Chemistry 543

Spring 1999 Final Exam
May 6, 1999 10:00 AM -1:00 PM

1. The laser excitation spectrum near the head of the (v' =0,v'" =4) band of the

X IZ; — A (0,") system of the Bi, molecule is shown below. [ J. Mol. Spectrosc.
194, 1-7 (1999)]. |
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FIG. 2. Laser excitation spectrum near the head of the (v/ = 0, v" = 4) band. Rotational levels are assigned to the P and R branch.

The bisniuth dimer is the heaviest stable diatom. The Franck-Condon factors for

the v* = 2-5 and v’ = 0-4 have been reported in this paper. Answer the following
questions:

Assign all the quantum numbers of the upper state and the lower state for the
transition corresponding to the first tall peak on the left side of the spectrum.
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Write down an equation that would be used in the analysis of the peak
frequencies in order to obtain the spectroscopic constants. You may use a
running number m = (J+1) for one branch and -J for the other branch.

Frequency  =E"-E" =Te + [V’ (V+%) -Vexe (ViHa)+...] - [Ve" (V'+5) -vere (V' +14) +...]

. + B/ (F+1)-B" I (J"+1) +... =vo+B/T J'+1)- B, J" (J"+1) +...
For the R branch, J' =J"+1: Frequency = VR =vo+ B,/(3"+1) (3"+2) - By I (3"'+1) +...
If as suggested, we let m = J'+1, then

W=vy+B/ m(m+1)-By (m-1)ym+.=vo+ B,/ + B/ Im+ (B, - B‘,"')m2 +...

For the P branch, J' = J’-1:  Frequency = v¥ = vo+ B,/(J"-1) J"" - B,” J",(J''+1) +...

As suggested, we let m =-J", then

VF = vo+B,/ (-m-1)(-m) - By (-m) (-m-2) +..= vo+ (B, + By )m + (B’ - B, )m’ +...

Answer: v=vo+ (B, + B,/ )m+ (B, - Bv")m2 +...

The vibrational and the rotational term values for the upper electronic state are
plotted below, using data from the present paper and previous work.
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Write down an equation tnat aescrioes the vibrational term values in terms of
the quantum number V'.

Answer: T,'=Te + [V (V'+15) -vex (V' +V5)+...]



Write down an equation that describes the rotational term values in terms of the
vibrational quantum number v'.

Answer: B, =B, - o' (v'+%2) +7 (v’+1/z)2+..

What spectroscopic constants can be obtained from the plot above? (First derive
the equation for the plot, then define what intercept =, slope= ). :

From the equation for energy given on the last page of the exam we find the equations describing

~ the plots shown. ]

One equation is: Ty'=Te + [ve' (v'+15) -vexe’(v’+‘/z)2+...]

From the plot we see that vex.' is negligibly small, since we find a straight line.

Therefore, T, + [Ve' (Y2) -vexe'(V4)*+...] = 17 806.8 cm™ (intercept) and slope = v.'= 132.38 cm™" .
which leads to T = UR.)-U(R.)" ~ 17 806.8 - (15)132.38 = 17 740.6 cm™"

The other equation is: By =B’ - o’ (V'+1%) + 1o’ (V'+¥5)*+..

From the plot we see that y' is negligibly small, since we find a straight line. Thus, we can get

o’ =-4.991x107° cm™! (slope) and from intercept = B’ - Yza,,', we get B, = 0.019666 cm ™" .

The intensity observed in emission is related to the Franck Condon factors. As
quoted from this 1999 paper,

647 [ S |
W = ( 31r )cvlﬂqlm'lRf1.( 2.,.:_ i)D(le') N'I"’ [2]

v = vibrational level of emitting state, A(0;)
w = vibrational level of ground state, X'% 7
observed LIF intensity for v — w emission band
@ur = [{(v|w}* = Franck-Condon factor for v — w emis-
sion band
v,, = frequency for v — w emission band
|R,|* = electronic transition dipole moment
S, = rotational linestrength .
D(v,,) = system spectral response (detectivity) as a function
of emission frequency
N, = concentration of emitting state, v
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There is an error in this formula. What is it?



