CHEMISTRY 542

ANSWERS to FINAL Exam
December 7, 2004

In applying the principles of Quantum Mechanics in answering each question, be sure o
state the principle you are using at each step.

1. A system has the energy eigenfunction ¥ = C x exp (i b-ax?) where C, b, a are scalar
constants. The zero of potential energy is taken to be the origin, i.e., V(x=0) = 0.

(a) Using the Schrddinger equation, determine the total energy of the system and
the exact form of the potential energy.

Hint: Write V(x) as V(x} = Vo + Vix + Vax2 + Vax® + .

H = pli2M + V(x) kKinetic energy + potenttal energy
= -(BH2MY(d%dx?) + Vo + Vix + Vax2 + Vax® + .. Postulate 1 To every observable
there cotresponds an operator. The operator for py is (%/1) 0/0x

HY =EY¥Y Schridinger equation (Postulate 2, defines eigenvalues and eigenfunction)
[-(H22M)(d¥dx®) + Vo + Vix + Vax? + Vax® + ..} C x exp (ib-ax®) = E C x exp (ib-ax’)
Given, V(x=0)= 0=V,
[-(H22M)(d/dx®) + Vax + V@ + V@ + ...} x exp (ib-ax®) = E x exp (¢b-ax?)

Do some math:
d/dx x exp(ib-ax®) = exp(ib-ax®) + x exp(ib- axz)(—Zax) exp(z b-ax?) -2ax’exp(ib-ax?)
(d*/dx®) x exp (ib- -ax?) = didx { exp(ib-ax®) -2ax? exp(tb -ax)}
= exp (ib-ax?)(-2ax) -2ax’ exp(i b-ax*)(-2ax) + exp(ib-ax®)(-4ax)
= exp (ib-ax?){-2ax +4a°x® -4ax} = x exp (ib-ax}{-6a+ 4a°x’}
-(22MY(d%dX?) + Vax + V@ + Vax® + ...} x exp (ib-ax®) = E x exp (ib-ax®)
-(H212M) [-6a+ 4a2%] x exp (ib-ax®) + { Vox + Vax® + Vax® +..}x exp (ib-ax’)
= E x exp (ib-ax’)
Divide the equation by x exp (ib-ax*): (We can do this since only multiplicative
operators are left in the equation.)
-(h2/2M) [-Ba+ 4253 + Vax + Vox2 + Va3 +... = E
Now we need to solve this equation to find the V4, V2, V3, and E.
Collect coefficients of equal powers of x,

X% -(BY2M)(-6a) = E provides E = 6a (#%/2M)

x'' Vix=0 provides V; =0

X% (FA2M)(+4a X3) + Vax2= 0 provides Vs = 4a (#°/2M)

XX Vax®=0 provides V3 =0

X V=0 provides V4 = 0, also true for all higher powers of x.
Therefore, the Schrédinger equation is

[-(#%12M) (d%/dx®) + 4a (B*/2M) X }¥ = E¥
and for the eigenfunction ¥ = C x exp (ib-ax®), the eigenvalue is E = 6a (7212M)




{(b) Find the value of C.

Normalization: [; Y*Pdx =1
[ ©* xexp (-ib-ax®) C x exp (ib-ax’) dx = C* [ #exp(-2a) dx=1

2C? f X exp (-2ax7) dx = 2C2[(1/8a)(m/2a) ] = 1
C - n1l4251483l4

2. Apply the variational method to a particle of mass M in a box of one dimension with
V =0 for -1<x<1 and V =« elsewhere.

Use a trial function of the form Wy = 1 + c1x% + cox* .

Be sure that the trial function has the proper behavior at the edge of the box.

Show in detail how you would find the coefficients and the approximate energy

Evar-

Boundary conditions:
(a) For the function to be quadratlcally integrable,
N (1 + ¢ + ooxtdx = 1, we will find N later.
(b) Since ¥(x > +1) = 0 and ¥(x < -1) = 0, then, for the function to be continuous,
W triat (X = i1) =0
1+¢ci+c=0 orc;=-{1+c¢c4)
Wi =1+cpl+ox =1+ 0% +- (1+ C1))(4

For a particle in a box of one dimension,

H = p2I2M + V(x) kinetic energy + potential energy
H = -(F2M)(d%dx®) +0  for -1sx<1

I lPtrlal qumal dx
E —

" [ q,tnal I.IJma[dx
HWyia = -(FP2MYAHDE] 1 + cpp@ + cox* ] = ~(7%2M) [ 204 + 1262¢ |
f (1+cx” +c,x")(2¢, +12¢,x ) dx

Evar = (H2/2M) »
L (I+ex® +cx*Y dx

[2¢, +(12¢, +2¢,2)x* +14c,ex* +12¢,°x°1dx
Evar = "(h‘leM) . L
[1 [142¢x +{c] +2¢,)x* +2¢,¢x° +c5x" 1dx

