- 1. INTRODUCTION TO QUANTUM MECHANICS
- 2. ANGULAR MOMENTUM
- 3. THE HYDROGEN ATOM
 - 3.1 Separation of Variables
 - 3.2 Eigenfunctions of the Hamiltonian and Energy Levels of H atom

EXAMPLE: The hydrogen atom or hydrogen-like atom:

Two particles: Name

$$H_{total} = -\frac{h^2}{2m_e} \nabla_e^2 - \frac{h^2}{2m_N} \nabla_N^2 - \frac{Ze^2}{r}$$

where
$$V_e^2 = \frac{\partial^2}{\partial x_e^2} + \frac{\partial^2}{\partial y_e^2} + \frac{\partial^2}{\partial z_e^2}$$

SEPARATION of VARIABLES will be possible if we change into the center-of-mass and relative coordinates:

$$X = X_e - X_N \qquad M_{total} = M_e + M_N$$

$$y = ye - yN$$

$$z = ze - zN$$
REDUCED
MASS U as in

Substitution into Hotal leads to: the me mn

$$H_{total} = -\frac{h^2}{2M_{total}} \sqrt{\frac{1}{2M}} - \frac{h^2}{2M} \sqrt{\frac{2}{r}} - \frac{Ze^2}{r}$$

$$\left(-\frac{\hbar^2}{3\mu}\nabla^2-\frac{2e^2}{r}\right)\Psi(r,\theta,\phi)=E\Psi(r,\theta,\phi)$$

The translational motion of the Hatom is already solved (a particle in a three-dimensional box) by SEPARATION OF VARIABLES:

G(Xcm, Ycn, Zcm)= 1/2, Sin(nxTT Xcm) · 1/2 Sin(nxTT Xcm).

[2] Sin(nxTT Zcm)

We now have to solve the motion of the

We now have to solve the motion of the electron relative to the nucleus of the hydrogen atom: "A PARTICLE IN A COULDMB FIELD"

 $\left(\frac{-h^2}{2\mu}\nabla^2-Ze^2\right)\Psi(r,\theta,\phi)=E\Psi(r,\theta,\phi)$

In spherical polar coordinates x = rsino coso

y = r sind sind

 $z = rcos \theta$

 $\nabla^2 = \frac{1}{r} \frac{\partial^2}{\partial r^2} r + \frac{1}{r^2 sin \theta} \frac{\partial}{\partial \theta} sin \theta \frac{\partial}{\partial \theta} + \frac{1}{r^2 sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$

{ -t^2 / d^2 r + (1 - t^2) - t^2 / sine de sine d + 1 d^2 }

 $-\frac{Ze^{2}}{r}Y(r,\theta,\phi)=E\Psi(r,\theta,\phi)$

that is, $\frac{2}{H_{op}} = \frac{\pi}{3u} + \frac{d^2}{dr^2} + \frac{l^2}{2ur^2} - \frac{Ze^2}{r}$ in which we see that l_{op} commutes with H_{op} !

Since we already know the EIGENFUNCTIONS of lop which satisfy the equation $l_{op} Y_{lm}(\theta, \phi) = l(l+1)t^2 Y_{lm}(\theta, \phi)$, then we can pay that, except for a function of r, we already know the EIGENFUNCTIONS of Hop for a hydrogen atom, that is, $H_{op}Y(r,\theta,\phi)=EY(r,\theta,\phi)$ where, $\Psi(\eta\theta,\phi) = R(\eta) \cdot Y_{lm}(\theta,\phi)$ Substitute this product function into the Schrödinger equation and divide both sides by the product function: - the tore + l(l+1)the - Ze2 P(r) Like all the others, the solution of this equation requires imposing the condition that RIr) be WELL-BEHAVED, obviously important since r can have values 0-WAVEFUNCTION IS WELL-BEHAVED IF Particle on a circle m=0,±1,±2,... $l = 0, 1, 2, 3, \cdots$ Particle on a sphere (0). Let m=0,±1,±2,000±1 $im\phi$ $n=1,2,3,\cdots$ Hydrogen atom R (r). (b). 1 e a particle in a l= 0,1,2,...n-1 (a particle in a m = 0,±1,±2,...±L Coulomb field)

