1. INTRODUCTION TO QUANTUM MECHANICS2. ANGULAR MOMENTUM
2. THE HYDROGEN ATOM
3.1 Separation of Variables
3.2 Eigenfunctions of the Hamiltonian and Energy Levels of H atom

EXAMPLE: The hydrogen atom or hydrogen-like atom:
Two particles: N and

$$
H_{\text {total }}=\frac{-\hbar^{2}}{2 m_{a}} \nabla_{e}^{2}-\frac{\hbar^{2}}{2 m_{N}} \nabla_{N}^{2}-\frac{Z e^{2}}{r}
$$

where

$$
\nabla_{e}^{2} \equiv \frac{\partial^{2}}{\partial x_{e}^{2}}+\frac{\partial^{2}}{\partial y_{e}^{2}}+\frac{\partial^{2}}{\partial z_{e}^{2}}
$$

SEPARATION OF VARIABLES will be possible if we change into the center-of-mass and relative coordinates:

$$
x_{c m} M_{\text {total }}=x_{e} m_{e}+x_{N} m_{N}
$$

$$
Y_{C M} M_{\text {total }}=y_{e} m_{e}+y_{N} m_{N}
$$

$$
Z_{c m} M_{\text {total }}=z_{e} m_{e}+z_{N} m_{N}
$$

$$
\begin{aligned}
& x=x_{e}-x_{N} \\
& y=y_{e}-y_{N} \\
& z=z_{e}-z_{N}
\end{aligned}
$$

$$
M_{\text {total }}=m_{e}+m_{N}
$$

REDUCED
MASS μ in

$$
\frac{1}{u}=\frac{1}{m_{e}}+\frac{1}{m_{N}}
$$

Substitution in to H total leads to:

$$
H_{\text {total }}=\underbrace{\frac{-\hbar^{2}}{2 M_{\text {total }}} \nabla_{\text {om }}^{2}} \frac{-\hbar^{2}}{2 \mu} \nabla^{2}-\frac{Z e^{2}}{r}
$$

in coordinates of center in x, y, z coords of mass or r, θ, ϕ SEPARAB LE as follows:

$$
\begin{gathered}
\frac{-\hbar^{2}}{2 M_{t o t a l}}\left(\frac{\partial^{2}}{\partial X_{c m}^{2}}+\frac{\partial^{2}}{\partial Y_{c m}^{2}}+\frac{\partial^{2}}{\partial Z_{c m}^{2}}\right) G\left(X_{c m}, Y_{c m}, Z_{c m}\right)=E G \\
\left(\frac{-\hbar^{2}}{2 \mu} \nabla^{2}-\frac{Z_{e}^{2}}{r}\right) \Psi(r, \theta, \phi)=E \Psi(r, \theta, \phi) \\
E_{\text {transl al }}=E_{\text {transl }}+E
\end{gathered}
$$

The translational motion of the H atom is already solved (a particle in a threedimensional box) by SEPARATIOW of VARMALES:

$$
\begin{array}{r}
G\left(X_{c m}, Y_{C m}, Z_{C m}\right)=\sqrt{\frac{2}{L_{1}}} \sin \left(\frac{n_{x} \pi}{L_{1}} X_{L_{m}}\right) \cdot \sqrt{\frac{2}{L_{2}}} \sin \left(\frac{n_{y} \pi}{L_{2}} Y_{c m}\right) . \\
\sqrt{\frac{2}{L_{3}}} \sin \left(\frac{n_{2} \pi}{L_{3}} Z_{C m}\right)
\end{array}
$$

We now have to solve the motion of the election relate to the muclens of the hydrogen atom: "A PARTICLE IN A COWLDMB FIELD"

$$
\left(\frac{-\hbar^{2}}{2 \mu} \nabla^{2}-\frac{z e^{2}}{r}\right) \Psi(r, \theta, \phi)=E \Psi(r, \theta, \phi)
$$

In spherical polar coordriates

$$
\begin{aligned}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi \\
& z=r \cos \theta \\
& \nabla^{2}=\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \\
& \left\{\begin{array}{l}
-\frac{\hbar^{2}}{2 \mu} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r+\left(\frac{1}{3 u r^{2}}\right)-\underbrace{-\hbar^{2}\left\{\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right\}} \\
\left.-\frac{Z^{2}}{r}\right\} \Psi(r, \theta, \phi)=E \Psi(r, \theta, \phi)
\end{array}\right.
\end{aligned}
$$

that is,

$$
H_{o p}=-\frac{\hbar^{2}}{3 u}+\frac{\partial^{2}}{\partial r^{2}} r+\frac{\operatorname{lom}_{o p}^{2}}{3 u r^{2}}-\frac{Z e^{2}}{r}
$$

in which we see that $l_{o p}^{2}$ commutes with $H_{o p}$!

Since we already, know the ELGENFUNCTIONS of which satisfy the equation

$$
\ell_{o p}^{2} Y_{l m}(\theta, \phi)=l(l+1) \hbar^{2} Y_{l m}(\theta, \phi)
$$

then we can say that, except for a function of r, we already know the EIGENFUNCTIONS of Hop for a hydrogen atom, that is,

$$
H_{o p} \Psi(r, \theta, \phi)=E \Psi(r, \theta, \phi)
$$

where,

$$
\Psi(r, \theta, \phi)=\underbrace{R(r) \cdot Y_{l m}(\theta, \phi)}
$$

Substitute this $\overrightarrow{\text { product function into the }}$ Schrodinger equation and divide both sides by the product function:

$$
\frac{\left\{\frac{-\hbar^{2}}{2 \mu} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r+\frac{l(l+1) \hbar^{2}}{2 \mu r^{2}}-\frac{Z e^{2}}{r}\right\} P(r)}{R(r)}
$$

Like all the others, the solution of this egration requires imposing the condition that $R(r)$ be WELL-BEFAAVED, obviously important since r can have values $0 \rightarrow \infty$. WAVEFUNCTION is
Particle on a circle

$$
\frac{1}{\sqrt{2 \pi}} e^{i m \phi} \quad m=0, \pm 1, \pm 2, \ldots
$$

Particle on a sphere $\bigotimes_{l|m|}(\theta) \cdot \frac{1}{\sqrt{2 \pi}} e^{i m \phi}\left\{\begin{array}{l}l=0,1,2,3, \ldots \\ m=0, \pm 1, \pm 2, \cdots \pm l\end{array}\right.$
Hydrogen atom $\mathbb{R}_{n l}(r) \cdot \Theta(\theta) \cdot \frac{1}{\sqrt{2 \pi}} e^{i m \phi}\left\{\begin{array}{l}n=1,2,3, \cdots \\ l=0,1,2, \cdots n-1 \\ m=0, \pm, \pm 2, \cdots \pm l\end{array}\right.$
$\begin{aligned} & \text { (a particle in a } \\ & \text { Coulomb field) }\end{aligned}$

The R past, the greanturn number n, is relation to l

$$
\left.\left\{-\frac{\hbar^{2}}{2 \mu} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r\right)+\frac{l(1+1) \hbar^{2}}{2 \mu r^{2}}-\frac{Z e^{2}}{-E^{r}}\right\} R(r)=0
$$

Wee the transformation $\left\{\begin{array}{l}r=\text { in multiples }\rangle \frac{1+\hbar^{2}}{\hbar \Sigma^{2}}\end{array}\right.$
$\operatorname{let}\left\{E=\right.$ in multigles of $\frac{\hbar}{2 \pi a^{2}}$

$$
\rightarrow \frac{d g}{d r^{2}}+\left\{E+\frac{2 z}{r}-\frac{l(l+1)}{r^{2}}\right\} g=0
$$

Slue the $g(r)$ puotlem Find $R(r)$
a) Langer r to get asymptote solution:

$$
\frac{d^{2} g}{d r^{2}}+E g \Rightarrow 0
$$

Asymutrtiti $g \Rightarrow A e^{-\sqrt{-E^{2}} r}$

Centsolution is

$$
g=\underbrace{\text { Poly }(r)} e^{-\sqrt{-E} r}
$$

vans slowly
for E negative
(we want bound states) for $E>0$ we gat \approx "fec jaisick" call it $\mathbf{U}(r)$ at infinity