[ZClx +(12¢, +2¢°)x%° 13 +14e,ex° 15+12¢,°%7 /7];1

Eva = ~(F212M) o :
{x +2¢x 13+(c] +2¢,)x° 15+ 2c,e%" /T +cox /Q]t1




2¢,+(12¢, +2¢7)/3+14c,e, /1 5+12¢,2 17
1+2¢,/3+(c? +2¢,)/5+2¢c,c,/ T+ 19

Eyar = -(RH2M) o

Apply the relation ¢z = - (1 + ¢1) and combine terms
—6/7—48¢, /35— 44¢, /105

32/45+64¢,/315+8¢ /315

Impose the condition that we want an upper bound to the energy eigenvalue,
that is, minimize Evy ;. CE,,./0c; =0

0 = -(A%/2M) »

Evye = ~(F212M) @

(32/45+64c, /315 +8c /315)[~48/35 - (88/105)c,] ~ (—6/7 —48¢, /35— 44¢,” /105)[64/315+(16/315)c,]

(32/45+64¢,/315+8c’ /315)°

0 = 52¢4% + 571cq + 828

Solve for ¢1: We obtain two roots, ¢4 = = -[571 £(392.195]/104
¢t =-9.26149 gives Eyr = +23.9123 (#%/2M)

orcy =-1.719279  gives E, = - 0.599847(#%*2M)

E.ar answer should be an upper bound to a positive (purely kinetic) energy !
Thus, the root ¢y = -1.719279 is unphysical and therefore unacceptable.
Therefore, we choose Ey,, = +23.9123e(#%/2M), that is, ¢1 = -9.26149,

Co = -(1 +C1) = 8.26149

Wi = N(1 + ¢ + cox?)
Normalization: 1=N? [4"[1 + 20 +2¢102 X° +(c2+ 202)x* + .58 dx
1= N2 [x+ 261X°f3 +2¢1C2 X' /T +(cr2+ 2¢2)X°15 + ¢2°x°/9] 4™
1= N2{2 +4 c1/3 +4cq1C2 /T +2(c*+ 2¢2) 15 + 2¢,7/9})
Apply ¢z =-(1+cy),
1= N2 {2 +4 Ci/3 -4ey/T -4ee? IT +264%15- 4e4/5 -415+ 2(1+20,+64%) 19}
1 = N?{28 + 8c; +c4°}16/315
c1 =-9.26149 gives 2.0156585N? =1; N = 0.704355
Using ¢1 = -9.26149, ¢; = -(1+c1) = + 8.26149, N = 0.704355 we find
Weia = N(1 + ¢1x% + cx* ) = 0.704355 — 6.523 377 X* + 5.819 022 x*
This trial function has no nodes other than at the end points x=+1.
For the true eigenfunction of n=1 in a well of length 2 (-1<x<1), the eigenvalue is
E = 1?7%2%(12/2M) = +2.46741e(n2/2M).
We found an upper bound to this energy, Ey.; = +23.9123e(4%/2M).




3. Which of the following functions, when mulitiplied by a normalization constant, wouid
be acceptable one-dimensional wave functions for a bound particle and if not, why not?

(a) | explx] not, function blows up at x = -00
(b) | exp[-x] acceptable: finite, single-valued, continuous
(c) | xexp[-x] acceptable: finite, single-valued, continuous
(d) | Lexp[-] acceptable: finite, single-valued, continuous
(e) | f(x) = exp[-x] for x<0; not, discontinuous at x=0

f(x) = 2exp[-x*] for x>0;

If A and B are two Hermitian commuting operators, and ¥j and W are eigenfunctions of
A with eigenvalues a; and a, respectively (g;= ai), prove that there are no matrix
elements of B between states W; and Wy.

Given: A%, =a)'¥; and A¥ = a¥x (Postulate 2) and (a;# ax), and AB-BA =0

To prove: | ¥, *B¥ = 0

Proof: [ ¥; *(AB-BA)¥ dt = 0 since (AB-BA) =0

LHS= ] W, *(AB-BA)¥\ dt = [ W *ABW dt - | ¥ "BAY dr

=] AR, *BY, d1 - ¥, *"BAW, dr since A is a Hermitian operator.

LHS = { a)¥; *B¥x dr - |¥; *B ax¥ dr, Postulate 2, and the eigenvalues of a Hermitian
operator are real (a*= &).

LHS = (g - ax ) | ¥; *B¥ dr, Since B is a linear operator B a ¥= ax B

RHS =0

Since (a;= ax), then the only way the LHS can be equal to zero is if J ¥, *B¥ dt =0

The energy eigenfunction of a particle in a 3-dimensional box is an eigenfunction of
which of these operators?

(@ | px no
b) |ps yes
© |pS° yes
d |x no
(&) | alox no

For the ground state of the hydrogen-like atom, find the average value of r, find the |
most probable value of r.

the average value of r the most probable value of r
Wis = 1 H(Z/ag) Pe ™ P(r)dr = [o"sin0d0e)g>"dde ¥ * Wi rdr
= Wis*r¥isde = o270 70 (Z/a0) e 702 dr
=1 (Z/ao)le” re 2" drefs"sin0d0e o> "d¢ = 4(Z/a)® €7 Pdr
= n"1(Z/ao)3-3!/(ZZ/ ao)*e2e27 = (3/2)a0 Calculus: to find the maximum probability,
dP({r)/dr=0

dP(r)/dr= 4(Z/ao)’d/dr [e2"%° ]
= 4(Ztag)’e ™ [2r+(-2 Z/ag)®] = 0
r=ay ”Z




True or false, explain your answer

True/ Explain
False

(a) | The state function is always equaltoa | F True only if Hamiltonian for the system
function of time multiplied by a is not explicitly dependent on time or if
function of coordinates it can be written as a sum of 2 parts,

one part explicitly dependent on t only,
the other on coordinates only

(b) | The state function is always an F A system need not be in an eigenstate
eigenfunction of the Hamiltonian of energy