The R part, the quantum number n, its relation to I $\int \frac{d^2}{2\mu} \int \frac{\partial^2}{\partial r^2} \left(r\right) + \frac{\left(\left(l+i\right)h^2\right)}{2\mu r^2} - \frac{Ze^2}{F} \right) R(r) = 0$ une the transformation $\int r = in multiples <math>\int_{\frac{\pi}{2}}^{a=\hbar^2} \frac{1}{\pi^2}$ let $E = in multiples <math>\int_{\frac{\pi}{2}}^{a=\hbar^2} \frac{1}{2\pi a^2}$ dig the g(r) problem

Solve the g(r) problem

Then can go back and find R(r)

a) Lange or to 8t asymptotic solution:

13a - $\frac{dq}{dr^2} + Eg \Rightarrow 0$ Asegniptatio g => A e -V-E'r for E regative (ine want bound states) POLE 20 bent Solution is we get g = Poly(r) e ≈ fue jarkely (Simoling varies slowly at infrity Call if U(r)

Let
$$Boly(r) = U(r)$$
 so that $g(r) = U(r) \exp \frac{r}{r}$ $\frac{d^2g(r)}{dr^2} + \left\{E + \frac{z^2}{r} - \frac{2l(l+1)}{r^2}\right\}g(r) = 0$

Let the polynomial be written in the form $U(r) = r^2 \sum_{N=0}^{\infty} C_N r^N = C_0 r^2 + C_1 r^2 + C_2 r^2 + \cdots$

$$= \sum_{N=0}^{\infty} C_N r^N = C_0 r^2 + C_1 r^2 + C_2 r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} C_N r^N + C_2 r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} C_N r^N + C_2 r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} C_N r^N + C_2 r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} C_N r^N + C_2 r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} C_N r^N + C_2 r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2 (s+2)r^2 + \cdots$$

$$= \sum_{N=0}^{\infty} (s+N)C_1 r^2 + C_2$$

dg = dly expler = tedu exp +u(r) (FE) exp dry = dry exp = tedu exp +u(r) (FE) exp+ FE r dry = dry exp = tedu exp +u(r) (FE) exp+ FE r dg = [du -z/Fedy + EUF) Jexp most general form of polynomial first term can be any power of r $\frac{d^{2}g(r)}{dr^{2}} + \int_{C} E + \frac{2Z}{r} - l(l+1) \int_{C} g(r) = 0$ $-\left[\frac{d^2u}{dr^2} - 2VE\right]dr - Euch \right] \exp \left[\frac{-VE}{dr}\right]$ $+ \left\{\frac{1}{V} + 2Z - 2(1+i)\right\} g(r) = 0$ $\frac{d^{2}U}{dr^{2}} - 2V - E \frac{du}{dr} + \left[\frac{2Z}{r} - l(l+1) \right] u(r) = 0$

Regrouping the terms: (S+N)(S+N-1) - l(l+1) CNr + | zZ -zY= (s+N-1)] CN-1 r :. $C_N = [ZV = (s+N-1) - 2Z]$ (s+N)(s+N-1) - l(l+1)recursion relation! In order to have an acceptable g(r),
must truncate the polynomial series i.e.,
there must be some N call it N max for
which $C_{Nmax} = 0$ which will make all Chmanti (ar greater) equal to zero via the Moursion relation. So let us find Nmax that will make (=0 Nmax) $C_{N_{max}} = 0 = [2/E(s+N_{max}^{-1})-2Z]$ (5+Nmap)(s+N-1)-l(l+1) max : 2/E(s+N_max) = 2Z OV E= -Z2 (5+Nmax)2 an integer an integer

Note that we had previously imposed C=0 and Co to so that Poly(r) can be written as rs Solver N what are the bounds on s? $R = \frac{g(r)}{r}$: g(r) should go to zero at least as fact as a so that R(r) mil not blowy. CN r e We found g(r) = s can not be negatine because this wil give Ren) = Co e VEr which blows up as r >0 scan not be zero Rin) = Coe The r this mil give which soll blows up as 1 78 s > 0

4

apply the recursion relation to N=0
$$C_{N} = \left[2\sqrt{+}E\left(s+N-1\right) - 27\right]$$

$$\overline{(s+N)(s+N-1)} - l(l+1)}$$

$$C_{N-1}$$

$$C_{N-1}$$

$$C_0 = 2\sqrt{-\epsilon} (s-1) - 2\sqrt{2}$$

$$s(s-1) - \ell(\ell+1)$$

But we have imposed the condition that Co \$0, that is, we need to at least have the first term in our series expansion.

Also we know that we do not have a C-, since N starts at 0, 1, 2, etc.