Let $\operatorname{Poly}(r)=U(r)$ so that $g(r)=U(r) \exp ^{-\sqrt{-E} r}$

$$
\begin{aligned}
& \frac{d^{2} g(r)}{d r^{2}}+\left\{E+\frac{2 Z}{r}-\frac{\ell(l+1)}{r^{2}}\right\} g(r)=0 \\
& \frac{d^{2} U(r)}{d r^{2}}-2 \sqrt{-E} \frac{d U}{d r}+\left[\frac{2 z}{r}-\frac{l(\ell+1)}{r^{2}}\right] u(r)=0
\end{aligned}
$$

Let the polynomial be written in the form

$$
\begin{aligned}
U(r)=r^{s} \sum_{N=0}^{\infty} C_{N} r^{N} & =C_{D} r^{s}+C_{1} r^{s+1}+C_{2} r^{s+2}+\cdots \\
& =\sum_{N=0}^{\infty} C_{N} r^{s+N}
\end{aligned}
$$

The first derivative:

$$
\begin{aligned}
\frac{d u(r)}{d r} & =s C_{0} r^{s-1}+(s+1) C_{1} r^{s}+C_{2}(s+2) r^{s+1}+\cdots \\
& =\sum_{N=0}^{\infty}(s+N) C_{N} r^{(s+N-1)}
\end{aligned}
$$

The record derivative:

$$
\begin{aligned}
\frac{d^{2} U(r)}{d r^{2}} & =s(s-1) C_{0} r^{s-2}+s(s+1) C_{1} r^{s-1}+(s+2)(s+1) C_{2} r_{+} \ldots \\
& =\sum_{N=0}^{s}(s+N)(s+N-1) C_{N} r^{(s+N-2)}
\end{aligned}
$$

Now gut the first ard second desivatures into the equation (see above)
Collect the terms in the same power of r :

$$
\begin{aligned}
& \text { The terms in the power } s+N-2: \\
& \begin{array}{l}
(s+N)(s+N-1) C_{N} r^{(s+N-2)}-2 \sqrt{-E}(s+N-1) C_{N-1} r \\
+2 Z \cdot C_{N-1} r^{(s+N-2)}- \\
\quad-l(l+1) C_{N} r^{(s+N-2)}
\end{array}=0
\end{aligned}
$$

$$
\begin{aligned}
& g(r)=U(r) \exp ^{--} \\
& \frac{d g}{d r}=\frac{d \mu}{d r} \exp ^{\sqrt{E}} \pm a(r) \sqrt{-E} \exp
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \frac{d y}{d r} \sqrt{-E} \exp \\
& \frac{d^{2} g}{d r^{2}}=\left[\frac{d^{2} u}{d r^{2}}-2 \sqrt{-E} \frac{d u}{d r}-E W(r)\right] \exp ^{-}
\end{aligned}
$$

f most general form of polynomial subst firstterm can be any power of r

$$
\begin{aligned}
& \frac{d^{2} g(r)}{d r^{2}}+\left\{E+\frac{2 z}{r}-\frac{\ell(l+1)}{r^{2}}\right\} g(r)=0 \\
& -\left[\frac{d^{2} U}{d r^{2}}-2 \sqrt{E} \frac{d u}{d r}-E U(r)\right] \text { exp }-\sqrt{-E} r \\
& \\
& +\left\{E+\frac{2 z}{r}-\frac{\ell(l+1)}{r^{2}}\right\} g(r)=0 \\
& \frac{d^{2} U}{d r^{2}}-2 \sqrt{-E} \frac{d u}{d r}+\left[\frac{2 z}{r}-\frac{l(l+1)}{r^{2}}\right] u(r)=0
\end{aligned}
$$

Regrouping the terms:

$$
\begin{aligned}
& {[(s+N)(s+N-1)-l(l+1)] C_{N} r^{(s+N-2)}} \\
& \quad+[2 Z-2 \sqrt{-E}(s+N-1)] C_{N-1} r^{(s+N-2)}=0 \\
& \therefore \quad C_{N}=\frac{[2 \sqrt{-E}(s+N-1)-2 Z]}{(s+N)(s+N-1)-l(l+1)} C_{N-1} \quad \begin{array}{l}
\text { recursion } \\
\text { relation! }
\end{array}
\end{aligned}
$$

In order to have an acceptable $g(r)$, must trieste the polynomial penis, i.e., There must be some N, call it $N_{\text {max }}$ for
which $C,=0$ which will make all which $C_{N_{\text {max }}}=0$ which will make for $C_{N_{\text {max }}+1 \text { (ar greaten) equal to zero via the }}$ recursion relation.
So let us find $N_{\text {max }}$ that will make $C_{N_{\text {max }}}=0$

$$
\begin{aligned}
& C_{N_{\text {max }}}=0=\frac{\left[2 \sqrt{E}\left(s+N_{\text {max }}-1\right)-2 Z\right]}{\left(s+N_{\max }\right)\left(s+N_{\text {max }}-1\right)-l(l+1)} C_{N_{\text {max }}} \\
& \therefore 2 \sqrt{-E}\left(s+N_{\text {max }}-1\right)=2 Z \\
& \text { or } E=\frac{-Z^{2}}{\left(s+N_{\text {max }}-1\right)^{2}}
\end{aligned}
$$

Note that we had pheviencly imposed $C_{-}=0$ ard $C_{0} \neq 0$ so that Ply (r) can be written as $r^{s} \sum_{N=0}^{\infty} C_{N} r^{N}$
What are the bounds on s?

$$
R=\frac{g(r)}{r}
$$

$\therefore g(r)$ should so to zero at lessor as fact as r os that $R(r)$ mil not blowing.
We fend $g(r)=\sum_{N=0}^{N_{\max }^{-1}} C_{N} r^{s+N} e^{-\sqrt{E} r}$
s can not be negative because this $\operatorname{mil}_{n} N=0$ give $R(r)=\frac{C_{0}}{r^{s+1}} e^{-\sqrt{E} r}$ which Glans up as $r \rightarrow 0$ scan not be zero because this mil gie $R(r)=\frac{C_{D} e^{-r}}{r}$ which side flans up as $r \rightarrow r$

$$
\therefore \quad s>0
$$

Apply the recursion relation to $N=0$

$$
\begin{aligned}
& C_{N}=\frac{[2 \sqrt{-E}(s+N-1)-2 Z]}{(s+N)(s+N-1)-l(l+1)} C_{N-1} \\
& C_{0}=\frac{2 \sqrt{-E}(s-1)-2 Z}{s(s-1)-l(l+1)} C_{-1}
\end{aligned}
$$

But we have imposed the condition that $C_{D} \neq 0$, that is, we seed to at least have the first term in our series expansion.
AlSo we know that we do not have a C_{-1} since N starts at $0,1,2$, etc.

How can bath be true that $C_{D} \neq 0$ but $C=0$??
Denominator must vanish!

$$
\begin{aligned}
\therefore \quad s(s-1) & =l(l+1) \\
\text { or } s & =l+1 \\
\therefore \quad E & =\frac{-Z^{2}}{\left(l+N_{\max }\right)^{2}}
\end{aligned}
$$

$N_{\text {max }} \geqslant 1$ inge call this integer
at least one term in $g(r)$
$n=l+N_{\text {max }} \geqslant 1$ because $l \geqslant 0$ from solons

$$
\begin{array}{rl}
0 \leqslant l \leqslant n-1 & l=0,1, \cdots n-1 \\
& n=1,2,3, \cdots
\end{array}
$$

$$
\begin{aligned}
& \therefore g(r)=r^{l+1}\left(\sum_{N=0}^{n-l-1} c_{N} r^{v}\right) e^{-\frac{z_{r}}{n}} \\
& \therefore R_{n l}(r)=r^{l}\left(\sum_{N=0}^{n-l-1} c_{N} r\right) e^{-\frac{z}{n}}
\end{aligned}
$$

where C_{N} can be found from the summary: recursion formula.

$$
\begin{aligned}
& \Psi(r, \theta, \phi)=R_{n e}(r) \cdot Y_{l n}(\theta, \phi) \quad \begin{array}{r}
r \text { in unit } \\
g a=\frac{\hbar^{2}}{\mu_{e}} \\
E=-\frac{z^{2}}{n^{2}} \text { in units } \& \frac{e^{2}}{2 a}
\end{array}, .
\end{aligned}
$$

where $n=1,2,3, \ldots$

$$
\begin{aligned}
& l=0,1,2,3, \cdots, n-1 \\
& m=0, \pm 1, \pm 2, \cdots \pm l
\end{aligned}
$$