(¢) | Any linear combination of F True only for any linear combination of
eigenfunctions of the Hamiltonian is eigenfunctions with same eigenvalue
an eigenfunction of the Hamiltonian

(d) | If the state function is not an F See Postulate 2! The only value that a
eigenfunction of the operator A, then a measurement of an observable can
measurement of the property A might yield is one of the eigenvalues of the
give a value that is not one of the operator for that observable..
eigenvalues of A

{e) | The probability density is independent | T The properties of a stationary state
of time for a stationary state are independent of time.

(f) | If two operators do not commute, then | F One function might be the same but
they cannot possess any common not the whole set of eigenfunctions
eigenfunctions

(@) | If two operators commute, then every | F True only for non-degenerate
eigenfunction of one must be an functions
eigenfunction of the other

(h) | The matrix representing a Hermitian F only true when matrix elements are
operator is always symmetric about real. What is true is Ay =A% (from
the diagonal definition of Hermitian operator)

(i) | The experimental ground state energy | F Let ground state energy be -Ey, i.e.,

of the Li atom can be obtained from
E.s+2E s, where Eog is the
experimental energy needed to
remove the 2s electron from Li and
E4s is the experimental energy needed
to remove the 1s electron from Li

Eo= E(Li*") — E(Li, 1s%2s).
Given Es = E(Li*,1s%) — E(Li,1s%2s)
Eqs = E(Li*,18) — E(Li*,15%)
Eq' = E(Li*") - E(Li**,1s) we see that
Eo=Eas + Eqs'+ Eqs"”
But E4s = E(Li+,1s2s)— E(Li,18*2s)
Because the 1s electrons are being
removed from positively charged ions
rather than the neutral atom, E+' > E4s
and Eqs"" > Eqs. Thus, Eg>> Exst2E1s




4. For a hydrogen-like atom with Z protons in the nucleus, perturbed by a uniform
applied electric field in the z direction, the perturbation Hamiltonian is

h=e&z=e&rcosd, where £ is the magnitude of the electric field.

Consider the effect of 2 on the n =2 energy level, which is four-fold degenerate. Since &
commutes with the angular momentum L,, use the complex hydrogen atom orbitals 2s,
2po, 2p+1 and 2p_¢ which are eigenfunctions of L,. Find the first order corrections to
the energy and the correct zeroth order wavefunctions.

Degenerate perturbation theory applies. Since & does not operate on ¢, all integrals
between different m, values are zero. Eigenfunctions of an operator (L, here) which
correspond to different eigenvalues, different m,, are orthogonal. Thus, we set up the
matrix for k& in blocks of equal m, :

2s 2po 2pP+1 2p-1

0 A 0 0 2s
A 0 0 0 | 2po
0 0 0 0 | 2pm
0 0 0 0 | 2p4

All the diagonal elements of k matrix are zero since [if ¥ y,m*r cos WPpmdt =(z)= 0
(equal contributions from + and — z values).

The k& matrix is seen to be block diagonal with three small blocks to be solved:

2s,2pp: |0-E® A |=0 2p«1: | 0-ED | =0 2p4: | 0-EM | =0
A 0-EO

EM = +A EM=9p EM=0

In other words, 2s and 2py mix and have corrections to their energy.

In the 2x2 block, Substitute E™ into the first equation above, - E® ¢y +Ac; =0,

forEM=-A +Acy +Ac; = 0 C1 = -Co c1=27 % co= -2 Psince o2y
for EM = +A -Aci +Ac, = 0 C1=0Cp ci=2 7 =27 %
Zeroth order eigenfunctions: (Was- Wapo)N2 ,  E = -(Z%2%)(e%2a0) -A

(Was + Wapo)N2 ;  E = «(Z%/2%)(e%/2a0) +A

2p+1 and 2p.4 remain unchanged. ¥ap.4 E = -(Z%/2*}(e?/2a0)
Now we just need to calculate A.
The integrals that went into the matrix are evaluated as follows, using the functions

given on the last page of the exam: [I] Was*r cos@ Wopp dt =
p

3
%2;3 HJ-(Z—j—:)rcosﬂi—:cosé’exp'z”““ r’drsin 0d0d ¢
The first term is just like [I] W2p0™ W2po dT except for the factor of 2a¢/Z:
5 = 5 !
= Zﬂ—iz—sfrse'z”“"dr‘[rcoszt?sin@d@f dg = 2a) 1 2 e ! - e2e2r
Z 162 Z 162m (Z/a)® 3

= faad UNES L A=-e& 3alfl




In general, what would be the effect of h on any energy level (any n) of the H-like
atom? lllustrate usingn = 3.