As derived in class, the Einstein transition probability of spontaneous emission from state v to
lower state W is Ayw = (647 /30)Vine I Ry |2 , thus the intensity of a spectral line in emission is
Lw = Nyhevyy Ay = energy emitted per second. ,

Therefore the error in the formula is that it should have Vi DOE Vi (This error becomes
rectified in Eq. [3] from the paper.). See page 127 of Herzberg Vol. 1 which has

™ emission = (647"/3)cvvny NuZise| Ruiwc | ) - exp[-By'Y (F+ Dhe/kT]/Quo

where Qo in the high temperature limit is o kT/heB,’ where o is the symmetry number, that is 2
in the case of a homonuclear diatomic. ’ :

Give the formula for the rotational line strength S;.

™ emission = (641%/3)cvew* Nu(Zik | Ruiwic| ) - exp[-By'Y (" +1Dhe/KTY Qo

The population of the rotational state J' is Ny’ = (N,/Qro)(2)'+1) exp[-B,J' (J'+1)hc/kT] where N,/
is the number of emitting molecules.

ik | Ryiwk | 2) gives . ]-&lec | 2o | (v | W) ] 2o [ J l sinfcos¢, or cosH, or sinesinqll I' l z

By integrating over the rotor part, one obtains for AJ = +1, a factor J+1 and for AJ = -1, a factor J
and zero for . AJ = 0. Thus, the rotational line strength, Sy = ( J' ] sinBcos¢, or cosH, or
sinQsind | J'" |2=J41 or I’ which together give 2J'+1.

Give the formula for the concentration of emitting state, N,.

Ny = number of molecules in the emissive state v, depends on the quantum yield for
excitation, laser fluence, volume of excitation in the sample, etc.



Suppose you were asked to obtain q,,, from first principles, how would you do
it?

Quw = (V | w) = [y (v)yu(v'")d1. To obtain qyy from first principles, we need to do the
following:

1. Solve the Schrédinger equation for the electronic motion for several fixed values of nuclear
positions. The lowest eigenvalues at these values of R, taken together provide the potential
energy surface Uy, "'(R) for the ground electronic state X. The set of next lowest eigenvalues
together provide the PES U,/(R)for the first excited electronic state 4. The eigenfunctions are the
electronic eigenfunctions W' gecww and W' eecy respectively, which vary with internuclear |
separation. _

2. Solve numerically the one dimensional Schrédinger equation for the vibrational motion for
the ground electronic state :

(- 2wd’/dx’ + Uy (0} Yulv"") = BV u(v")

and for the excited electronic state

{(HE2Wd*/a + Uy (0} wo(v') = Ev)wu(v")

The eigenfunctions are the anharmonic vibrational wavefunctions.

3. Calculate the overlap integrals f\pv(v’)ww(v")dx. to get the Franck-Condon factors.

Show how | R, I 2 is obtained theoretically.

. 2 . ‘
To obtain | Re| theoretically, we calculate | I‘I-’”elec,w Welec ' elec,v dT l 2
where [eec = 2i€ i is summed over all the electronic z coordinates, and integration is over all
electron coordinates and where the electronic wavefunctions Y elecw and W' ¢ec v are functions of

internuclear separation. Thus, the purely electronic transition moment depends on the centroids
of the v'v" transitions.

The paper states that Ehret and Gerber have measured IR.|2= (1.410.4 Debye)’,
independent of internuclear separation. How could such a measurement be

made?

‘To obtain |R. |2 experimentally, we could measure spontaneous lifetim-es of the upper -sta’fe
dropping to the ground state or we could measure absolute intensities (quite dlfﬁchlt). Lifetimes
of rovibrational states excited by a pulsed laser (in this case, an argon ion laser will (?o) can be
measured by observing the exponential decay of the fluorescence using a delayed coincidence
method. The lifetimes in the limit of no collisions are related to the same molecular factors as
are the intensities: ; ,

(lifetime of v'}’ state) 1 = (64n*/3h) Tyep [Syy /Q2I+1)]q vvrov(VIT VT IR

All factors are calculable from the spectroscopic constants of the upper and lower states, )
including the Franck-Condon factors q v The surprising result in this case was that |Re|%=
(1.410.4 Debye)’, did not change with v'.’




To obtain the experimental Franck Condon factors, the usual calibration
procedures and forced normalization are carried out;

&f = ( v“") 4(D(va) | ]uw
Gu  \Vy D(vw))(z) ' 13}
The normalization |

2 G =1 [4],

These experimental values are shown as (---[J-+) in the figure below.