1. INTRODUCTION TO QUANTUM MECHANICS
2. ANGULAR MOMENTUM
3. THE HYDROGEN ATOM
3.1 Separation of Variables
3.2 Eigenfunctions of the Hamiltonian and Energy Levels of \mathbf{H} atom

EIGGNFINCTIONS of the Hamiltonian for a Hydrogen-like atom: $\Psi(r, \theta, \phi)$

$$
\begin{gathered}
\left(\frac{-\hbar^{2}}{2 \mu} \nabla^{2}-\frac{Z e^{2}}{r}\right) \Psi(r, \theta, \phi)=E \Psi(r, \theta, \phi) \\
\Psi_{n \ell m}^{\prime \prime}(r, \theta, \phi)=R_{n \ell}(r) \cdot \Theta_{l / m 1}(\theta) \cdot \frac{1}{\sqrt{2 \pi}} e^{i m \phi}
\end{gathered}
$$

This function is called an "orbital", that is, a function which describes ONE ELECTRON under the influence of one (or more) nuclei.
n "principal" quanturn number $1,2,3, \ldots$
ℓ angular momentern quantum number

$$
0,1,2, \ldots n-1
$$

m magnetic quantum number

$$
0, \pm 1, \pm 2, \cdots \pm e
$$

Special names to denote functions with particular values of l
$l=0$ \& orbital
$l=1 \quad p$ orbital
$l=2 \quad$ d orbital
$l=3 \mathrm{f}$ orbital
$l=4 \quad g$ orbital
(alphabetical)
h ier.

$$
\psi_{100}(r, \theta, \phi)=\left(\frac{z^{3}}{\pi a_{0}^{3}}\right)^{\frac{1}{2}} e^{-\frac{z r}{a_{0}}}
$$

wavefunction

 function
 function

$$
\begin{aligned}
& \frac{4 \pi}{2 \pi} \int_{r=0}^{r=\infty} \psi^{*} \psi r^{2} d r=1 \\
& \int_{0}^{\pi} \sin \theta d \theta \cdot \int_{0}^{2 \pi} d \phi \\
& 2 \pi
\end{aligned}
$$

$$
\left.a_{0} \equiv \text { Bohr radnis } \equiv \frac{\hbar^{2}}{m e^{2}} \text { (or } \frac{4 \pi \epsilon_{0} \hbar^{2}}{m e^{2}} \text { in SI unito }\right)
$$

$\mu \approx m_{e}$ for maso oflectron

$$
a=\frac{\hbar^{2}}{\mu e^{2}} \quad \frac{1}{\mu}=\frac{1}{m_{\text {nuchens }}}+\frac{1}{m_{e}}
$$

$\rho=(2 Z / n a) r ; a=4 \pi \varepsilon_{0} h^{2} / \mu e^{2}$.
For an infinitely heavy nucleus $\mu=m_{e}$ and $a=a_{0}$, the Bohr radius.

Hydrogen radial wavefunctions.

$$
\ell=3
$$

$$
f_{x}\left(s^{2}-3 \rightarrow\right) \sim \cos \theta\left(5 \cos ^{2} \theta-3\right)
$$

$$
m=0
$$

Hydrogen-atom angular wave functions; $l=3$.

$$
f_{x}\left(5 x^{2}-\infty\right) \sim \sin \theta\left(5 \cos ^{2} \theta-1\right) \cos
$$

$f_{y\left(5 z^{2}-r^{2}\right) \sim \sin \theta\left(5 \cos ^{2} \theta-1\right) \sin \phi}$

Geometric details of hvdrogen-like orbifals

$$
f_{2 z y} \sim \sin ^{2} \theta \cos \theta \sin 2_{\phi}
$$

$$
f_{x\left(x^{2}-3 y^{2}\right)} \sim \sin ^{3} \theta\left(\cos ^{3} \phi-3 \sin ^{2} \phi \cos \phi\right)
$$

$$
f_{y\left(y^{2}-3 z^{2}\right)} \sim \sin ^{3} \theta\left(\sin ^{3} \phi-3 \sin \phi \cos ^{2} \theta\right)
$$

The energy levels of atomic hydrogen.

where

$$
\begin{aligned}
& a=\frac{\hbar^{2}}{\mu e^{2}} \quad \frac{1}{\mu}=\frac{1}{m_{e}}+\frac{1}{m_{N}} \\
& a_{0}=\frac{\hbar^{2}}{m_{e} e^{2}}
\end{aligned}
$$

(13. belectronvolto)

States of one-electron atoms

1. INTRODUCTION TO QUANTUM MECHANICS
2. ANGULAR MOMENTUM
3. THE HYDROGEN ATOM
4. MATRIX REPRESENTATION OF QUANTUM MECHANICS
4.1 Matrix Representation of an Operator
4.2 Matrix Representation of an Operator Equation
4.3 Solving the Matrix Equation that Represents the Operator Equation $\mathcal{H} \Psi=\mathrm{E} \Psi$

MATRICES IN QUANTUM MECHANICS

A MATRIX is an array of numbers which obey certain rules.

EQuAlity
ADDITION
MULTIPLICATION By a SCALAR
MATRIX MULTIPLICATION
In Quantern Mechanics these numbers are INTEGRALS.
THE ENTIRE ARRAY OF NUMBERS REPRESENTS A QUANTUM MECHANICAL OPERATOR
For example, consider the operator $F_{o p}$ and a complete set of functions $\{\phi\}$

$$
F_{32}=\int \phi_{3}^{*} F_{o p} \phi_{2} d \tau \quad \begin{gathered}
\text { is called a } \\
\text { "MATRIX ELEMENT" }
\end{gathered}
$$

ROW COLUMN
The MATRIX F is said to REPRESENT the OPERATBE FP uSING AS A BASIS the SET of FINCTIONS $\{申$ 妾

For example:
Suppose we have the operators

$$
I_{x} \quad I_{y} \quad I_{z}
$$

and the complete set of functions $\left.\begin{array}{l}\text { ORTHONORMAL } \\ \text { COMPLETE }\end{array} \alpha \beta\right\}$
(only two in
SUP ET the set?
Suppose also that there are recalled by the following equations:

$$
\begin{array}{ll}
I_{z} \alpha=\left(\frac{\hbar}{2}\right) \alpha & I_{z} \beta=\left(-\frac{\hbar}{2}\right) \beta \\
I_{x} \alpha=\left(\frac{\hbar}{2}\right) \beta & I_{x} \beta=\left(\frac{\hbar}{2}\right) \alpha \\
I_{y} \alpha=\left(+\frac{i \hbar}{2}\right) \beta & I_{y} \beta=\left(-\frac{\hbar}{2}\right) \alpha
\end{array}
$$

What are the MATRIX REPRESENTATIONS Of the OPERATDRS I_{x}, I_{y}, and I_{z} ?

$$
\begin{aligned}
& \mathbf{I}_{x}=\left[\begin{array}{ll}
\int \alpha^{*} I_{x} \alpha d \tau & \int \alpha^{*} I_{x} \beta d \tau \\
\int \beta^{*} I_{x} \alpha d \tau & \int \beta^{*} I_{x} \beta d \tau
\end{array}\right]=\left[\begin{array}{cc}
0 & \frac{\hbar}{2} \\
\frac{\hbar}{2} & 0
\end{array}\right] \\
& \mathbf{I}_{y}=\left[\begin{array}{ll}
\int \alpha^{*} I_{y} \alpha d \tau & \int \alpha^{*} I_{y} \beta d \tau \\
\int \beta^{*} I_{y} \alpha d \tau & \int \beta^{*} I_{y} \beta d \tau
\end{array}\right]=\left[\begin{array}{cc}
0 & -\frac{i \hbar}{2} \\
+\frac{i \hbar}{2} & 0
\end{array}\right] \\
& \mathbf{I}_{z}=\left[\begin{array}{ll}
\int \alpha^{*} I_{z} \alpha d \tau & \int \alpha^{*} I_{z} \beta d \tau \\
\int \beta^{*} I_{z} \alpha d \tau & \int \beta^{*} I_{z} \beta d \tau
\end{array}\right]=\left[\begin{array}{cc}
\frac{\hbar}{2} & 0 \\
0 & \frac{-\hbar}{2}
\end{array}\right]
\end{aligned}
$$