For any n the wavefunctions of a H-like atom are degenerate, so we will have to set up
the & matrix the same way, in blocks according to m, values, and those wavefunctions

with m, =0 would mix. That is, ns, npg, ndo, ... would mix together, nps4, Nds+q, ... would
mix together, np.4, nd.4, ... would mix together, and so on. Furthermore, all diagonal

elements will be zero, and since cosO converts Wp,m to ¥ n,.1m, Only adjacent (A¢= +1)

off-diagonal elements within the individual blocks are non-zero. So the 2 matrix for n=3
would look like

3s 3p0 3dg 3p+1 3d+1 3]3-1 3d.4 3d+o 3d-2
0 B 0 0 0 0 0 0 0 |3s
B 0 C 0 0 0 0 0 0 |3po
0 C 0 0 0 0 0 0 0 |3dg
h= 0 0 0 0 D 0 0 0 0 | 3p+
0 0 0 D 0 0 0 0 0 | 3d+
0 0 0 0 0 0 D 0 0 |3p1
0 0 0 0 0 D 0 0 0 |3d4
0 0 0 0 0 0 0 0 0 | 3di
0 0 g 0 0 0 0 0 0 |3ds
| where the values of the only non-zero integrals are indicated by B, C, D

5. The diamagnetic shielding of the Be nucleus by the surrounding electrons can be
written in the form Bieea = (1-G)Bg where By is the applied magnetic field, Bioca is the
field at the nucleus and G the nuclear magnetic shielding (which gives rise to observed
NMR chemical shiﬁs) Fors e]ectrons G has the form

=3 (Z )— 17.75x10° (Z — with r, the distance of the electron from the
me* 5

l

nucleus, in atomic units

Show how o for Be atom can be calculated using Slater functions. Answer must be
complete but final numerical answer is not required.

In atomic units: {1/+;) is of the form Jo™ [o® JoZ™P(;)*1/r; W(i)r2dr;sinBdodd

Wio(i) = n % 2%%e%" using Z’= (4 - 0.30)

Pooli) = Va(6r) % 2752 r €77 using Z"= (4 - 2x0.85-0.35)

Y D = 20n 1 2800 €% v dr dn} + 2{( J16)(67) " Z”5I eZ” P dr 4n}

The integrals are [” e 22, dr = 1RZ¥ ; f”e e =3l Z2")*

S ) =27 + 27y =2{3.7 +14(1.95) } = 8.4

G = 17.75x10°x8.4 = 149 ppm

Note that we have replaced (3 (1/r)) by 2.; {1/r,). This is possible because the central
field Slater approximation permits us to write the Schrédinger equation in a separable

form so that the 4-electron wavefunction becomes a simple product of 4 one-electron
functions, thus we need only integrals over one-electron functions.




6. The muonic helium atom is the neutral atom system composed of a helium nucleus,
an electron and a negative mu meson (or muon). A negative mu meson has the same
charge as an electron (q=-e), has spin ¥z and a mass 138 times that of the electron.

(i) From one point of view, the muonic helium atom is analogous to helium atom in
which one electron is replaced by a negative muon. The intrinsic magnetic moment of
the muon is given by (g/2M,c)g,].=(-e/2:138m.C)g,], where g, is the muon gyromagnetic
ratio which is very similar to that for an electron (2.0023), and I,, is the muon spin
operator. In Hep'e™, the electron angular momentum operator is J and the electron g
value in this atomis g, .

(i) From another viewpoint, the muonic helium atom is similar to a hydrogen atom in

which the proton is replaced by the pseudonucleus (Hep,')+, since the radius of the
muonic orbit in the 1s state of the muonic helium atom is small compared to that of the
electron. When the He nucleus is of spin zero (*He) the electron sees a pseudonucleus
with a unit positive charge and a magnetic moment equal to that of a negative muon.
Apart from the reduced mass correction, the principal difference between the electron in
the muonic helium atom and the electron in the hydrogen atom is the penetration of the
electron charge inside this pseudonucleus.

(a) Now consider the muonic helium atom as analogous to a hydrogen atom: (Hep)" &,
that is, as if there are only the two particles, the pseudonucleus that has angular
momentum I, and the electron that has angular momentum J.

Find the angular momentum functions, which are the eigenfunctions of

E, = (1,+ J),, for this system in its ground state.

In the ground state, the electron has ¢ = 0, thus the electron has purely spin angular
momentum. J; = §;. Let the eigenfunctions of the z component of the electron spin

angular momentum be o and B for J ; eigenvalue + '5% . Let the eigenfunctions of the z
component of the muon spin angular momentum be A and B for I, ; eigenvalue £ ¥2h .

The eigenfunctions of F; = (I,+ J), are the products of the functions and the
corresponding eigenvalues are the sums, (separation of variables):

A +1%  thatis F; Ao = +14 Aa
Bp : -1% F,Aa =-172Bp
AP 0n F,Ac = 0r Ap
Ba On F, Ao = 0 Ba

(b) Find the linear combinations of these functions that are eigenfunctions of F.

Since F is angular momentum, then the eigenvalues of ¥, +1#, -, Ok go with the
eigenvalue of F* that is 1(1+1)#° and the eigenvalues of F, 0% goes with the eigenvalue
of F? that is 0(0+1)#°. Since there are two functions which have F;, eigenvalues 0z, we
have to form linear combinations, one of which give F? eigenvalue = 1(1+1)#* and the
other gives F* eigenvalue = 0{0+1)#?