How can both be true that Cp to but C=0

Denominato must vanish!

$$5(S-1) = \ell(\ell+1)$$
or $S = \ell+1$

$$E = -\frac{Z^{L}}{(l + N_{max})^{2}}$$

Nmax 21 in order to have no call this integer at least one term in ger) $n = l + N_{max} > 1$ because l > 0 from Salv

$$0 \le \{ \le n-1 \} = 0, 1, \cdots n-1$$
 $n = 1, 2, 3, \cdots$

$$g(r) = r \left(\frac{n-l-1}{N-0} \right) e^{-\frac{2r}{n}}$$

$$R(r) = r \left(\frac{n-l-1}{N-0} \right) e^{-\frac{2r}{n}}$$

$$N=0$$

recursion formula.

$$P(r,\phi,\phi) = R_{ne}(r) \cdot \begin{cases} \gamma(\phi,\phi) & r \text{ in units} \\ ga = \frac{\pi^2}{n^2} \end{cases}$$

$$E = -\frac{2^2}{n^2} \text{ in units} \quad g = \frac{e^2}{2a}$$

where $n = 1, 2, 3, \cdots$ $l = 0, 1, 2, 3, \cdots, n-1$ $m = 0, \pm 1, \pm 2, \cdots \pm l$

- 1. INTRODUCTION TO QUANTUM MECHANICS
- 2. ANGULAR MOMENTUM
- 3. THE HYDROGEN ATOM
 - 3.1 Separation of Variables
 - 3.2 Eigenfunctions of the Hamiltonian and Energy Levels of H atom

EIGENFUNCTIONS of the Hamiltonian for a Hydrogen-like atom: $\Psi(r, \theta, \phi)$

$$\left(\frac{-\hbar^{2}}{2\mu}\nabla^{2} - \frac{Ze^{2}}{r}\right)\Psi(r,\theta,\phi) = E\Psi(r,\theta,\phi)$$

$$\Psi(r,\theta,\phi) = R_{n\ell}(r)\cdot\Theta(\theta)\cdot\underline{I}_{emp}$$
where $I_{n\ell m}$

This function is called an "orbital", that is, a function which describes ONE ELECTRON under the influence of one (or more) nuclei.

n "principal" quantum number 1, 2,3, ...

e angular momentum quantum number 0,1,2,...n-1

m magnetic quantum number $0, \pm 1, \pm 2, \dots \pm l$

Special names to denote functions with particular values of l

$$l=0$$
 4 orbital
 $l=1$ p orbital
 $l=2$ d orbital
 $l=3$ f orbital
 $l=4$ g orbital
(alphabetical)
h, i etc.

$$\psi_{100}(r,\theta,\phi) = \left(\frac{Z^3}{\pi a_0^3}\right)^{\frac{1}{2}} e^{-\frac{Zr}{a_0}}$$

wavefunction

probability density function

ψ₁²(r)

41Tr² 4 * 4 "radial distribution" function

$$\frac{4\pi}{4\pi} \int_{v=0}^{\pi} \frac{4\pi}{v^2} dv = 1$$

$$\int_{0}^{2\pi} \sin\theta d\theta \cdot \int_{0}^{2\pi} d\phi$$

$$\frac{2\pi}{2\pi} \int_{0}^{2\pi} \sin\theta d\theta \cdot \int_{0}^{2\pi} d\phi$$

$$Q_0 \equiv Bohr radnis \equiv \frac{\hbar^2}{me^2}$$
 (or $\frac{4\pi E_0 \hbar^2}{me^2}$ in SI units)

 $u \approx m_e$ for an infinitely heavy nucleus

 $a = \frac{\hbar^2}{me^2}$ $\frac{1}{me^2}$ $\frac{1}{me}$ $\frac{$

 $\rho = (2Z/na)r; \ a = 4\pi\epsilon_0\hbar^2/\mu e^2.$

For an infinitely heavy nucleus $\mu = m_e$ and $a = a_0$, the Bohr radius.

rla

6

Hydrogen radial wavefunctions.

Hydrogen-atom angular wave functions; l = 2.

functions

l=3

 $f_{z(5e^2-3r^3)}\sim\cos\theta\ (5\cos^2\theta-3)$

m=0

" $f_{(5z^2-3r^2)z}$

Hydrogen-atom angular wave functions; l = 3.