The Franck Condon factors were also computed from the potential energy surfaces
using the spectroscopic constants for the upper A state and the lower X state; from
the spectroscopic constants reported in this 1999 paper are shown as (- ~A— -)
and from slightly different set of reported spectroscopic constants are shown as
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Explain how potential energy surfaces may be computed from spectroscopic
constants.

To calculate the potential energy surfaces from spectroscopic constants we need to be able to
express the function Uy(R) in terms of B, Ve , VeX, , O, etc. The first step is to find R, from the
atomic masses and B, using the formula B, = #%/2puR.2. There are several possibilities:

(1) A gross approximation is to use a Morse function U = D.{1-exp(-ax)}>. The dissociation
energy D, can be obtained from a Birge-Sponer plot, and since [dZUMO,se/dxz]equﬂ = 2a2De, the
Morse parameter a can be obtained from v, =( 1/2n){[d2U/dx2]equﬂ u}*

(2) Klein and Rydberg have given a method for constructing the potential ctirve point for point
from the observed vibrational and rotational levels without assuming an analytical expression for
the potential function. This is the RKR method (Rydberg-Klein-Rees).

(3) Another method is to use the functional form used by Dunham, which is an expansion of U in
powers of (R-R.)/R.:

(4) Another method is to use a sum of Morse potentials with fitted parameters. The last 3
methods are commonly used in the literature.

Explain how Franck Condon factors may be computed from potential energy
surfaces.

‘Once the potential energy surfaces are known, solve numerically the one dimensional
Schrodinger equation for the vibrational motion for the ground electronic state, using the PES
U,"'(x) as the potential energy part of the Hamiltonian.
{72 d"dx* + U ()} yu(v") = BV Wyrul(v'")
and do the same for the excited electronic state
{HRLEIE + U/} wilv') = E(v)p(v)
The eigenfunctions of these Schrédinger equations are the anharmonic vibrational
wavefunctions. |
Calculate the overlap integrals Jy(v)yw(v'")dx. to get the Franck-Condon factor for each

~ (V'—>V") transition.
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For which vibrational quantum number V' in the upper state are the Franck
Condon factors that are plotted in the above figure? Explain the variation of
Qvrv versus V' in the figure by using schematic drawings of the two surfaces
and the transitions corresponding to the plotted FC factors. :

From the Franck-Condon factors we see 5 nodes, which indicates that the upper state is v '= 5.
Here the Franck Condon factors for the v/ = 0 to 29 trace out the shape of the upper anharmonic
I y(v) |2, made possible by the peak of the lower vibrational wavefunctions at v'’=0 occurring
at a value of R coinciding with the inner maximum of the upper anharmonic function located
close to the compressed oscillator classical turning point. On the other hand, the maxima at the
extreme expanded oscillator configuration of the vibrational functions of the next vibrational
levels v''= 1 through 29 are coinciding with various portions of the v '= 5.wavefunction, leading
to the pattern shown in page 5 of the exam. Schematically, the transitions are shown below:

- Z7Z-




2. The visible transitions of the AuCl molecule were observed at high resolution
for the first time [ J. Mol. Spectrosc. 194, 124-7 (1999)]. The excited AuCl
molecules were produced in a microwave discharge and the spectrum was
recorded with a Fourier Transform emission spectrometer. A portion of the

B(Q=0") = X '%." spectrum is shown in the figure below.
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FIG. 1. A portion of the 8 (}=0" ~X *%* spectrum of Au**CL The Au’Cl bandhead is marked with an asterisk.
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Explain the intensity patterns of the peaks observed.

Since this is a heteronuclear diatomic molecule, there can be no nuclear spin statistics that could
lead to alternation of intensities. Therefore the intensity pattern can only be due to two sets of
isotopes or else to two completely different bands which just happen to overlap. The hint is in
the figure caption. The molecule containing the more abundant *°Cl isotope shows -
consistently higher peaks than the *'Cl isotopomer. The corresponding peaks are offset due to
the vibrational frequencies being different for the two isotopomers, since V, =
(1/2n){[d2U/dx2]equﬂ / u}'/’. The Au*Cl isotopomer will have a higher observed frequency,

v =(T."-T.") + [G/' - Gy' ] + (Fy-Fy"), since the first term is independent of mass

and [G,' - G,"" ] is larger by a factor, [j37/p3s]”, which is larger than 1. In addition, there is an
effect on the rotational spacing, which is larger for the Au>>Cl, for both upper and lower state.
ks = 196.967(35)/(196.967+35) = 29.7 amu |



The spectroscopic constants for the X 'Y" state and the B(Q=0") state are shown in
the table below, all values are in cm™.