A - F,Ac=+12Ax  F2 Ao = 1(1+1)4 Ax

Bp F,Aa = -17 B F2Bp = 1(1+1)* B

(AB +Bo)N2  F,(AB +Ba)N2 = OA(AB + Ba)N2; F?(AB + Ba)/N2 = OR(AB + Ba)N2
(AB-Ba)N2  F(AB-Ba)N2 = On(Ap - Ba)N2; F*(AP - Ba)N2 = OA(AB - Ba)2




(c) In a static magnetic field Bg, the relevant part of the Hamiltonian for the ground state
of *Hep) e is

a(Iye J) + - (-e/2mec)g JeBo + -(-e/2-138meC)g 1, °Bo
where q is the hyperfine coupling constant that is a measure of the energy of interaction
between the two magnetic moments. Draw an energy level diagram, energy along the y
axis and magnitude of By along the x axis, that illustrates how the energies calculated
from this Hamiltonian would vary from By =0 to higher values of magnetic field. Label the
states with F, Mg, My, M,, quantum numbers as appropriate.
Hint: Use perturbation theory: Think of the two limiting cases By =0 and Byvery
large. The z axis is along By. At each limit, consider which of the 3 terms in the
above Hamiltonian you should assign to /¥ and which to h, and find the zeroth
order functions and E'” that you will have. Draw the levels at each limit and then
simply connect which levels become which.

(1) At the Bo =0 limit H® = a(1,e J) and & = (e/2m.c)gyJeBo + (€/2-138mec)g,l,, *Bo
Thus the energy levels and zeroth order functions at this end are those which we found
above, Aa, Bf, (Ap + Ba)2 , (AB - Ba)/N2, with energies that depend on the hyperfine
| coupling @ and the quantum numbers that give the eigenvalues of F?, with the different
Mg = 0, 1, -1 for F = 1 being degenerate since Bg =0.

(2) In the other limit, with Bo very large, #© = (e/2mcc)g,JeBo + (€/2-138meC)g, 1, *Bo
and & = a(I,» J) . Obviously at this limit the energy levels and zercth order functions are
without the coupling of angular momentum that comes in /. So the zeroth order
functions are Aa, B, AB, Ba, with energies that are given by

E = (e/2-138mec)g, (£ V2h)Bg + (€/2mec)g (£ V27)Bo |

where the functions A, B correspond to +V5h, -¥2h respectively in the first ferm and the
functions o,p correspond to +Vah, -¥2h respectively in the second term. Splitting between
the £ states for the electron is factor of 138 greater than the )% splitting for the muon.
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(d) Now consider the muonic helium atom as analogous to a normal helium atom.
Assume that you have separated out the translational motion of the entire atom. Write
the non-relativistic, time independent Schrédinger equat:on for this atom. Do you
have to worry about anti-symmetrization?

- (R22M )V 2 - (B212me)V &2 - 2€Ir, - 26%ITe + €%/} F(ry, e} = E P(ry, To)
wrp u H u H

No because the electron and muon are distinguishable particles so can not be permuted

To solve the problem of electron-muon repulsion, think about the fact that the radius of
the muonic orbit in the 1s state of the muonic helium atom is small compared to that of
the electron (the mass of the muon is 138 times that of an electron). As a consequence,
the screening by the muon of the nuclear charge seen by the electron is nearly
complete, whereas the muon is hardly screened by the electron. From the muon'’s point
of view what would be the nuclear charge close to? From the electron’s point of view,
what would be the nuclear charge close to? On this basis, write down the Schrédinger
equation that approximately describes the system and find its solutions.

The muon sees a charge of Z.; = 2, whereas the electron sees a charge of Zex = 1.
Thus approximately, we have

{- (FP2MYV 2 - (112me)Ve? - 2€2fr, - 16%re} P(ry, 1) = E W(ry, re)

This is a separable problem, Let ¥(r,, re) = P(r )e'¥(ro)
(1){ - (212me)Ve> - 18%/rs } W(re) = Ec¥(re) with solutions that are hydrogen atom
functions Wn,m with Z=1. Ee are hydrogen atom energies -(1%/n%)(e?/2ay).

(2) {- (AP12M )V 2- 2€?/r, }¥(r,) = E,¥(r,) with solutions that are hydrogen atom

functions Wn,m with Z=2, and energies E,, = -(2°/n?)(e?/2a) except that the reduced mass
and therefore the a (not agl)in the functions and energy must use the correct reduced
mass (not mg) but a reduced mass taken from 1/Me nucleus +1/138Mme.

If we use perturbation theory, we can put back the part that was left out in the above
treatment. What do we need to use for h?

h =+ &%re., - 16%re




7. Some of the states of the Li; molecule are shown in the diagram below:
[from C. Linton et al., J. Mol.. Spectrosc. 175, 340 (1996)]
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i This paper is a study of the A state of Liy

From v=0 up to v=84 of the A state was
observed, exirapolation to v=109 {the
dissociation limit) was possible. X is the
ground state. There are other excited
states besides those shown in the

 figure, in particular there is a B'[T,, and
- a G'Iy. The A state dissociates to the

. atomic (25)°Sy, + (2p)°Py, states. The

energy difference between the Li atom

| states E[(2p)*P+4] - E[(25)°Sy] is known

- accurately as 14903.296792 cm™’. From
: the ground state v=0 to the dissociation

- limit of the A state is 23231.36 cm™.