MATRIX REPRESENTATION means that THE OPERATORS AND THE MATRICES REPRESENTWG THEM OBEY TREE SAME RULES

1. MULTIPLICATION BY A scalar quantity:

$$
i I_{y}=\left[\begin{array}{cc}
i(0) & i\left(-\frac{\hbar}{2}\right) \\
i\left(\frac{+i \hbar}{2}\right) & i(0)
\end{array}\right]=\left[\begin{array}{cc}
0 & +\frac{\hbar}{2} \\
\frac{-\hbar}{2} & 0
\end{array}\right]
$$

ever er matrix elouzor Has To BE MUSTIPHED BY
THE SCHLAR THE SCHwA
2. ADDITION:

$$
\left.I_{x}+i I_{y}=\left[\begin{array}{cc}
0 & \frac{\hbar}{2} \\
\frac{\hbar}{2} & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & \frac{-\hbar}{2} \\
-\frac{\hbar}{2} & 0
\end{array}\right] \begin{array}{cc}
0 & \hbar \\
0 & 1
\end{array}\right]
$$

3. MATRIX MULTIPLICATION:

$$
\begin{aligned}
& I_{x} I_{y}=\left[\begin{array}{cc}
0 & \frac{\hbar}{2} \\
\frac{\hbar}{2} & 0
\end{array}\right]\left[\begin{array}{cc}
0 & -\frac{i \hbar}{2} \\
\frac{+i \hbar}{2} & 0
\end{array}\right]=? \\
& \quad(F G)_{0 \in}=\sum_{i} F_{\text {Di }} G_{\text {cow }} \\
& \text { row columns }
\end{aligned}
$$

FE
PRODUCT
4. EQUALITY: CORRETPONDIN MATRIX ELEMENTSAEF EQuAL.
$(F G)_{r c}$

$$
\text { of row } p
$$

$$
\text { and element } 1
$$

$$
\text { of column } \mathbb{C}
$$

MATRIX MULTIPLICATION IS NOT IN GENERAL COMMUTATIVE. just as

QUANTUM MECHANICAL OPERATORS DO NOT IN GENERAL COMMUTE.
FG is not always the same as GF
just as Fop $_{\text {op }} \Psi$ is not always the same as $G_{o p} F_{o p} \psi$

$$
\begin{aligned}
& \int \phi_{r}^{*} F_{o p} G_{o p} \phi \sigma_{G} d \tau=\int \phi_{r}^{*} F_{o p}\left(c_{1} \phi_{1}+c_{2} \phi_{2}+c_{3} \phi_{3}+\ldots\right) d r \\
& \text { a new function } \\
& \text { EXPAND IT } \\
& \text { in terms of the } \\
& \text { COMPLETE SET } \\
& G_{o p} \phi_{6}=c_{1} \phi_{1}+c_{2} \phi_{2}+c_{3} \phi_{3}+\cdots \\
& \int \phi_{1}^{*} G_{0 p} \phi_{c} d \tau=C_{1} \\
& =\int \alpha_{r}^{*} F_{o p} \phi_{1} d r \cdot \int \phi_{1}^{*} G_{o p} \phi_{\delta} d \tau \\
& +\int \phi_{\mu}^{*} F_{o p} \phi_{2} d \tau \cdot \int \phi_{2}^{*} G_{o p} \phi_{c} d \tau \\
& +\int \phi_{r}^{*} F_{0 p} \phi_{3} d r \cdot \int \phi_{3}^{*} G_{\phi \rho} \phi_{5} d r+\cdots
\end{aligned}
$$

Example: Does I_{x} commute with I_{y} ? operator: $\left[I_{x}, I_{y}\right]=I_{x} I_{y}-I_{y} I_{x}=$? Let ur see:

$$
\begin{aligned}
& I_{x} I_{y} \alpha=I_{x}\left(\frac{i \hbar}{2} \beta\right)=\frac{i \hbar}{2} I_{x} \beta=\frac{i \hbar}{2}\left(\frac{\hbar}{2} \alpha\right)=\frac{i \hbar^{2}}{4} \alpha \\
& I_{y} I_{x} \alpha=I_{y}\left(\frac{\hbar}{2} \beta\right)=\frac{\hbar}{2} I_{y} \beta=\frac{\hbar}{2}\left(-\frac{i \hbar}{2} \alpha\right)=\frac{-i \hbar^{2}}{4} \alpha \\
& \therefore\left(I_{x} I_{y}-I_{y} I_{x}\right) \alpha=\left\{\frac{i \hbar^{2}}{4}-\left(-\frac{i \hbar^{2}}{4}\right)\right\} \alpha=\frac{i \hbar^{2}}{2} \alpha \\
& \quad\left[I_{x} I_{y}\right]=i \hbar I_{z} \quad=i \hbar I_{z} \alpha
\end{aligned}
$$

MATRICES: $I_{x} I_{y}-I_{y} I_{x}=$?

$$
\begin{aligned}
I_{x} I_{y} & =\left[\begin{array}{cc}
-0 & \frac{\hbar}{2} \\
\frac{\hbar}{2} & 0
\end{array}\right]\left[\begin{array}{cc}
0 & -\frac{i \hbar}{2} \\
\frac{i \hbar}{2} & 0
\end{array}\right]=\left[\begin{array}{cc}
0.0+\frac{\hbar}{2}\left(\frac{i \hbar}{2}\right) & 0\left(-\frac{i \hbar}{2}\right)+\frac{\hbar}{2}(0) \\
\frac{\hbar}{2}(0)+0\left(\frac{\hbar \hbar}{2}\right) & \frac{\hbar}{2}\left(-\frac{-i \hbar}{2}\right)+0.0
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{i \hbar^{2}}{4} & 0 \\
0 & -\frac{i \hbar^{2}}{4}
\end{array}\right] \\
I_{y} I_{x} & =\left[\begin{array}{cc}
-0 & -\frac{i \hbar}{2} \\
\frac{i \hbar}{2} & 0
\end{array}\right]\left[\begin{array}{cc}
0 & \frac{\hbar}{2} \\
\frac{\hbar}{2} & 0
\end{array}\right]=\left[\begin{array}{cc}
0.0+\left(-\frac{i \hbar}{2}\right)\left(\frac{\hbar}{2}\right) & 0\left(\frac{\hbar}{2}\right)+\left(\frac{i \hbar}{2}\right) \cdot 0 \\
{\left[\frac{\hbar}{2}(0)+0\left(\frac{\hbar}{2}\right)\right.} & \frac{i \hbar}{2}\left(\frac{\hbar}{2}\right)+0.0
\end{array}\right] \\
& =\left[\begin{array}{cc}
-i \frac{\hbar^{2}}{4} & 0 \\
0 & \frac{i \hbar^{2}}{4}
\end{array}\right] \\
I_{x} I_{y} & =I_{y} I_{x}=\left[\begin{array}{cc}
\frac{i \hbar^{2}}{2} & 0 \\
0 & -\frac{i \hbar^{2}}{2}
\end{array}\right]=i \hbar\left[\begin{array}{cc}
\frac{\hbar}{2} & 0 \\
0 & -\frac{\hbar}{2}
\end{array}\right]=i \hbar I_{z}
\end{aligned}
$$

The operators I_{x}, I_{y}, I_{z} are represented by the Matrices I_{x}, I_{y} and I_{z}.