X'y B(Q=0")
To 0.0 19199.2549(14)
T, 380.7018(16) 19512.8711(15)
By 0.1171165(64) 0.1089616(64)
B, 0.1165734(66) 0.1082568(64)
Dy 0.4419(75)x1077 | 0.5424(73)x10~’
D, 0.4430(77)x1077 | 0.5542(74)x10”’

From an earlier observation of the 43 vibrational bands of this electronic

transition, the value of w.x, for X '>" and B(Q=0") states are known to be

respectively, 1.30 cm™ and 1.45 cm™.[Ferguson, Phys. Rev. 31, 969-72 (1928)}

Calculate ®. and 1. for the ground state. (For comparison, relativistic density

functional calculations by O. D. Hiberlen and N. Résch, Chem. Phys. Lett. 199,

491-6 (1992) give values that are 99.66% and 99.18% of the values reported in
. the 1999 paper.)

To = Te + [0+Y4]Ve - xeVe [0+44] + ...

T1= Te + [1+%]Ve - Xeve [1+%] + ...

Ty- To = Ve~ 2xeve = 380.7018 cm™ - 0.0 = v,- 2(1.30 cm™)
ve=383.30 cm™

By = Be - 0e[0+%4] = 0,1171165 cm™

B, = Be- at[1+%4] = 0.1165734 cm™ |
B;-Bo=5431x10% cm™'=-ae,  Be- ¥4(5.431x107* ) =0.1171165

B~0.11739cm™, R.=%{2pB.}*=21994A
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Calculate T, for the B(Q=0") state.

To = Te + [0+44.]Ve - Xeve [0+15.]7 + ... = 19199.2549

T1= Te + [1+%4.]Ve - Xeve [1+4.)F + .= 19512.8711

T)- To = Ve +- 2xeve = 313.617 cm™ = ve+-2(1.45 cm™)
ve=316.517 cm™

Te + [0+14.]316.517 - 1.45 [0+ + ... = 19199.2549

T. =19 041.358 cm™ above the v=0 level of the ground state.
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3. The emission spectra of the Asl molecule radical were measured in the near-
infrared spectral region with a Fourier transform spectrometer [J. Mol. Spectrosc.
194, 250-253 (1999)]. The most prominent features in the spectrum are the six
band sequences in the range 800-900 nm of the transition 5'Y* (50") — X°3~
(X,0"), shown in the figures below:
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FIG. 1. Survey spectrum of the 50* — X 10 transition of Asl at a spectral resolution of 0.5 cm™".
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IG. 2. Spectra of the Av = 0 and Av = —1 sequences of the b0 — X 0" system of Asl with assignments of the P-branch maxim

m”



13

Draw a schematic of the potential surfaces and draw the transitions in Fig. 2a
in the diagram. Be sure your drawing is consistent with everything in the figures
on the previous page (intensity patterns, frequency differences, narrow P branches
with sharp heads and broad R brances).

The important clues are the following: _

1. This is emission: (507) —(X;0"). That six long sequences of bands are observed
shows a rather hot vibrational population in the excited 50" state of AsI molecule.
2. The peak 0—0 has the greatest area under the peak (greatest intensity) followed
by viov"” =01, 152, 253, 252, ... in that order. This relative iﬁtensity
pattern is typical for a transition between states with very similar potential curves
and nearly equal equilibrium internuclear distances.

3. Sharp band heads are in the P branch in all bands, which means that B,’ > B,"
uniformly, therefore R./(50") < R."(X;0") although, as mentioned above these
distances are not hugely different from each other.

4. Narrow P branches and broad R branches mean that o, is significant, a large
value of o, makes the spacing closer together in the P and farther apart in the R
branch than for a rigid rotor.

b’
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The identification of the transitions and the assignment of the bands observed in
this paper is unambiguous. Therefore the spectroscopic constants derived
represent a first complete and reliable set of molecular constants for the low-lying
states of Asl. From the spectra shown in the figures, which spectroscopic
constants for which states would have been obtained and reported by the
authors?

The spectroscopic constants that would have been obtained are:
for the ground X;0" state Ve,  XeVe, YeVe @ °

For the excited 50" state T, Ve,  XeVe, VeVe

Identify the atomic states that are the dissociation limits of AsI molecule
radical.