From the ground state v=0 to the A v=0
is 13879.087 cm™. In this work, the
information from 84 vibrational levels in
the A state permits a very accurate
determination of the potential function
which is shown in the figure. |

(a) From the given data, it is possible to determine the dlssomatlon energy, Do, of the
ground state X. Find it, you may give your answer in units of cm™

23,231.36 — 14903.2968792 = 8328.06 cm™ = Dy of the ground state X

(b) From the given data, it is possible to determine the dissociation energy, Dy, of the
state A. Find it, you may give your answer in units of cm™.

23,231.36 — 13879.087 = 9352.273 cm’’

= Dy of the state A




(¢) From the electronic configuration of the atoms, use linear combinations of atomic
orhitals to discover the MOs that can be formed when they overlap with + or —
coefficients. Include all electrons. Draw the MOs (sketch contour plots or Jorgensen-
Salem orbital pictures) indicating signs of the wavefunction in the various regions.
Assign complete MO labels including the value of &, symmetry with respect to i
operation, bonding or antibonding.
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(See orbital pictures on previous page). Below is additional information showing how
electronic configurations using these molecular orbitals from part (c) lead to various
states.

Li(1s%2s) +L(1s%2s): 1s+1s— ogls;  1s-1s— o,*1s; 25425 0428
Thus, the 8-electron configuration is (o41s)%(cy*15)*(542s)° which gives rise to X state

Li(1s°2s) +L(1s°2p): 1s+1s— o4ls;  1s-1s—> o,*1s; 25+2pg—> 6g(25+2po)
2s8-2pg — oy*(2s-2pg)
(see 2s+2p.1 below)
Thus, the 6-electron conflguratlon is (cg1s) (cru*1s) (ogf — S=0,'T,"
or (cg1s) (ou*1s) (o )2 - 8=0, 3"
or (og1s(o.* 18 (og) (ou*)' — S=0or1,'S," %,

Li(1s°2s) +L(1s°2p):  1s+15— o4ls;  1s-1s— oy*1s; 25+2ps1— Ty
28-2p11—> "
Consider (,)*: B-electron configuration is (o418)%(0y*18)(my)?

A=+1-1= 0 and -1+1= 0 since identical atoms, equivalent orbitals, form linear combns:
[ (1)en (2) + m*(2)en (1)]  [{1)B(2)- a(2)B(1)}/2 — S=0, parity=+, that is, 1Zg+
[*(1)en (2) - T (2)en (1)] o[a(1) a(2)] etc. - S=1, parity=-, that is, *>

A=+1+1=+2 and -1-1=-2
[* (en*(2)] o [o(1)B(2)- c(2)p(1)JN2  and
[ (1en (2)] ® [a{1)B(2)- a(2)p(1))N2 —> both S=0, parity= +, that is, 'A

Other configurations: using g and o,* and =,

Consider (og)'(my)' A= 0+1=+1 and 0-1=-1, - u, 1, S=0 or 1, that is, "I1,,°IT,

Consider (o,*)'(m,)' A= 0#1=+1 and 0-1=-1, > g, I1, S=0 or 1, that is, 'I1;,°I1,

Recall from Herzberg Chap VI that there are three ways to find the term symbols for
states of a diatomic molecule: from the state of the united atom (which we skipped),
from the electronic configuration shown above on this page, and from the term symbols
of the atoms into which the diatomic molecule dissociates, shown in part (e) on the
following page. Just for fun, compare the results from the last two methods.




(d) Draw the correlation diagram that connects these orbitals, from separated atoms to
molecule 1o united atom. Label all orbitals completely

See correlations in orbital pictures on previous page. Below is how the united atom
state is found:

We make use of the principle that A is conserved in going from separate atoms to
diatomic molecule to united atom. Also, symmetry with respect to i (g or u) is conserved.

This means that for oy (m,;1=0, m;»=0) —oy — Munes=0 We use an energy-ordered

the correlations are: (1s+1s) -0 —1s list at both ends so as to
(25+2s) -0y — 28 connect corresponding
(2po*2py) —oog —3s ones. The united atom
(3s+3s) —0g — 3dp orbitals are those of
This means that for o, (MA=0, mz=0) —>o, — Muis=0 carbon.
the correlations are: (1s-1s) —>o," = 2po
(2s-2s) —a," — 3pe
(2po-2p0)  —out —4po
(3s-3s) -0y — 5pg
Similarly for m, : (my=1, mp=1) My —> Muniteq=11
(2pxt2px) M > 2px
Similarly for ng : (m,1=1, mp=1) —Tg  —> Myniteg=11
(2px-2px) -1y — 3dye
Li+Li >k, »C

{(e) From the electronic configuration and term symbols of the Li atoms into which the
given A state of Lip molecule is known to dissociate (given), determine all the possible
Li> molecular states that dissociate into these atomic states. One of them is the A state.
This example is the 2S, +2P, for like atoms different states, that | did in lecture.

