(e) From the electronic configuration and term symbols of the Li atoms into which the
given A state of Li; molecule is known to dissociate (given), determine all the possible
Li> molecular states that dissociate into these atomic states. (One of them is the A state)




8. (a) By photoelectron spectroscopy, XPES, or ESCA or variants thereof, a variety of
ionization energies are found for the atoms of a sample. In this analytical technique, the
sample is irradiated with high energy radiation and electrons are expelled. Some of the
energy of the incident radiation is carried off as kinetic energy of the expelled electrons.
The energy required to produce a particular ionization is equal to the energy of the
incident photon (hv) less the kinetic energy of the expelled electrons (gqn). The pattern
of electron kinetic energies thus yields a display (spectrum) of the various ionization
energies of the atoms or molecules of a sample. Now, if we have a model of an atom,
such as Slater model, in which the energy of the atom for a given electronic
configuration can be written in terms of a sum over the one-electron-at-a-time (i.e.,
orbital) energies, then the measured ionization energies serve as measures of the
orbital energies. The ionization spectrum of argon is shown below:
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The orbital of the parent argon atom from which an electron has been expelled in each
case is shown as label within the frame. For each of the 5 frames write under each
frame the atomic term symbol for the Ar" ion formed. Write down the electronic
configuration of the ion that is produced for each peak and where two peaks occur in
a frame, provide an explanation. Why smaller splitting in 3p?

Electronic configuration Term Why two peaks?
of Ar* ion symbol




{b) For each of the 5 frames how would one estimate [E(Ar") — E(Ar)]? Do one
example.

(c) Below we see the molecular orbital energies of N> molecule can be related to its
photoelectron spectrum {in which one electron is kicked off by a photon, leaving an ion;
various ionization energies are found, just as in atoms. The one-electron functions
(molecular orbitals) for N2 are shown on the right, in randomized order. Draw a line
connecting the orbitals on the right to the peaks in the spectrum on the left.
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(d) Assign an MO designation (to each orbital on the right) to provide the.information
about its behavior upon the i operation, its angular momentum, and the atomic orbitals
that carry the largest coefficients in the linear combination that constitutes the function.




List of possibly useful integrals that will be provided with each exam

[sin(ax)dx = - (1/a)cos(ax)

] cos(ax)dx = (1/a)sin(ax)

[sin’(ax)dx =(4)x -(1/4a)sin(2ax)

{sin® (ax)dx 3x/8 -(1/4a)sin(2ax) +(1/32a)sm(4ax)

f cos (ax)dx ={io)x +(1/4a)sin(2ax)

fcos*(ax)dx = 3x/8 +(1/4a)sin(2ax) +(1/32a)sin(4ax)

* [sin(ax)sin(dx)dx = [1/2(a-b)]Jsin[(a-b)x)] - [1/2(a+b)]sin[(a+b)x)], o’=b’
Jcos(ax)cos(bx)dx = [1/2(a-b)]sin[(a-b)x)] + [1/2(a+b)]sm[(a+b)x)] a*£b*
[x sin(ax)dx = (1/a” )sm(ax) (x/a)cos(ax)

© [x cos(ax)dx = (1/a*)cos(ax) + (x/a)sin{ax)

[%* cos(ax)dx = [(.:zzzx,:2 - 2)/a3]sin(ax) + 2xcos{ax)/d’

[ sm(ax)dx = -[(a x> - 2)/a’Jcos(ax) + sz111(a:x;)/.af2

fx sin (ax)dx x4 - xsm(2ax)/4a cos(2ax)/8a’

Jx? sin®(ax)dx = x/6 -[x*/4a - 1/8a°]sin(2ax) - xcos(Zax)/4a |
[x cos (ax)dx x4 + x31n(2ax)/4a + cos(2ax)/8a’

{x* cos (ax)dx xX°/6 +[x*/4a - 1/8a’ Isin{2ax) + xcos(2ax)/4a
] xexp(ax)dx = exp(ax) (ax-1)d*

| xexp( ~ax)dx = exp(-ax) (- ax~1)/a

[ %% exp(ax)dx = exp(ax) [x%/a - 2x/a® + 2/’