1. INTRODUCTION TO QUANTUM MECHANICS
2. ANGULAR MOMENTUM
3. THE HYDROGEN ATOM4. MATRIX REPRESENTATION OF QUANTUMMECHANICS
4.1 Matrix Representation of an Operator
4.2 Matrix Representation of an Operator Equation
4.3 Solving the Matrix Equation that Represents theOperator Equation $\mathcal{H} \Psi=\mathrm{E} \Psi$
matrix representation of state functions

$$
\Psi=c_{1} \phi_{1}+c_{2} \phi_{2}+c_{3} \phi_{3}+\cdots
$$

$\tau_{\text {NORMALIZE it, that is, }} c_{1}^{*} c_{1}+c_{2}^{*} c_{2}+c_{3}^{*} c_{3}+\cdots=1$
If the ORTHONORMAL COMPLETE SET OF FUNCTIONS $\{\phi \xi$ is used as the BASIS for the MATRIX REPRESENTATION OF OPERATORS, then the same set of functions can be used as the BASIS for the MATRIX REPRESENTATION of WAVEFUNCTIONS Ψ.
Repreaent Ψ by the ARRAY of NUMBERS:

$$
\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
\vdots \\
\vdots
\end{array}\right]
$$

Example: The EIGENFUNCTIONS of the operator I_{x} in MATRIX form
The functions which are the EIGENFUNCTIONS of I_{x} can be written as an ExpANSION in the ORTHONORMAL COMPLETE SET OF FINCTIONS which are the EIGENFUNCTIONS of I_{2}, that is, the functions α and β.
$\underset{\substack{\text { The } \\ \text { and } \\ \text { 日GENNC- }}}{ } \psi_{1}=\frac{1}{\sqrt{2}} \alpha+\frac{1}{\sqrt{2}} \beta \quad \psi_{2}=\frac{1}{\sqrt{2}} \alpha-\frac{1}{\sqrt{2}} \beta$ EGENFUNC-
Top ns of Let no see if these are correct: Ix

$$
\begin{aligned}
I_{x} \psi_{1} & =I_{x}\left(\frac{1}{\sqrt{2}} \alpha+\frac{1}{\sqrt{2}} \beta\right)=\frac{1}{\sqrt{2}}\left(I_{x} \alpha+I_{x} \beta\right) \\
& =\frac{1}{\sqrt{2}}\left(\frac{\hbar}{2} \beta+\frac{\hbar}{2} \alpha\right)=\frac{\hbar}{2}\left(\frac{1}{\sqrt{2}} \alpha+\frac{1}{\sqrt{2}} \beta\right)=\frac{\hbar}{1} \psi_{1}
\end{aligned}
$$

eigenvalue

$$
\begin{aligned}
I_{x} \Psi_{2} & =I_{x}\left(\frac{1}{\sqrt{2}} \alpha-\frac{1}{\sqrt{2}} \beta\right)=\frac{1}{\sqrt{2}}\left(I_{x} \alpha-I_{x} \beta\right) \\
& =\frac{1}{\sqrt{2}}\left(\frac{\hbar}{2} \beta-\frac{\hbar}{2} \alpha\right)=-\frac{\hbar}{2}\left(\frac{1}{\sqrt{2}} \alpha-\frac{1}{\sqrt{2}} \beta\right)=-\frac{\hbar}{2} \Psi_{2}
\end{aligned}
$$

elaenvalue

1. INTRODUCTION TO QUANTUM MECHANICS
2. ANGULAR MOMENTUM
3. THE HYDROGEN ATOM
4. MATRIX REPRESENTATION OF QUANTUMMECHANICS
4.1 Matrix Representation of an Operator
4.2 Matrix Representation of an Operator Equation
4.3 Solving the Matrix Equation that Represents theOperator Equation $\mathcal{H} \Psi=\mathbf{E} \Psi$

$$
\psi_{1}=\frac{1}{\sqrt{2}} \alpha+\frac{1}{\sqrt{2}} \beta \quad \psi_{2}=\frac{1}{\sqrt{2}} \alpha-\frac{1}{\sqrt{2}} \beta
$$

The MATRIX REPRESEUTATIDN OF ψ_{1} and ψ_{2} are

$$
\psi_{i s}\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] \quad \psi_{2} \text { is }\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right]
$$

The MATRIX REPRESENTATION of the equation

$$
I_{x} \psi_{1}=\frac{\hbar}{2} \psi_{1}
$$

is

$$
\begin{aligned}
{\left[\begin{array}{cc}
0 & \frac{\hbar}{2} \\
\frac{\hbar}{2} & 0
\end{array}\right]\left[\begin{array}{l}
\frac{11}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} 2
\end{array}\right] } & =\left[\begin{array}{l}
0\left(\frac{1}{\sqrt{2}}\right)+\frac{\hbar}{2}\left(\frac{1}{\sqrt{\sqrt{2}})}\right. \\
\frac{\hbar}{2}\left(\frac{1}{2}\right)+0\left(\frac{1}{\sqrt{2}}\right)
\end{array}\right]=\frac{\hbar}{2}\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] \\
I_{x} \Psi_{1} & =\frac{\hbar}{2} \Psi_{1}
\end{aligned}
$$

The mATRIX REPRESENTATION of the equation

$$
I_{x} \Psi_{2}=-\frac{\hbar}{2} \Psi_{2}
$$

is

$$
\begin{gathered}
{\left[\begin{array}{cc}
0 & \frac{\hbar}{2} \\
\frac{\hbar}{2} & 0
\end{array}\right]\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{l}
0\left(\frac{1}{\sqrt{2}}\right)+\frac{\hbar}{2}\left(-\frac{1}{\sqrt{2}}\right) \\
\frac{\hbar}{2}\left(\frac{1}{\sqrt{2}}\right)+D\left(-\frac{1}{\sqrt{2}}\right)
\end{array}\right]=-\frac{\hbar}{2}\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right]} \\
I_{x} \psi_{z}=-\frac{\hbar}{2} \psi_{2}
\end{gathered}
$$

IN GENERAA, for the OPERATOR FP whose EIGENFUNLTION is ψ, with EIGENVALUE a_{1} the differential equation is:

$$
{ }^{s_{O P}} \psi_{1}=a_{1} \psi_{1}
$$

the MATTEIX REPRESENTATION

$$
F \psi_{1}=a_{1} \psi_{1}
$$

reads as follows: (following the rules of MATPLD MILCTI-)

$$
\begin{aligned}
& \text { row 1- } F_{11} C_{1}+F_{12} c_{2}+F_{13} c_{3}+\cdots=a_{1} C_{1} \text { PLICATION } \\
& \text { rove } 2 F_{21} c_{1}+F_{22} c_{2}+F_{23} c_{3}+\cdots=a_{1} c_{2} \text { LOOK LN } \\
& \text { now } F_{31} c_{1}+F_{32} c_{2}+F_{33} c_{3}+\cdots=a_{1} c_{3} \text { LINUETANEDUS }
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\left(F_{11}-a_{1}\right) c_{1}+F_{12} c_{2}+F_{13} c_{3}+\cdots & =0 \\
F_{21} c_{1}+\left(F_{22}-a_{1}\right) c_{2}+F_{23} c_{3}+\cdots & =0 \\
F_{31} c_{1}+F_{32} c_{2}+\left(F_{33} a_{1)}+\cdots\right. & =0 \\
\vdots & \vdots
\end{array}\right\}
$$

From your algebra class,

$$
\left.\begin{array}{l}
b_{11} x+b_{12} y+b_{13} z=0 \\
b_{21} x+b_{22} y+b_{23} z=0 \\
b_{31} x+b_{32} y+b_{33} z=0
\end{array}\right\} \begin{aligned}
& \text { Solve for } \\
& x, y, z
\end{aligned}
$$

$x=0 \quad y=0 \quad z=0$ is a "TRIVIAL "solution
Any others? NON-TRIVIAL solutions can be found IF and ONCY IF

$$
\operatorname{det}\left|\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right|=0
$$

Similarly our simultaneous equations with unknowns $c_{1}, c_{2}, c_{3} \ldots$ and $^{a_{1}}$ has a solution other than $c_{1}=0, c_{2}=0, c_{3}=0, \ldots$ IF and ONLY IF

$$
\operatorname{det}\left|\begin{array}{ccccc}
F_{11}-0 & F_{12} & F_{13} & F_{14} & \cdots \\
F_{21} & F_{22}-9 & F_{23} & F_{24} & \cdots \\
F_{31} & F_{32} & F_{33}-a & F_{34} & \cdots
\end{array}\right|=0
$$

Example: The operator equation to be solved is $I_{x} \Psi_{1}=a, \psi_{1}$
Matrix representation is

$$
I_{x}=\left[\begin{array}{cc}
0 & \frac{\hbar}{2} \\
\frac{\hbar}{2} & 0
\end{array}\right] \quad \psi_{1}=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
$$

$$
\pi_{x} \psi_{1}=a_{1} \psi_{1}
$$

reads as follows:

$$
\begin{aligned}
& \left(I_{x}\right)_{11} c_{1}+\left(\frac{I}{x}\right)_{12} c_{2}=a_{1} c_{1} \\
& \left(I_{x}\right)_{21} c_{1}+\left(I_{x}\right)_{22} c_{2}=a_{1} c_{2}
\end{aligned}
$$

Rearranging we get,

$$
\left(\left(I_{x}\right)_{11}-a_{1}\right) c_{1}+\left(I_{x}\right)_{12} c_{2}=0
$$

$\left.\left(I_{x}\right)_{21} c_{1}+\left(\left(I_{x}\right)_{22}-a_{1}\right) c_{2}=0\right\}$ LINEAR Equations Unknowns C_{1}, C_{2}, a_{1}. Non-trivial solution exists if and only if the determinant

$$
\operatorname{det}\left|\begin{array}{cc}
0-a_{1} & \frac{\hbar}{2} \\
\frac{\hbar}{2} & 0-a_{1}
\end{array}\right|=0
$$

Evaluate the determuriant:

$$
\begin{gathered}
\left(0-a_{1}\right)\left(0-a_{1}\right)-\left(\frac{\hbar}{2}\right)\left(\frac{\hbar}{2}\right)=0 \text { or } a_{1}^{2}=\left(\frac{\hbar}{2}\right)^{2} \\
a_{1}=\frac{\hbar}{2} \text { ONE EIGENVALUE } \\
\text { OR }-\frac{\hbar}{2} \text { ALSO AN GTENVALE: }
\end{gathered}
$$

SOLVING THE MATRIX EQUATION THAT REPRESENTS THE OPERATOR EQUATION YIELDS ALL THE EIGENVALUES OF THE OPERATOR!!!