Atom 1: 1s°2s: L1=0, S1= %, gives 28+1=2, Y;¢; =0 gives g  ..2S, is the atomic state

Atom 2: 1s22p: L=1, S4= %, gives 28+1=2, T:4; =1 givesu  ..?P, is the atomic state -

To make the molecular states find the A values that result from all possible
combinations of M1 and M.:

1=°8, |[2=P, |2, A symbol | parity goru Term
S 25+1 sign symbol
M =0, |[M_=0 |0, > like atoms, | "Y' %0 20T,
S=V2 S=la 5=0,1 | 28+1=1,3 gandu
ML =0, |M_=+1 |1 u like atoms, | "I1g,"1,,%11,,°TL,
S=% |S=l |S=0,1]2S8+1=1,3 gandu
L=0, L=1, sum =0+0+1+1=
Y4.=0 | T8, =1 even, + for all 2.

Although like atoms, they are in different states, so all terms are allowed: half of the g or
u set comes from 1=*Sy , 2=*P,, , and half comes from 1=?P,, 2=2S,. Of these term
symbols, one is the A state, and the B'I1, and G1Hg have been mentioned also. Since
the ground state is X1Z+g, then A must be singlet and u: 'Y, for electric dipole allowed
transitions.



8. (a) By photoelectron spectroscopy, XPES, or ESCA or variants thereof, a variety of
ionization energies are found for the atoms of a sample. In this analytical technique, the
sample is irradiated with high energy radiation and electrons are expelled. Some of the
energy of the incident radiation is carried off as kinetic energy of the expelled electrons.
The energy required to produce a particular ionization is equal to the energy of the
incident photon (hv) less the kinetic energy of the expelled electrons (exin). The pattern
of electron kinetic energies thus yields a display (spectrum) of the various ionization
energies of the atoms or molecules of a sample. Now, if we have a model of an atom,
such as Slater model, in which the energy of the atom for a given electronic
configuration can be written in terms of a sum over the one-electron-at-a-time (i.e.,
orbital) energies, then the measured ionization energies serve as measures of the
orbital energies. The ionization spectrum of argon is shown below:
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The orbital of the parent argon atom from which an electron has been expelled in each
case is shown as label within the frame. For each of the 5 frames write under each
frame the atomic term symbol for the Ar* ion formed. Write down the electronic
configuration of the ion that is produced for each peak and where two peaks occur in
a frame, provide an explanation. Why smaller splitting in 3p?

Electronic configuration Term Why two peaks?
of Ar* ion symbol
1s | 15'25°2p°3s°3p® °Sy,
2s | 1s°25'2p°3s°3p° Sy
2p | 15%2s%2p°35%3p°® P, L and S vectors couple with each
' zand other via the perturbation term ¢LeS
Paa since L#0 for the ion: L =1 and S=%,

glvmg rise to J=%2 and ¥/- ion states:
1/2 and 2P3;2

13s_| 15°25"2p°3s'3p° ‘S,
3p | 1s%2s°2p"3s3p° Py, same reason as 2p, except { is
and smaller since Z: for 3p is smaller than

Pz | for 2p and ¢ depends on Zeg'




(b) For each of the 5 frames how would one estimate [E(Ar") — E(Ar)]? Do one
example.

The easiest one to do is the loss of 3s or 3p. Using Slater's approximation,
s(3p or 3s) = 0.35x7 +0.85x8 +1.00x2 = 11.25 for the neutral atom

s(3p or 3s) = 0.35x6 +0.85x8 +1.00x2 = 10.9 for the Ar” ion

s(2s or 2p), s(1s) are unchan%ed for both neutral and ion

[E(Ar') — E(Ar)] = [-7(18-10.9)
Al the other terms, -2(18 -0.30) %12 -8(18 -0.35x7-0.85x2) /22 appear in both neutral
and ion and therefore subtract out in taking the difference.

132 - -8(18-11.25)%3%|(e?/2a,)=[-39.2+40.5] (€%/2ac)=17.7eV

(c) Below we see the molecular orbital energies of N, molecule can be related to its

photoelectron spéctrum [in which one electron is kicked off by a photon, leaving an ion;

various ionization energies are found, just as in atoms. The one-electron functions
(molecular orbitals) for N2 are shown on the right, in randomized order. Draw a fine
connecting the orbitals on the right to the peaks in the spectrum on the left.
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(d) Assign an MO designation (to each orbital on the right) to provide information
about its behavior upon the i operation, its angular momentum, and the atomic orbitals
that carry the largest coefficients in the linear combination that constitutes the function.




LONGER ANSWER to 2:
2. Apply the variational method to a particle of mass M in a box of one dimension with

V =0 for -1=x<1 and V = < elsewhere.
Use a trial function of the form Wy = 1 + c1x% + cox* .

Be sure that the trial function has the proper behavior at the edge of the box.
Show in detail how you would find the coefficients and the approximate energy Eyar.