 $f_{x(5s^2-r^3)} \sim \sin \theta \ (5 \cos^2 \theta - 1) \cos \phi$

 $f_{y(5x^2-r^2)}\sim\sin\theta\ (5\cos^2\theta-1)\sin\phi$

 $f_{z(x^2-y^2)} \sim \sin^2\theta \cos\theta \cos 2\phi$

Geometric details of hydrogen-like orbitals

 $f_{zzy} \sim \sin^2 \theta \cos \theta \sin 2\phi$

 $f_{x(x^2-3y^2)}\sim\sin^3\theta\ (\cos^3\phi-3\sin^2\phi\cos\phi)$

 $f_{y(y^3-3x^2)}\sim \sin^3\theta \ (\sin^3\phi - 3\sin\phi \cos^2\theta)$

The energy levels of atomic hydrogen.

$$E_n = -\frac{Z^2}{n^2} \left(\frac{e^2}{2a} \right)$$

where
$$a = \frac{\pi^2}{ue^2} \quad u = \frac{1}{m_e} + \frac{1}{m_N}$$

$$a_0 = \frac{\pi^2}{m_e} = \frac{\pi^2}{m_e}$$

5

States of one-electron atoms

n	l	m	Spectroscopic designation	E_n in units of $e^2/2a_0$	g	$\psi_{n.l.m}(r,\theta,\phi)$
1	. 0	0	18	-1	1	$N_1 \exp \left(-Zr/a_0\right)$
2	0	0	28	−‡		$N_2(2 - Zr/a_0) \exp(-Zr/2a_0)$
2	1	0	$2p_*$	-1	4	$N_2(Zr/a_0) \exp(-Zr/2a_0) \cos \theta$
2	1	1, cos	$2p_x$	-1	4	$N_2(Zr/a_0) \exp(-Zr/2a_0) \sin \theta \cos \phi$
2	• 1	1, sin	$2p_y$	-1		$N_2(Zr/a_0) \exp(-Zr/2a_0) \sin \theta \sin \phi$
3	0	0	38	-1		$N_{s}[27 - 18(Zr/a_{0}) + 2(Zr/a_{0})^{2}] \exp(-Zr/3a_{0})$
3	1	0	$3p_{*}$			$N_3\sqrt{6} (6 - Zr/a_0)(Zr/a_0) \exp(-Zr/3a_0) \cos \theta$
3	1	1, cos	$3p_x$	— 1		$N_{3}\sqrt{6} (6 - Zr/a_{0})(Zr/a_{0}) \exp(-Zr/3a_{0}) \sin \theta \cos \phi$
3	1	1, sin	$3p_{v}$	-1	9	$N_{3}\sqrt{6} (6 - Zr/a_{0})(Zr/a_{0}) \exp(-Zr/3a_{0}) \sin \theta \cos \phi$
3	2	0	$3d_{3s^2-r^3}$	- 1	•	$N_{\rm a}\sqrt{1/2}(Zr/a_0)^2\exp{(-Zr/3a_0)(3\cos^2{\theta}-1)}$
3	2	1, cos	$3d_{sx}$	8		$N_2\sqrt{6}(Zr/a_0)^2 \exp(-Zr/3a_0) \sin\theta \cos\theta \cos\phi$
3	2	1, sin	$3d_{sy}$	-1		$N_2\sqrt{6}(Zr/a_0)^2 \exp(-Zr/3a_0) \sin\theta \cos\theta \sin\phi$
3	2	2 , cos	$3d_{x^1-y^1}$	− ‡		$N_{s}\sqrt{3/2}(Zr/a_{0})^{2}\exp(-Zr/3a_{0})\sin^{2}\theta\cos2\phi$
3	2	2 , sin	$3d_{xy}$	- 1		$N_{2}\sqrt{3/2}(Zr/a_{0})^{2} \exp(-Zr/3a_{0}) \sin^{2}\theta \sin 2\phi$
			$N_1 = \left(\frac{Z^3}{2}\right)^{1/2}$	$N_{\bullet} = \frac{1}{2}$	$(Z^3)^{1/2}$	$N_1 = \frac{1}{2} \left(\frac{Z^2}{2} \right)^{1/2}$

$$N_1 = \left(\frac{Z^3}{\pi a_0^3}\right)^{1/2}, \qquad N_2 = \frac{1}{4} \left(\frac{Z^3}{2\pi a_0^3}\right)^{1/2}, \qquad N_3 = \frac{1}{81} \left(\frac{Z^3}{3\pi a_0^3}\right)^{1/2}$$