Evaluating the 2×2 DETERMINANT lead to a quadratic equation in the ELGENVALSES of the MATRIX representing the OPERATOR The ROOTS of the quadratic equation are the 2 values of the DEIGENVALNES of the OPERATOR
If it had been a 3×3 DETERMINANT, it would lead to a cubic equation':

$$
m E^{3}+m \underline{E}^{2}+m E+m=0
$$

which would have 3 ROOTS, which are the 3 EIGENUALUES of the OPERATOR
Let us 90 back to our example:
Once the values

$$
\begin{aligned}
& a_{1}=\hbar / 2 \\
& a_{2}=-\hbar / 2
\end{aligned}
$$

are found, we can put them back into the simultaneous linear equations:

$$
\begin{gathered}
\left(0-a_{1}\right) c_{1}+\frac{\hbar}{2} c_{2}=0 \\
\frac{\hbar}{2} c_{1}+\left(0-a_{0}\right) c_{2}=0
\end{gathered}
$$

in order to solve for c_{1} and c_{2}. Letusdoit:

$$
\begin{aligned}
& \text { For } a_{1}=\hbar / 2: \\
& \quad\left(0-\frac{\hbar}{2}\right) c_{1}+\frac{\hbar}{2} c_{2}=0
\end{aligned}
$$

or $c_{1}=c_{2}$ But we also know $c_{1}^{2}+c_{2}^{2}=1$

$$
\begin{aligned}
& \text { For } a_{2}=-\hbar / 2: \\
& \left(0-\frac{\hbar}{2}\right) c_{1}+\frac{\hbar}{2} c_{2}=0 \\
& \text { or } c_{1}=-c_{2}
\end{aligned}
$$

For $a_{1}=\frac{\hbar}{2}\left\{\psi_{1}=c_{1} \phi_{1}+c_{2} \phi_{2}\right.$
We found $c_{1}=c_{2}^{2}\left\{\begin{array}{l}\text { Normalization condition: } \\ \quad \psi^{*} \psi \text { dr }\end{array}\right.$

ϕ_{1} and ϕ_{2} are an ORTHONORMSL set of

$$
\psi_{1}=\frac{1}{\sqrt{2}} \phi_{1}+\frac{1}{\sqrt{2}} \phi_{2}
$$

$\psi_{1}=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]$ for $a_{1}=\frac{\hbar}{2}$ EIGENVALUE

$$
\text { For } a_{2}=\frac{-\hbar}{2}
$$

We found $c_{1}=-c_{2}$
Substitute this into

$$
c_{1}^{2}+c_{2}^{2}=1
$$

ω_{R} get

$$
\begin{gathered}
c_{1}^{2}+\left(-c_{1}\right)^{2}=1 \\
\text { or } c_{1}=\frac{1}{\sqrt{2}} \\
c_{2}=-c_{1}=-\frac{1}{\sqrt{2}} \\
\psi_{2}=\frac{1}{\sqrt{2}} \phi_{1}-\frac{1}{\sqrt{2}} \phi_{2} \text { EIGENFUNCTION } \\
\psi_{2}=\left[\frac{1}{\sqrt{2}}\left[-\frac{1}{\sqrt{2}}\right] \quad \text { for } a=-\frac{\hbar}{2}\right. \text { EIGENVALUE }
\end{gathered}
$$

ETGENVADME INTO THE LINER EQUATIONS YELD THE COREOSPONDINE EIGENFIUACTISAS

$$
\begin{aligned}
& \operatorname{det}\left|\begin{array}{lll}
D_{11} & D_{12} & D_{13} \\
D_{21} & D_{22} & D_{23} \\
D_{31} & D_{32} & D_{33}
\end{array}\right|=D_{11}\left|\begin{array}{ll}
D_{22} & D_{23} \\
D_{32} & D_{33}
\end{array}\right|-D_{12}\left|\begin{array}{ll}
D_{21} & D_{23} \\
D_{31} & D_{33}
\end{array}\right| \\
&+D_{13} \underbrace{\left|\begin{array}{lll}
D_{22} & D_{22} \\
D_{32} & D_{32}
\end{array}\right|}_{D_{21} D_{32}-D_{31} D_{22}}
\end{aligned}
$$

In general the problem

$$
H_{0} \psi_{\uparrow}=E \psi
$$

Given unknown!
can be represented by the matrix problem

$$
H \psi_{1}=E_{1} \psi_{1}
$$

a) Find a COMPLETE ORTHONORMAL SETOF functions $\phi_{1} \phi_{2} \phi_{3} \cdots \phi_{n}$
b) Determine the matrix H

$$
H=\left|\begin{array}{lllll}
H_{11} & H_{12} & H_{13} & \cdots & H_{12 n} \\
H_{21} & H_{22} & H_{23} & \cdots & H_{2 n} \\
\check{\dot{H}_{n 1}} & H_{n 2} & H_{n 3} & \cdots & H_{n n}
\end{array}\right| \begin{gathered}
\text { in which } \\
H_{r c}=\int_{\$_{1}} H_{g_{0}} \phi_{c}
\end{gathered} a_{c}
$$

c) The matrix equation is the same as a sect of n simultaneous lneias equations

$$
\begin{aligned}
& H_{11} c_{1}+H_{12} C_{2}+H_{13} c_{3}+\cdots+H_{1 n} c_{n}=E_{1} c_{1} \\
& H_{21} c_{1}+H_{22} c_{2}+H_{23} c_{3}+\cdots+H_{2 n} c_{n}=E_{1} C_{2} \\
& \dot{H_{n 1} c_{1}+H_{n 2} c_{2}+H_{n 3} c_{3}+\cdots+\dot{H}_{n n} c_{n}=E_{1} c_{n}}
\end{aligned}
$$

d) A nen-tricial solution exist if and only if

$$
\operatorname{det}\left|\begin{array}{lllll}
H_{11}-E & H_{12} & H_{13} & \cdots & H_{1 n} \\
H_{22} & H_{22} E & H_{23} & \cdots & H_{2 n} \\
H_{33} & H_{32} & H_{33}-E & \cdots & H_{3 n} \\
H_{n 1} & H_{n 2} & H_{n 3} & \cdots & H_{n n}-E
\end{array}\right|=0
$$