Ground electronic configuration of As atom is [Ar]3d'%4s?4p*: ThlS is the same valence
configuration as N atom (see Problem 5) and this leads to states *S3, D5,r2 3 and P3/2 12
Hund’s rules dictate that the ground term is 1S3 .

Ground electronic configuration of I atom is [Kr]4d'%5s?5p°: This is the same as one hole in the p
shell which has the term symbol 2Py, 112:, of which the slightly lower energy is *P3; , since the p
shell is more than half filled. Thus the atomic states to which the ground state AsI molecule
dissociates into are *Ss;; and 2Py .
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Draw a schematic molecular orbital diagram for this molecule, identifying the
As and I orbitals involved in the bonding.

As mentioned in previous page,

As atom has electronic configuration [Ar]3d"°4s%4p°.

I atom has electronic configuration [Kr]4d'%5s*5p°. _ _

The valence orbitals have the most compatible energies, so 4p and 5p form a bond
which could have some s character (i.e., some characteristics of an sp hybrid for
each atom). So the lowest bonding molecular orbital would have a mixture of
4sps, 4pzas and Ssy, 5Sp;1, for example. The molecular orbital diagram would be as
follows

As atomic orbitals Asl molecular orbitals I atomic orbitals
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4. Transition metal atoms have relatively high abundances in many stars and
several transition metal hydrides and oxides have been detected. There is a strong
possibility that metal nitrides can also be found, but without precise spectroscopic
data, a meaningful search for these in the complex stellar spectra can not be made.
The high resolution emission spectrum of IrN has been recently investigated in the
10,000-20,000 cm™ region [ J. Mol. Spectrosc. 193, 363-375 (1999)]. In spite of
overlapping with strong N, bands present in the same region, the IrN rotational
lines were easily distinguished because of their narrow linewidths and the
relatively small separation between consecutive rotational lines in a branch. see
for example the expanded portion of the 1- 0 band of the 4 N1 > %'Y" system of
. IrN.

29 27 25

3N

|9lh,N
21 19 - “ll N

I“[l’N

JMMW

1603[ lﬂ}35 em?!

0]

P()

An expanded portion of the 1-0 band of the A'[I-X'E™* system of [{N with the lines of the '*'I:N and "IN i isotopomers marked.

Why is there a Q branch?

Because the upper electronic state has electronic angular momentum, which couples with the
rotational angular momentum and makes the AJ =0 transitions possible.

Why the Q branch overlapping the regions af the P branch? Which has the
larger rotational constant, the A ' or the X 'L state? Explain.
The frequencies of the Q branch lines are given by
VQ (J") = vy + (Bv’-BVH)J”(J”"“I)
The Q branch overlaps the regions of the P branch, i. ., the Q branch is shaded towards the

longer wavelengths, because of the less usual situation that (B,'-B,’") < 0. That is, the ground
state X'Y* has a larger rotational constant. :
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The molecular constants were determined by fitting the observed line positions
with the customary energy level expressions for '3 and 'TI states. Derive these
expressions for F(J) in the 3" case and add the required term for the 'T1 case.

Starting from the given formula on the last page of the exam, the rotational term values are given
by _

F (') = Ty +BJ" ("+1) -DJ"’ 0"+ b * for the ground ('X7) case
R = To+BJ ('+1)  -DJY Q'+DF +.. +{qV ('+1)} forthe 'II case
where the additional term reflects the electronic orbital angular momentum, q is a small number.
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The ground state X '3" of IrN arises from the electron configuration (10)? (o)
(1m)* (30)? (18)*, whereas the 4 'T1 state arises from the configuration (16)° (26)
(1mn)* (30)* (18)* (2m)', where only the atomic valence shells have been included.
Identify which of these molecular orbitals are the bonding, nonbonding, and
antibonding ones.
Here 30 and
13 are mainly the bonding and nonbonding orbitals, respec-
tively, and 27 is an antibonding orbital.
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5. Ab initio configuration interaction calculations have resulted in the
theoretically calculated potential energy curves of CuN [J. Mol. Spectrosc. 194, 8-