- 1. INTRODUCTION TO QUANTUM MECHANICS
- 2. ANGULAR MOMENTUM
- 3. THE HYDROGEN ATOM
- 4. MATRIX REPRESENTATION OF QUANTUM MECHANICS
 - 4.1 Matrix Representation of an Operator
 - 4.2 Matrix Representation of an Operator Equation
 - 4.3 Solving the Matrix Equation that Represents the Operator Equation $\mathcal{H}\Psi = E\Psi$

	3-dimensional	wectors in
ć.	Euclidean geometre	1 - aimens
 a set of linearly independent (ORTHONORMAL) basis vedes 	$\hat{x} \hat{j} \hat{k}$ $\hat{x} \cdot \hat{j} = \delta_{ij}$	\$ \$42 \$3 \$\int_{i}^{*} \phi_{i}^{*} \phi_{i}^{*} \dr =
· any vector can be expressed as a linear combination of basis vectors	V=Vx2+Vyj+Vk	$\Psi = \sum_{i}^{n} c_{i} \phi_{i}$
• scalar or dot product of two vectors	V. V=v,v,+v,v,+w,	SE* Exe Z
There exist transforma- tions Trohich when applied to a vector, turn it into another vector. A linear	ر د- و-	Top \(\mathbb{T} = \mathbb{T}' \) = \(\frac{7}{2} \cdot \c
transformation gives a new veetor which can be expressed as linear combinations of the components of the original vector	$V_y' = V_x \sin \theta + V_y \cos \theta$	7. 18.4
· Representation of a vector by a matrix	$\vec{\nabla} = \begin{pmatrix} \sqrt{x} \\ \sqrt{y} \\ \sqrt{z} \end{pmatrix}$ $\vec{\nabla} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$ \Psi = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} $ $ \Psi_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} $
0, 0, 0, 0,000	$T = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$	$T = \begin{pmatrix} T_{i1} & T_{i2} & T_{i2} \\ T_{2i} & T_{22} & T_{i3} \\ \vdots & \vdots & \vdots \end{pmatrix}$
by a mostrix		where Tij = Soft Top 9

MATRICES IN QUANTUM MECHANICS

A MATRIX is an array of numbers which obey certain rules.

EQUALITY
ADDITION
MULTIPLICATION by A SCALAR
MATRIX MULTIPLICATION

In Quantum Mechanics these numbers are INTEGRALS.

THE ENTIRE ARRAY OF NUMBERS REPRESENTS A QUANTUM MECHANICAL OPERATOR

For example, consider the operator top and a complete set of functions & \$ 3

	COLUMN	COLUMN	COLUMN	
	_	2 (*	3 (/ * - d -	
F = Rao	Soft For Got	Sof For dat	Sof For 43 OT	
Row 2	Soft Fop dide	Soft Fop of dr	Stroptede	•••
Rav 3	Soft For A de	Soft For det	Soft For of ar	•••
3		•	0.	
·		•		

 $F_{32} = \int \phi_3^* F_{op} \phi_2^* d\tau \text{ is called a "MATRIX ELEMENT"}$

The MATRIX F is said to REPRESENT the OPERATOR FOR USING AS A BASIS the SET OF FUNCTIONS & \$

For example: Suppose we have the operators I_x I_y I_z

and the complete set of functions ORTHONORMONE of β (only two in COMPLETE ξ α β (only two in SET) Suppose also that these are related by the following equations: $I_Z \alpha = (\frac{\pi}{2}) \alpha \qquad I_Z \beta = (-\frac{\pi}{2}) \beta$

$$I_{Z}\alpha = (\frac{1}{2})\alpha$$

$$I_{Z}\beta = (-\frac{1}{2})$$

$$I_{x} \propto = (\frac{2}{2})\beta$$
 $I_{x} \beta = (\frac{2}{2})\gamma$

$$I_y \alpha = (+i\frac{\pi}{2})\beta$$
 $I_y \beta = (-i\frac{\pi}{2})\alpha$

What are the MATRIX REPRESENTATIONS Of the OPERATORS I_x , I_y , and I_z ?