Which is an nth order polynomial equation in the unknown E. These will be n roots, that is n values of E, the EIGENVALNES of matrix H. These are also the Eigenvalues of the operator Hop.
e) For every EIGENVALNE E_{i} there exists an EIGENFNNCTION ψ_{i}

$$
\psi_{i}=c_{1} \phi_{1}+c_{2} \phi_{2}+c_{3} \phi_{3}+\cdots c_{n} \phi_{n}
$$

which can be found by substituting the eigenvalue E_{i} into the equations

$$
\begin{aligned}
& \text { use } \\
& n-1 \\
& \text { of } \\
& \text { of } \left.H_{11}-E_{1}\right) C_{1}+H_{12} C_{2}+H_{13} C_{3}+\cdots+H_{1 n} C_{n}=0 \\
& H_{21} C_{1}+\left(H_{22}-E_{1}\right) C_{2}+H_{23} C_{3}+\cdots+H_{2 n} C_{n}=0 \\
& H_{31} C_{1}+H_{32} C_{2}+\left(H_{33}-E_{1}\right) C_{3}+\cdots+H_{3 n} C_{n}=0 \\
& \vdots
\end{aligned}
$$

plus the NORMALIZATION condition:

$$
c_{1}^{2}+c_{2}^{2}+c_{3}^{3}+\cdots+c_{n}^{2}=1
$$

Solve for the unknowns $c_{1}, c_{2}, \cdots c_{n}$ Now put in the next eigenvalue E_{2} and solve for the $c_{1}, c_{2}, \cdots C_{n}$ for EGENFINCTION ψ_{2}, And So ON...
f.) There will be n EiGENVALUES $E_{1}, E_{2}, \cdots E_{n}$ and for each EIGENVALUE there will be an EIGENFINCTION

$$
\left.\begin{array}{rl}
\psi_{i} & =c_{i_{1}} \phi_{1}+c_{2 i} \phi_{2}+c_{31} \phi_{3}+\cdots+c_{n i} \phi_{n} \\
\psi_{i} & =\left[\begin{array}{l}
c_{i i} \\
c_{2 i} \\
c_{3 i} \\
c_{i}
\end{array}\right] \\
\vdots \\
c_{n i}
\end{array}\right] \quad .
$$

The ENTIRE COLLECTION of C values can be put side-by-side as follows:

$$
\psi_{1} \psi_{2} \cdots \psi_{n}
$$

g) The complete matrix equation is

$$
H C=C E
$$

where $E=\left[\begin{array}{cccccc}E_{1} & 0 & 0 & 0 & \cdots & 0 \\ 0 & E_{2} & 0 & 0 & \cdots & 0 \\ 0 & 0 & E_{3} & 0 & \cdots & 0 \\ 0 & 0 & 0 & E_{4} & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & E_{n}\end{array}\right]$

COMPUTERIRATION Of the ACOV PROCESS
h) The transformation of H into E requires finding the matrix C such that

$$
\mathbb{C}^{-1} H C=E
$$

is called the INVERSE of matrix \mathbb{C}, that is

$$
\boldsymbol{C}^{-1} \boldsymbol{C}=\boldsymbol{C} \boldsymbol{C}^{-1}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

The transformation is called a SIMILARITY TRANSFORMATION.
Computer algorithms exist that will do this to a given matrix H
and at the same time find the \mathbf{C} that accomplished the task:

$$
\begin{aligned}
& \left.\mathbb{C}=\left[\begin{array}{c}
c_{11} \\
c_{21} \\
c_{31} \\
\vdots \\
c_{n 1}
\end{array}\right]\left[\begin{array}{c}
c_{12} \\
c_{22} \\
c_{32} \\
c_{n 2}
\end{array}\right] \cdot\left[\begin{array}{c}
c_{1 n} \\
c_{2 n} \\
c_{3 n} \\
c_{3 n} \\
c_{n n}
\end{array}\right]\right\} \text { output } \\
& \psi_{1} \psi_{2} \ldots \psi_{n} \\
& \text { corresponding to } \\
& \text { EGENVALNES En }
\end{aligned}
$$

1. INTRODUCTION TO QUANTUM MECHANICS
2. ANGULAR MOMENTUM
3. THE HYDROGEN ATOM
4. MATRIX REPRESENTATION OF QUANTUMMECHANICS
4.1 Matrix Representation of an Operator
4.2 Matrix Representation of an Operator Equation
4.3 Solving the Matrix Equation that Represents theOperator Equation $\mathcal{H} \Psi=\mathrm{E} \Psi$
4.4 Matrix Representation of Spin AngularMomentum Operators
4.5 Solving $\mathcal{H} \Psi=\mathrm{E} \Psi$ for a Spin System, Comparison with NMR Experiments

EXAMPLE:
The spin portion of the hamiltonian for a hydrogen atorn in a magnetic field B is

$$
\begin{aligned}
H= & g_{e} \mu_{B} B S_{Z}+g_{N} \mu_{N} B I_{z}+A S \cdot I \\
& g_{e} \\
g_{N} & =2.0023 \\
\mu_{B} & =\text { Bohr magneton } \equiv e \hbar / 2 \mathrm{mc} \\
\mu_{N} & =\text { nuclear magneton } \equiv e \hbar / 2 m_{\text {proton }} \\
A & =1,4.20,405,751.786 \pm 0.010 \mathrm{Hertz}
\end{aligned}
$$

or in terms of wavelength: 21 cm
(The 21 cm line emitted by hydrogen atoms in outer space is the basis of radioastronom' y.)
Use MATRIX REPRESENTATIONS to SOlve

$$
H \Psi=E \Psi
$$

(1) First step: Find a convenient set of functions with which to set up the matrix representation, a COMPCETE ORTHOWAEMAL SET.
An easy choice is the set of eigenfunctions of the operator ($S_{z}+I_{z}$) since the above hamiltonian contaris these operators. The eigen functions of $\left(S_{z}+I_{z}\right)$ are

$$
\left.\begin{array}{l}
\psi_{1}=\alpha_{e} \alpha_{N} \\
\psi_{2}=\alpha_{e} \beta_{N} \\
\psi_{3}=\beta_{e} \alpha_{N} \\
\psi_{4}=\beta_{e} \beta_{N}
\end{array}\right\}
$$

There 4 functions form a COMPLETE ORTHONORMAL SET.
since we, already know that $I_{z} \alpha_{N}=\frac{\hbar}{2} \alpha_{N}$

$$
\begin{array}{ll}
S_{z} \alpha_{e}=\frac{\hbar}{2} \alpha_{e} \\
S_{z} \beta_{e}=-\frac{\hbar}{2}
\end{array} \quad I_{e} \quad \beta_{N}=-\frac{\hbar}{2} \beta_{N}
$$

(2) Second step: Simplify H, combine constants together, etc.
Let $\Delta_{e} \equiv g_{e} \mu_{B} B \quad \Delta_{N} \equiv g_{N} \mu_{N} B$

$$
\begin{aligned}
& H=\Delta_{e} S_{z_{z}}-\Delta_{3} I_{z}+A\left(S_{x} I_{x}+S_{y} I_{y}+S_{z} I_{z}\right)
\end{aligned}
$$

(3) Do one column at a time and it may help to do the matrix in two pieces

$$
H=H_{1}+H_{2}
$$

$$
\begin{aligned}
& H_{1}=\Delta_{e} S_{z}-\Delta_{N} I_{z}+A S_{z} I_{z} \\
& H_{2}=A S_{x} I_{x}+A S_{y} I_{y}
\end{aligned}
$$

then add the two pieces together

Let wo work
on this column
The numbers that 90 into the boxes are $\int \psi_{r}^{*}\left(\Delta_{e} S_{z}-\Delta_{N} I_{2}+A S_{Z} I_{z}\right) \psi_{l} d \tau_{e} d \tau_{N}$

$$
\begin{array}{r}
\int \psi_{r}^{*} \frac{\left(\Delta_{e} S_{z}-\Delta_{N} I_{2}+A S_{z} I_{z}\right)}{\text { OPERATE to get: }} \alpha_{e} \alpha_{N} d r_{e} d \tau_{N} \\
\frac{\Delta_{e} \frac{\hbar}{2} \alpha_{e} \alpha_{N}-\Delta_{N} \frac{\hbar}{2} \alpha_{e} \alpha_{N}+A \frac{\hbar}{2} \frac{\hbar}{2} \alpha_{e} \alpha_{N}}{\left(\Delta_{e} \frac{\hbar}{2}-\Delta_{N} \frac{\hbar}{2}+\frac{A \hbar}{4}\right) \frac{\alpha_{e} \alpha_{N}}{l}}
\end{array}
$$

THIS FUNCTION IS ORTHOGONAL TO ALL OF ψ_{r} EXCEPT FOR

$$
\psi_{1}=\alpha_{e} \alpha_{N}
$$

Therefore:

\rightarrow Now work on column 2:

SIMILARCY for columns 3×4

$$
\begin{aligned}
& \left(\Delta_{e}\left(-\frac{\hbar}{2}\right)-\Delta_{N}\left(\frac{\hbar}{2}\right)+A\left(-\frac{\hbar}{2}\right)\left(\frac{\hbar}{2}\right)\right) \\
& \left(\Delta_{e}\left(-\frac{\hbar}{2}\right)-\Delta_{N}\left(\frac{\hbar}{2}\right)+A\left(-\frac{\hbar}{2}\right)\left(-\frac{\hbar}{2}\right)\right)
\end{aligned}
$$