16 (1999)] shown below.
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Starting from the electronic configurations of the atoms, derive the atomic

states of Cu and N to which the CuN molecules dissociate. 2
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Starting from the atomic states of the separated atoms, derive the molecular
states of the CuN molecule that can result from these combinations.
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Startmg from the ground molecular electromc configuration, (15)* (20)* (1n)*
(18)* (21!:) (30) (4o)', where only the atomic valence shells have been included,
that is, N: (1s)* and Cu: (1s)? (2p)® (3s)* (3p)° are not included, derive the
molecular electronic states that can result.
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6. The 5 'Y," - X°% " red atmospheric system of the O, molecule is, despite its
small oscillator strength, of importance for light scattering and extinction studies
of the Earth’s atmosphere. For this reason this band system has been the subject of

many studies, the latest of which was the high resolution study of reported in [J.
Mol. Spectrosc. 193, 442-445 (1999)] . The bands of this system for the %0,
and the '®0, molecules are shown below.
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17 i5 ° 13 11 9 7 5 3

PQ
P
I

10.0 |-

absosption factor (102 cm™)

0.0 - N

171650 171800 172150 T 172400 172650 om”!

The molecular constants of the X 32 ¢ v =0 ground state are very accurately
known from previous work, these can be kept constant in the analysis to find the

molecular constants for the b 'Y,* state, Why is the oscillator strength so small
Sfor this band system?

BLCM mf (s A #ﬂM FN&M% e m

A4S =
e (Ml
Z+ >zt 7CN

-l %&QW
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Explam the meaning of the labels ’P and*Q in the P branches of '°0; and ¥R
and ®Q in the R branches of '°0, spectra shown.

The lower electronic state is °Y,,” has only N"’= odd rotational levels since '°0
nucleus is a boson, with nuclear spin = 0. The total wavefunction has to be
symmetric (does not change sign) with respect to interchange of any two bosons.
PAB LI”elec(?’Zg-).\I"vibr(R"Re).l]?rot N'"M" (9, ¢).\Pelec spin® T nuclear spin(AsB)

that is, (2)(=) e (+) o-HY o(+)}  e(ortho only) mustbe +
which can only be true if N"'= odd.

The upper electronic state is 'Y, has only N'= even rotational levels

since (g)(+) * (+) o-HY o(+)  e(ortho only) must be +
which can only be true if N'=even. Since there is only rotational angular
momentum in this upper state, J' =N’ .

The only combinations that are observable in this case,

since N""= odd only, and J"=N"+1, N, or N”-1 and N'= even only, J''= N’
are the following;:

notation superscript P,Q,orR '
means means
°P N =N" -1 F=J-1
PQ _ Nr =N" -1 J’ — Ju-
RQ Nf = Nn +I J’ — J”
R N'=N"+1 | J=J"+1

Provide the quantum numbers of the upper and lower state of the first marked
line (19) on the left side of the top spectrum

The notation for this line FQ(19): Since only odd N exist for the lower state this
number (19) must correspond to N”.

UPPER STATE LOWER STATE

N =18 N”=19  superscript P
=18 J'=18 Q branch
A'=0 A'=0 2

§'=0 S =1 'S and °T

vi=3 v'=0 given it is a (3,0) band



24

7. The cyanogen (NCCN) molecule is an important constituent of flames. For this
reason this molecule has been the subject of many studies, the latest of which was

the high resolution infrared spectra of various isotopomers of cyanogen reported in
[/. Mol. Spectrosc. 193, 183-194 (1999)] . The table summarizing the nuclear spin
statistical weights in this paper is reproduced below. Parity e is (+) and fis (<)

TABLE 1

Relative Nuclear Spin Statistical Weights for Cyanogen®

State Party  J “C,"N, "C,°N, "C,’N, "C,*N, -
g e Even 2 1 5 5
Odd 1 3 3 7
f Even 1 3 3 7
Odd 2 | 5 5
u € Even i 3 3 7
Odd 2 1 5 5
ra Even 2 1 S 5
Odd 1 3 3 7

“ For the non-centrosymmetric isotopomers there is no g-u
distinction and all rovibrational levels have the same nuclear spin

statistical weight.

Derive the entries for the BC,"N, isotopomer in this table, defining all the

symmetry terms used.

3C has spin 1/2, >N has spin 1/2. Both are fermions. The total wavefunction has
to be antisymmetric (must change sign) with respect to interchange of any two

fermions, therefore the total wavefunction has to be symmetric (must not change
sign) with respect to two such interchanges.