$$\mathbf{I}_{\mathbf{x}} = \begin{bmatrix} \int \mathbf{x}^* \mathbf{I}_{\mathbf{x}} \mathbf{x} d\mathbf{r} & \int \mathbf{x}^* \mathbf{I}_{\mathbf{x}} \mathbf{\beta} d\mathbf{r} \\ \int \mathbf{\beta}^* \mathbf{I}_{\mathbf{x}} \mathbf{x} d\mathbf{r} & \int \mathbf{\beta}^* \mathbf{I}_{\mathbf{x}} \mathbf{\beta} d\mathbf{r} \end{bmatrix} = \begin{bmatrix} 0 & \frac{\pi}{2} \\ \frac{\pi}{2} & 0 \end{bmatrix}$$

$$\mathbf{I}_{\mathbf{y}} = \begin{bmatrix} \int \mathbf{A}^{*} \mathbf{I}_{\mathbf{y}} \mathbf{A} d\mathbf{r} & \int \mathbf{A}^{*} \mathbf{I}_{\mathbf{y}} \mathbf{B} d\mathbf{r} \\ \int \mathbf{B}^{*} \mathbf{I}_{\mathbf{y}} \mathbf{A} d\mathbf{r} & \int \mathbf{B}^{*} \mathbf{I}_{\mathbf{y}} \mathbf{B} d\mathbf{r} \end{bmatrix} = \begin{bmatrix} 0 - i \frac{\pi}{2} \\ + i \frac{\pi}{2} \end{bmatrix}$$

$$\mathbf{I}_{\mathbf{Z}} = \begin{bmatrix} \int \alpha^* \mathbf{I}_{\mathbf{Z}} \alpha d\tau & \int \alpha^* \mathbf{I}_{\mathbf{Z}} \beta d\tau \\ \int \beta^* \mathbf{I}_{\mathbf{Z}} \alpha d\tau & \int \beta^* \mathbf{I}_{\mathbf{Z}} \beta d\tau \end{bmatrix} = \begin{bmatrix} \frac{\pi}{2} & 0 \\ 0 & \frac{\pi}{2} \end{bmatrix}$$

MATRIX REPRESENTATION MEANS that THE DPERATORS AND THE MATRICES REPRESENTING THEM OBEY THE SAME RULES

1. MULTIPL! CATION BY A SCALAR QUANTITY:

$$i I_{y} = \begin{bmatrix} i(0) & i(\frac{i}{2}) \\ i(+\frac{i}{2}) & i(0) \end{bmatrix} = \begin{bmatrix} 0 & +\frac{i}{2} \\ -\frac{i}{2} & 0 \end{bmatrix}$$

EVERY
MATRIX ELSUDIT
HAS TO BE
MULTIPHED BY
THE SCALAR

$$I_{x} + iI_{y} = \begin{bmatrix} 0 & \frac{4}{2} \\ \frac{1}{2} & 0 \end{bmatrix} + \begin{bmatrix} 0 & \frac{4}{2} \\ \frac{4}{2} & 0 \end{bmatrix} \xrightarrow{\text{ADD PRODUCE}} \begin{bmatrix} 0 & \pi \\ 0 & 0 \end{bmatrix}$$

3. MATRIX MULTIPLICATION:

(FG) = \(\sum_{i} \) \(\text{Gi} \) \(\text{Gi} \) \(\text{Column} \) \(\text{column} \) \(\text{column} \)

F G FG

PRODUCT 4. EQUALITY & CORRESPONDING MATRIX ELEMENTS ARE EQUAL.

 $(FG)_{r \in S}$ Sp Fop Gop & de = JAT FOR (CA+CA2+C3A3+1.) dt a new function EXPAND IT in terms of the COMPLETE SET Gop \$ = C, \$, + C2\$2+C3\$5. Sti Goodar=C, = St. For that. St. Gop dat + Sof For Bat. Sof Gop de de + S\$ For \$3 dt. S\$ Gor \$ dt FG = Fr, Gie + Fr2 Gze + F3 G3e + ···

Product of element element 1 ALL ADDED TOGETHER element 1 of row r and element 1 of column C

MATRIX MULTIPLICATION IS NOT IN GENERAL COMMUTATIVE, just as QUANTUM MECHANICAL OPERATORS DO NOT IN GENERAL COMMUTE.

FG is not always the same as GF just as FopGop Y is not always the same as Gop Fop Y Example: Does I_{x} commute with I_{y} ?