[x™ exp(ax)dx = exp(ax) 2. =010 m (-1)f mIx™/(m- )l

[ dx/x(atbx) = - (1/a) In [(a+bx)/X]

jom X" exp(-ax)dx =nl/a™"! - a>0, npositive integer
o= % exp(-ax?)dx = (1/4a)( wa)* a>0
[ 2 exp(-axtdx = (1-3°5-...-n- 1Y/ a™ wa)*  a>0

[ x> exp(-ax?)dx = n!/2a™" ~a>0,npositive integer
I exp(-a*x))dx = (1/2a) (n)” a>0

f,° exp(-ax) cos(bx)dx = al(a*+b%) a>0

lo™ exp(-ax) sin(hx)dx = bi(a+b") a>0

J'Om x exp(-ax) sin(bx)dx = 2ab/ ('.:124'1;'2)2 a>0

foén x exp(-ax) cos(bx)dx = (a*-b%) /(az-kbz)2 a>0

o exp(-a”x”) cos(bx)dx = [(m)"/2a]) exp[-b*/4a"] ab #0

Some useful identities: -
sin(2x) = 2sinx cosx _ cos(2X) = cos’X -sin?x = 2cos’x -1

. - . . ix -ix
X = cosx + isinx: e X =cosx-isinx; fromwhich, cosx=%{e"+e"}




Radial factors in the hydrogenlike-atom wave functions
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Slater’s rules:
The effective charge seen by the ith electron whose quantum numbers aren f in an
atom whose atomic number is Z is given by :

(Zeff)i =Z- Sne

Slater provides s,, as follows:
1.Fori havingn #=1s
S1s = 0. 3Oksame:

where
ko.me = number of other electrons in the same 1s shell

2.For ihavingn>1land £=0or1
Sns = 0.35Keame + 0.85ky, + 1.00K; 5,

where

keme = number of other electrons in the same shell as the screened electron of

interest _
= number of electrons in the shell with principal quantum number n-1
mmer = number of electrons in the shell with principal quantum number n-2

Kin
Kin

3. For the im electron having quantum numbers n £ = 3d

S3¢a — 035k3d + 1001{111

where
k3s = number of other electrons in the same 3d shell

ki, = number of electrons withn <3 and £ <2
For the purposes of Slater’s rules, the “subshells” are taken to-be in the order
innermost  1s (2s,2p) (3s,3p) 3d (4s,4p) outermost

- ADDITIONAL INFORMATION

ap = (H/m.e”) the “Bohr radius”, 0.529177x107° m
(6’/2a5) = 13. 6057 eV one rydberg, a unit of energy = (1/2) hartree
¢ = frequencyewavelength = 2.997924 x10"° cm sec”  the speed of light
1eV=28065.6 cm™
2= R (1/sin0)(8/80)sind /60 + (1/sin®0)8°10¢%}
H= -(R22MY(1/r)a%or* r}

(H*12MrP){ (1/sin0)(a/80)sind &/66  + (1/sin’0)5°/0¢%} + V(r)



E = Uy Re) + (vF72)Ve - XeVe (V+4)" + VeVe (v+a) +
BJ(J+1) - DI+ - ae(vH2)II+1) + Yoo
~ where all Spectroscoplc quantities are expressed in énergy units (or the

corresponding frequency or wavenumbers) In energy units, the
following are positive quantities:

=1/ 2u RS2 B. rotational constant
hxeve =B 2/(hve) { (1)B[U” RIRT /(hve)’
- - UMRIR." )

, XoVe anharmomclty constant
'_De_4B3/(hve) -
| D. centrifugal d1stort10n constant
Ge=-2B2/hve - {3 + 2BJUTRIRST /(Ave) )
o, vibrational rotational coupling constant
Yoo =B&/16(hv.) - { U"(RR"
| (%)BJU’”(Re)Re SVCOR
hve = (h2m)[ U”Re) /p 1” v, harmonic frequency
1 reduced mass 1/p = 1/mp + 1/mp
R, equilibrium bond length
Rotational constant for the vin vibrational state is By
B, = B. - o (vt+¥2)
Yoo same anharmomc correction to every

vibrational level
Since Yoo is a constant for the electronic state, it is usually put
together with U(R.).