P AB PRS \Pelec(IZ;).\yvibr( goru parity &) or f(-)).‘Prot N'M" (8, (I))."Pelec spin.\Pl?;C(A:B)

that is, (2)(*) *(2)(e)

For spin 1/2 the nuclear spin states are para:

with statistical weights of 1 and 3

o(-1)"

ortho:

oVisn(R, S)
o(+)  ®(ortho or para)
o(ortho or para) =+

{a(A)B(B)- B(A)(B)}/N2
a(A) a(B)

B(A) B(B)
{a(A)B(B) + B(A)a(B)}/N2
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First table entry: -

(2)(1) o(g)(+) o(-1)"""e{(para)(para) or (ortho)(ortho)} in order to get + sign .
The statistical weight is {(1)(1) + (3)}(3)} = 10

The next table entry:

(g)(+) *(2)(+) 0(-1)°dd0{(para)(ortho) or (ortho)(para)} in order to get + sign .
The statistical weight is {(1)(3) + (3)(1)} =6

The next table entry:

(2)(+) *(g)(-) o(-1)"""e{(para)(ortho) or (ortho)(para)} in order to get + sign .
The statistical weight is {(1)(3)+ (3} (1)} =6

And so on. The statistical weight of 10 goes with the positive resiilt for the factors
(8)(+) o(g or u)(+ or -) o(-1)™"°% and the statistical weight of 6 goes with the
negative result for these factors. Therefore, the statistical weights should be
10,6,6,10,6,10,10,6 respectively from top to bottom for the column *C,"N, .
The table shows statistical weights of the same ratio: 5,3,3,5,3,5,5,3.

Given that the equilibrium bond length of the N-C bond is 1.157A and that for
the C-C bond is 1.380A , calculate the moments of inertia of the various
isotopomers given in the table.

120120 14y ‘
1.157 1.380 1.157 A center of mass is at the midpoint of the C-C bond.
I =Y mr? =2{14(1.157+0.690)% + 12(0.690)*}
To get the others, just use different masses for C and N isotopes. Center of mass
has to be shifted when the isotopomer does not have a center of symmetry.
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8. The (1 0°5)15 0 20d = (0 0°0) band of *C'%0, molecule has been reported in [/
Mol. Spectrosc. 193, 204-212 (1999)] . The figure below, taken from this paper
shows the intracavity laser spectrum taken of 200 Torr of gas in the cell under
conditions which gives an equivalent path leneth of 13.5 km.

c'o, R branch
02 gt

oo M] J-VUNLLUM ’M}‘m m

12410 12420 . 12430 12440 12450 12460
. ' Wavenumber (cm”)

Napicrian Absorbance (a 1)

The 1st or 2nd (subscript 1 or 2) notation refer to the first or second member of the
Fermi dyad that result from coupling of the nearly degenerate (1 0° 5) and the (0 2°
5) vibrational states. The Fermi dyad resulting from the near degeneracy of (1 0°
0) and (0 2°0) of '2C'®0, is the most well known case. Explain the notation used
JSor the upper combination state in the figure.

There are 3 frequencies, two of which are degenerate (the bending modes).

(10°5): \7% ) V3
Vi 1 _ V2a=O V3:5
v2b=0

0° means (V2a+v2,) =0 and /= 0.

Derive the expression for G, in this case.

Gv —Vie (V1+1/2)' (ere)ll (V1'|;1/.2)2 +...
Ve (Vatla)- (XeVe)ss (Vatha) +... -
HVae (Vaat Vap +1)- (XeVe)as [(Vaats) +H(Vap 1) (vt 2)(vVaptY2)] +...
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TABLE 7

Given the experimental numerical values in cm™ in Table 7 below ,

Observed and Calculated Wavenumbers (in cm™!) for the (1 0° 5),—0 0° 0) Band

of *C'%0, Centered at 12 341.058 cm™*

P(J) R())
J Obs. Obs.—-SP Obs.-GIP Obs. Obs.—SP Obs.-GIP
(cm™) (x 10'3cm")) (x107%cm™) (cm™) (x IO'BCm'U) (x 10'3cm'])
3 . 12344 546 0,7 238
6 12345.762 13 -26
8 12334.056 14 26 12346.831 -9 -52
10 12331.993 -20 -62 12347.819 -3 -49
12 12329.869 -4 -49 1‘2348.691 -3 -51
14 12327.614 -10 -58 12349.465 10 -42
16 12325.281 16 -35 12350.111 4 -50
18 12322.792 4 -59 12350.650 0.7 -56
20 12320.226 7 -49 12351.105* 23 -35
22 12317.519 -13 -71 12351.406 0.2 -57
24 12351.634 13 -42
26 12311.823 -11 -67 - 12351.713 -14 -66
28 12351.713 12 57

show how to determine G,, B,, D,.