OPERATORS: $[I_{x}, I_{y}] = I_{x}I_{y} - I_{y}I_{x} = ?$ Let us see: $I_{x}I_{y} \propto = I_{x}(\frac{i\pi}{2}\beta) = \frac{i\pi}{2}I_{x}\beta = \frac{i\pi}{2}(\frac{\pi}{2}\alpha) = \frac{i\pi^{2}}{4}\alpha$ $I_{y}I_{x} \propto = I_{y}(\frac{\pi}{2}\beta) = \frac{\pi}{2}I_{y}\beta = \frac{\pi}{2}(-\frac{i\pi}{2}\alpha) = -\frac{i\pi}{4}\alpha$ $\therefore (I_{x}I_{y} - I_{y}I_{x})\alpha = \{i\pi^{2} - (-i\pi^{2})\}\alpha = \frac{i\pi}{2}\alpha$ $[I_{x}, I_{y}] = i\pi I_{z}$ $= i\pi I_{z}\alpha$

MATRICES:
$$I_{x}I_{y} - I_{y}I_{x} = ?$$

$$I_{x}I_{y} = \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} 0 - \frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix} = \begin{bmatrix} 0.0 + \frac{1}{2}(\frac{1}{2}) & 0(\frac{1}{2}) + \frac{1}{2}(0) \\ \frac{1}{2}(0) + 0(\frac{1}{2}) & \frac{1}{2}(\frac{1}{2}) + 0.0 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{4} & 0 \\ 0 & -\frac{1}{2} \end{bmatrix}$$

$$I_{y}I_{x} = \begin{bmatrix} 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix} = \begin{bmatrix} 0.0 + (-\frac{1}{2}) & 0 \\ \frac{1}{2} & 0 \end{bmatrix} = \begin{bmatrix} 0.0 + (-\frac{1}{2}) & 0 \\ \frac{1}{2} & 0 \end{bmatrix} = \begin{bmatrix} 0.0 + (-\frac{1}{2}) & 0 \\ \frac{1}{2} & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$$

The operators I_x , I_y , I_z are represented by the MATRICES I_x , I_y and I_z .

- 1. INTRODUCTION TO QUANTUM MECHANICS
- 2. ANGULAR MOMENTUM
- 3. THE HYDROGEN ATOM
- 4. MATRIX REPRESENTATION OF QUANTUM MECHANICS
 - 4.1 Matrix Representation of an Operator
 - 4.2 Matrix Representation of an Operator Equation
 - 4.3 Solving the Matrix Equation that Represents the Operator Equation $\mathcal{H}\Psi = E\Psi$

MATRIX REPRESENTATION OF STATE FUNCTIONS

(C, C, C)

Example: The EIGENFUNCTIONS of the operator Ix in MATRIX form

The functions which are the EIGENFUNCTIONS of I_X can be written as an EXPANSION in the ORTHONORMAL COMPLETE SET of FUNCTIONS which are the EIGENFUNCTIONS of I_Z , that is, the functions

These functions α and β .

These are the $\overrightarrow{\gamma}$ $\overrightarrow{V}_1 = \overrightarrow{\tau_2} \alpha + \overrightarrow{\tau_2} \beta$ FIGENFUNC-Let us see if these are correct: $\overrightarrow{T}_X \overrightarrow{V}_1 = \overrightarrow{T}_X (\overrightarrow{t}_2 \alpha + \overrightarrow{t}_2 \beta) = \overrightarrow{\tau_2} (\overrightarrow{T}_X \alpha + \overrightarrow{T}_X \beta)$

= 左(李β + 喜双) = 查(左双 + 左β)=查》

- 1. INTRODUCTION TO QUANTUM MECHANICS
- 2. ANGULAR MOMENTUM
- 3. THE HYDROGEN ATOM
- 4. MATRIX REPRESENTATION OF QUANTUM MECHANICS
 - 4.1 Matrix Representation of an Operator
 - 4.2 Matrix Representation of an Operator Equation
 - 4.3 Solving the Matrix Equation that Represents the Operator Equation $\mathcal{H}\Psi=\mathbf{E}\Psi$

$$Y_1 = \overline{r_2} \times + \overline{r_2} \beta$$
 $Y_2 = \overline{r_2} \times - \overline{r_2} \beta$
The MATRIX REPRESENTATION of Y_1 and Y_2 are
$$\psi_{is} \left[\begin{array}{c} \overline{r_2} \\ \overline{r_2} \end{array} \right] \qquad \qquad \psi_{is} \left[\begin{array}{c} \overline{r_2} \\ \overline{r_2} \end{array} \right]$$

The MATRIX RETRESENTATION of the equation $I_x Y_i = \frac{\pi}{2} Y_i$

The MATRIX REPRESENTATION of the equation $I_x Y_2 = -\frac{h}{2}Y_2$

IN GENERAL, for the OPERATOR F_{op} whose EIGENFUNCTION is V_i with EIGENVALUE a_i the differential equation is: $V_i = q_i V_i$

the MATRIX REPRESENTATION

FY = 9, Y,

$$\begin{array}{c|c}
F_1 & F_2 & \\
\hline
F_2 & F_2 & \\
\hline
G_3 & G_3
\end{array}$$

reads as follows: (following the rules of MATRIX MULTIrow 1 - F_{11} F_{12} F_{12} F_{13} F_{13}