Boundary conditions:
{(a) For the function to be quadratically integrable,
N2 Y1+ o + exMPdx = 1, we will find N later.
(b) Since W(x > +1) = 0 and ¥(x < -1) = 0, then, for the function to be continuous,
\Ptrial (X = j—_1) =0
1+c1+c=0 orca=-(1+¢y)
Wia =1+ e+ eoxt =1 + e +- (1 + ¢)x*

For a particle in a box of one dimension, a
H = pl2M + V(x) kinetic energy + potential energy

H = -(F2MYd%dx®) +0  for -1<x<1
[ LPm'al *H\P trialdx
E =2+

var

[l \Pm'al * lPﬁ’iaI dx :
HPia = -(FRMYAHYDA 1 + e + eox* ] = -(H2/2M) [ 2¢1 + 12¢2¢ |
[ @+ ax +e,5")20 +126,2)dx

Eoar = ~(F*12M) o
L (I+cx* +c,x* ) dx

L [2¢, +(12¢, +2¢)x* +(12¢,¢, + 2¢,¢)x* +12¢,°x°]dx

Eyar = ~(112M) o
L [+2¢x* +(c +2¢,)x* +2¢,0x° +c3x®dx

[[26,+(12¢, +2¢7)6* + 140,60 +12¢,’x"

Evar = -(A°12M)
L [1-+2¢,%% + (c] +2¢,)x* +2c,0,x° + S x* Jdx

bex + (126, +2¢7)% 13+ 14c,ex° 15 +12¢,"% 17

Evu = '(h2/2M) d 1
[x +2¢,x* 13+(c] +2¢,)x° 15+ 2¢,cx" 1 T+cix’ /9}i1

Ac, +(24c, +4¢)/3+28¢,c,/5+24¢,7 17
2+4c, /3+2(ct +2¢,)/5+4c,e 1 T+2¢319
Divide out the factor of 2 from numerator and denominator,

Evar = '(hZ/ZM) L]



2¢,+(12¢, +2¢)/3+14c,c, /5 +12¢,° 17
1+2¢,/3+(cl +2¢,)/5+2¢c,c,/ T+ 19

Evar = -(H12M) o

Apply the relation c;=- (1 + ¢1) '
2¢, —4—4¢ +2¢" 13—14¢,/5—14¢] /5+12¢] 1T+ 24¢, /T +1217
142¢,/3+¢2/5-2¢/5-2/5-2¢,17-2¢ 1T+ 19+2¢ /9+1/9

—6/7—48¢,/35~44¢ /105

32/45+64¢,/315+8¢ /315

Impose the condition that we want an upper bound to the energy eigenvalue,
that is, minimize Evae ©.  OFyo /0c; =0

0 = -(A%/2M) o

Eoar = ~(H*12M) o

Evar = ~(H°12M) o

(32/45+64c, [315+8c /315)[—48/35~ (88/105)c,]—(—6/7 —48¢, /35— 44¢,” /105)[64/315+(16/315)c, ]

(32/45+64c,/315+8¢? /315)

0 = (224+64c1+8¢4°)(-144-88c4) + (90+144c,+44c4°)(64+16¢1)

0 = (56+16¢1+2¢%)(-18-11¢q) + (45+72¢1+22¢%)(4+04)

0 =52c4° + 571¢c1 + 828

Solve for ¢1: We obtain two roots, ¢q = = -[571 £(392.195]/104

¢ =-9.26149 gives Ey = +23.9123 (5*/2M)

orcy =-1.719279  gives Ey. = - 0.599847(#%/2M)

E..r answer should be an upper bound to a positive (purely kinetic) energy !

Thus, the root ¢ = -1.719279 is unphysical and therefore unacceptable.

Therefore, we choose E,,. = +23.9123-(h212M), that is, ¢4 = -9.26149,

C2 = -(1+c4) = 8.26149

Wi = N(1 + cix2 + cox*)

Normalization: = N2 [4*1[1 + 2cix® +2¢4¢ %€ +{c12+ 2¢)x* + .28 dx = 1
= N2 [x+ 26133 +2¢4Co X /7 +(cr 2+ 2¢2)x°/5 + ¢2x%9] 1= 1
= N?{2 +4 c/3 +4ciCy /7 +2(c1%+ 205) /5 + 2¢5%/9) = 1

Apply ¢z = -(1+¢4),
= N2 {2 +4 ci/3 -4¢q/T -4c12 1T +2¢4%/5- 4ci/5 -4/5+ 2(1+2c+c4?) /9) = 1

1 = N?{2 -4/5+ 2/9 + [4/3 -4/7-4/5+4/9] c; + [-4/7+2/5+2/9] ¢4}

1 = N?{64/45 + (128/315) ¢4 +(16/315) c°}

1 = N?{64/45 + (128/315) ¢4 +(16/315) c4°} = N {28 + 8¢, +c42}16/315

¢y =-9.26149 gives 2.0156585N?=1; N =0.704355

With the normalization constant we could write directly

Evar = -(712M) oN? 2{-6/7 -48¢4/35 -44¢,4/105} = +23.9123 (#%2M) the same answer.

Using ¢4 =-9.26149, ¢z = -(1+c¢) = + 8.26149, N = 0.704355 we find

Wiia = N(1 + cix® + cx* ) = 0.704355 — 6.523 377 x* + 5.819 022 x*

~ This trial function has no nodes other than at the end points x=+1.

For the true eigenfunction of n=1 in a well of length 2 (-1<x<1), the eigenvalue is
E = 12222%(7%/2M) = +2.46741e(h%/2M).

We found an upper bound to this energy, Eyu = +23.9123o(h2/2M).