VP (J")=vo-(B,/+B,/)J"+ (By-B,') "2 from which we can get

{VP (J") - Vo }/ J'= - (Bv’+Bv”)+ (Bv"Bv")J" |

We can plot {V' (J'") - v, 3/ J'"versus J'' to get a straight line.

In the table vy is given (12 341.058 cm™") and each one of the entries under the
column P(J) : Obs (cm™) is a value of v° (J”') for the corresponding J"'.

So we take (12 334.056-12 341.058)/8 cm™'and J =8 as one point,

and so on with the other points. :

From the straight line fit we get intercept = - (B,'+B,”)

and slope = (B,’-B,""), from which we obtain both B, and B,".

G,"" = 0.0 by definition, and

G, =vy,is given, =12 341.058 cm™ |
D, and D" are very small and can be obtained by multiparameter fitting of the
tabulated [J, P(J) ] values, that is, [J, V¥ (J '], to the equation

VI (") = vo - (By+BY )"+ (B,-B,")"? - (D,/-Dy)"? +2(Dy Dy
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9. The high resolution infrared study of the-vy4, V17, and vi5of 'B,H; and
B"BH, molecules has been reported in [J. Mol. Spectrosc. 191, 331-342 (1998)].
The figure below, taken from this paper shows the diborane molecule and the
symmetry species of the normal modes.

B

A(2)

Cw

FIG. 1. Model of the diborane molecule showing the position of the atoms
and the inertial axes.

 TABLE 1
D,,, Point Group for 1*B,H, and '°B,H,

¢l C&F ¢ i e, o, o

1 oy "
A P 1 1 1 1 1 1 1 1 V1,V9,¥3.Vy
A, 1 1 1 1 1 -1 -1 -1 AL
7P 1 1 -1 -1 1 1 -1 -1 R, v
By, 1 1 -1 -1 -1 -1 1 1 T, vigVITVig
By, 1 -1 -1 1 1 -1 -1 1 Ry vivpa
By, 1 -1 -1 1 11 1 -1 Ty vi3vg
By, 1 -1 1 -1 1 -1 1 -1 Ry vgvy
B3, 1 -1 1 -1 -1 1 -1 1 Ty vgvavyp

Derive these results, i.e., derive the irreducible representations of the normal
vibrations of the diborane molecule.
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We start with Cartesian displacement coordinates (represented by arrows) at each
atom in the molecule as the basis for a reducible representation that includes all
the 3N nuclear motions of the molecule (translation, rotation, vibration). We find
the characters yr(Ry) of this reducible representation, by observing the
contributions from the arrows on the atoms not shifted by the symmetry operations
of the point group Dy

F4 .
I C2 CZX Czy ) G, Yy ; yz O-x 'z

.. | 83) | 2(-1) 0 2(-1) 0 2(+1) | 4(+1) | 6(+1)
Then we find the irreducible representations that can be found in this reducible rep
by means of a similarity transformation, using

a/= (1/h) 2y x(Re) %r(Ry)
a(A4,) = (1/8)[24-2-2+2+4+6] = 4 _
a(4,) = (1/8)[24-2-2-2-4-6] =1
a(Big) = (1/8)[24-2+2+2-4-6] = 2
a(Br,) = (1/8)[24-2+2-2+4+6] =4
a(By,) = (1/8)[24+2-2-2-4+6] = 3
a(B3,) = (1/8)[24+2-2+2+4-6] =3
a(Bsg) = (1/8)[24+2+2-2+4-6] =3
a(Bs,) = (1/8)[24+2+2+2-4+6] =4
Fcart = 4Ag + Au +ZB]g +4B]u +3Bzg +3Bgu + 3B_:,'g +4Bgu
From the character table we get,
Dvans = By B2y +B3y

Iyt = Big +Bag +B3,
by difference,
rvib = 4Ag + Au +ng +3B;u +ZBzg +232,,, + Zng +3B3u
are the irrreducible representations of the normal vibrations of diborane molecule.