Now work on matrix H_{2} in the same way

Matrix elements in column 1 are:

$$
\underbrace{\left(\frac{A}{2}\right)\left(\frac{\hbar}{2}\right)+A\left(\frac{i \hbar}{2}\right)\left(\frac{i \hbar}{2}\right)}_{\text {Minis }}) \operatorname{Be}_{\text {zero }} \beta_{N} \beta_{N} d \tau_{e} d \tau_{N}
$$

survive, orthogonality but the number here happens to be zero
Note that this operator makes the following conversions;

$$
\begin{aligned}
& \psi_{1} \alpha_{e} \alpha_{N} \longrightarrow \beta_{e} \beta_{N} \psi_{4} \\
& \psi_{2} \alpha_{e} \beta_{N} \longrightarrow \beta_{e} \alpha_{N} \psi_{3} \\
& \psi_{3} \beta_{e} \alpha_{N} \longrightarrow \alpha_{e} \beta_{N} \psi_{2} \\
& \psi_{4} \beta_{e} \beta_{N} \longrightarrow \alpha_{e} \alpha_{N} \psi_{1}
\end{aligned}
$$

So the only non-zero elements can be 14 (but the constant happens to be zero) $23\}^{\text {the Constant }}$ is $32\} \quad A\left(\frac{\hbar}{2}\right)\left(\frac{\hbar}{2}\right){ }^{5}+A\left(\frac{i \hbar}{2}\right)\left(-\frac{i \hbar}{2}\right)=A \frac{\hbar^{2}}{2}$ 41 (the constant happens to be zero)

(Now add the matrices:
(5) Look for "BLOCKING" along the diagonal! $H \Psi=E \Psi$ rads as follows :

$$
H_{11} C_{1}+H_{12} C_{2}+H_{13} C_{3}+H_{14} C_{4}=E_{1} C_{1}
$$

$H_{11} C_{i}+0+0+0=E_{1} c_{1}$ This is
can be solved night away

$$
\text { as } \begin{gathered}
\left.\Delta_{e} \frac{\hbar}{2}-\Delta_{N} \frac{\hbar}{2}+A \frac{\hbar^{2}}{4}\right) c_{1}=E_{1} C_{1} \\
H_{11} \\
\text { one y } c_{1} \psi_{1} \text { is il }
\end{gathered}
$$

ones co 4 is involved!

The solution is

$$
\begin{aligned}
& \Psi_{ \pm}=\alpha_{c} \alpha_{N} \\
& E_{1}=H_{11} \text { itself }
\end{aligned}
$$

Chrome $c_{l}=1$ since

$$
\begin{aligned}
& \psi_{1}=\alpha_{2} \alpha_{N} \\
& \text { is already normalized }
\end{aligned}
$$

similarly

$$
\begin{aligned}
& H_{41} C_{1}+H_{42} C_{2}+H_{43} C_{3}+H_{44} C_{4}=E c_{4} \\
& 0+0+0+H_{44} c_{4}=E C_{4} \text { This is a, } \\
& \text { BLOCK! }
\end{aligned}
$$

The soluthori is

$$
\Psi_{4}=\beta_{e} \beta_{N}
$$

$E_{4}=H_{44}$ itself $=-\Delta_{e} \frac{\hbar}{2}+\Delta_{N} \frac{\hbar}{2}+A \frac{\hbar^{2}}{4}$
(6) Solve the SIMNLTANEOUS equations: And the $2 x_{2}$ BLOCK that is left is:

$$
\begin{aligned}
& H_{21} C_{1}+H_{22} C_{2}+H_{23} C_{3}+H_{24} C_{4}=E C_{2} \\
& H_{3} C_{1}+H_{32} C_{2}+H_{33} C_{3}+H_{34} C_{4}=E C_{3}
\end{aligned}
$$

seduces to

$$
\begin{aligned}
& 0+H_{22} c_{2}+H_{23} c_{3}+0=E c_{2} \\
& 0+H_{32} c_{2}+H_{33} c_{3}+0=E c_{3}
\end{aligned}
$$

which is easily solved by:

$$
\begin{aligned}
& \operatorname{det}\left|\begin{array}{ll}
H_{22}-E & H_{23} \\
H_{32} & H_{33} E
\end{array}\right|=0 \\
& \left(H_{22}-E\right)\left(H_{33}-E\right)-H_{32} H_{23}=0 \\
& E^{2}-\left(H_{22}+H_{33}\right) E-H_{32} H_{23}+H_{22} H_{33}=0
\end{aligned}
$$

The roots of the quadratic equation are:

$$
E_{ \pm}=\frac{\left(H_{22}+H_{33}\right) \pm \sqrt{\left(H_{22}+H_{33}\right)^{2}-4\left(H_{22} H_{33}-H_{32} H_{23}\right.}}{2}
$$

Substitute into the equation:

$$
\begin{array}{r}
\left(H_{22}-E_{1} C_{2}+H_{23} C_{3}=0\right. \\
\frac{C_{3}}{c_{2}}=\frac{H_{22}-H_{33} \mp \sqrt{ }}{2 H_{23}}
\end{array}
$$

Let us drop the t for awhile ard let $q \equiv \frac{1}{2} \Delta_{e}+\frac{1}{2} \Delta_{N}$
sothat $H_{22}=q-\frac{1}{4} A$

$$
\begin{aligned}
& H_{33}=-q-\frac{1}{4} A \\
& H_{23}=H_{32}=A / 2
\end{aligned}
$$

Then

$$
\begin{aligned}
& E_{ \pm}=-\frac{A}{4} \pm \frac{1}{2} \sqrt{4 q^{2}+A^{2}} \\
& \left(\frac{C_{3}}{C_{2}}\right)_{ \pm}=\frac{2 q \mp \sqrt{4 q^{2}+A^{2}}}{A}
\end{aligned}
$$

a) For zero magnetic fill $q=0$

$$
\begin{array}{cc}
E_{+}=\frac{1}{4} A & E_{-}=-\frac{3}{4} A \\
\left(\frac{C_{3}}{C_{2}}\right)_{+}=-1 & \left(\frac{C_{3}}{C_{2}}\right)_{-}+1 \\
\Psi_{+}=\frac{1}{\sqrt{2}} \beta_{e} \alpha_{N} \frac{1}{\sqrt{2}} \alpha_{e} \beta_{N} & \Psi_{-}=\frac{1}{\sqrt{2}} \beta_{e} \alpha_{N}+\frac{1}{\sqrt{2}} \alpha_{e} \beta_{N}
\end{array}
$$

$\alpha_{e} \alpha_{N} \beta_{e} \beta_{N} N_{\frac{1}{2}}\left(\beta e_{N} \alpha_{N} \alpha_{e} \beta_{N}\right)=\frac{1}{4} A$
$\Delta E=A$ The 21 con line

$$
E=-\frac{3}{4} A
$$ minitted and absorbed by

H atoms
b) For verystrong magnetic field $g \gg A$

$$
\begin{aligned}
& E_{+} \approx-\frac{A}{4}+q \quad E_{-} \approx-\frac{A}{4}-q \\
& \frac{c_{3}}{c_{2}} \approx 0 \quad \frac{c_{2}}{c_{3}} \approx 0 \\
& \Psi_{+} \approx \alpha_{e} \beta_{N} \text { tommy } \quad \Psi_{-} \approx \beta_{e} \alpha_{N}+\text { only } a \\
& \text { small admixture } \\
& \text { of Born } \\
& \text { smalladminture } \\
& \text { of } \alpha_{e} \beta_{N}
\end{aligned}
$$

c) For modest magnetic field

increasing magnetic field

1. INTRODUCTION TO QUANTUM MECHANICS
2. ANGULAR MOMENTUM
3. THE HYDROGEN ATOM
4. MATRIX REPRESENTATION OF QUANTUMMECHANICS
4.1 Matrix Representation of an Operator
4.2 Matrix Representation of an Operator Equation
4.3 Solving the Matrix Equation that Represents theOperator Equation $\mathcal{H} \Psi=\mathrm{E} \Psi$
4.4 Matrix Representation of Spin Angular Momentum Operators
4.5 Solving $\mathcal{H} \Psi=\mathbf{E} \Psi$ for a Spin System, Comparisonwith NMR Experiments
言