From your algebra class,

$$b_{1,1} x + b_{12} y + b_{13} z = 0$$

$$b_{2,1} x + b_{22} y + b_{23} z = 0$$

$$b_{3,1} x + b_{32} y + b_{33} z = 0$$

$$b_{3,1} x + b_{32} y + b_{33} z = 0$$
Solve for
$$x, y, z$$

X=0 y=0 Z=0 15 a "TRIVIAL" solution Any others? NON-TRIVIAL solutions can be found IF and ONLY IF

$$\begin{vmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{vmatrix} = 0$$

Similarly our simultaneous equations with unknowns c, Cz, Cz, Cz and a, has a solution other than G=0, G=0, Cz=0, ...

IF and ONLY IF

det
$$F_{1}$$
, F_{12} F_{13} F_{4} ... = 0
 F_{21} F_{22} F_{23} F_{24} ... = 0
 F_{31} F_{32} F_{33} F_{34} ...

Example: The operator equation to be solved is $I_X Y_1 = a_1 Y_1$

MATRIX REPRESENTATION is

$$\mathbf{J}_{\mathbf{x}} = \begin{bmatrix} 0 & \frac{\mathbf{z}_{2}}{2} \\ \frac{\mathbf{z}_{2}}{2} \end{bmatrix} \qquad \mathbf{y}_{1} = \begin{bmatrix} c_{1} \\ c_{2} \end{bmatrix}$$

reads as follows:

$$(I_x)_{11}^{C}C_1 + (I_x)_{12}^{C}C_2 = 9, C,$$

 $(I_x)_{21}^{C}C_1 + (I_x)_{22}^{C}C_2 = 9, C_2$

Rearranging we get,

$$\begin{vmatrix}
det & 0-9, & \frac{5}{2} \\
\frac{5}{2} & 0-9, & 0-9
\end{vmatrix} = 0$$

Evaluate the determinant:

$$(0-a_1)(0-a_1)$$
 $(\frac{t}{2})(\frac{t}{2}) = 0$ or $q_1^2 = (\frac{t}{2})^2$
 $a_1 = \frac{t}{2}$ one eigenvalue
or $-\frac{t}{2}$ also an eigenvalue.

SOLVING THE MATRIX EQUATION THAT REPRESENTS THE OPERATOR EQUATION YIELDS ALL THE EIGENVALUES OF THE OPERATOR !!!

tranating the 2XZ DETERMINANT leads to a quadratic equation in the EIGENVALUES of the MATRIX representing the OPERATOR The ROOTS of the quadratic equation are the 2 values of the EIGENVALUES of the OPERATOR.

If it had been a 3x3 DETERMINANT, it would lead to a cubic equation: mE3 + mE + mE + m = 0 which would have 3 ROOTS, which are the 3 EIGENVALUES of the OPERATOR Let us go back to our example: Once the values

a, = 11/2

are found, we can put them back into the simultaneous linear equations:

(0-a,)c, + 1c2 =0

7 C, + (0-a,) C2=0

In order to solve for c, and cz - Let us dont:

For 9, = 1/2:

(のち)のナラに=の

or $c_1 = c_2$ But we also know $c_1^2 + c_2^2 = 1$

For a = - 1/2:

(0-一支)ら、ナ豆の=0 or c1 = -C2

For
$$\mathbf{q}_1 = \frac{\hbar}{2}$$
 $\begin{cases} \psi_1 = c_1 \psi_1 + c_2 \psi_2 \\ \text{Normalization condition} \end{cases}$

Substitute $\begin{cases} \psi_1^* \psi_1 \, dt = 1 = \int_0^{\infty} \psi_1^* c_2^* \psi_2^* \, dt \\ \text{this into} \end{cases}$
 $c_1^2 + c_2^2 = 1$
 $c_1^2 + c_2^2 = 1$
 $c_1^2 + c_1^2 = 1$
 $c_1^2 + c_1^2 = 1$
 $c_2^2 + c_1^2 = 1$
 $c_1^2 + c_2^2 = 1$
 $c_2^2 + c_1^2 = 1$
 $c_2^2 + c_1^2 = 1$
 $c_2^2 + c_1^2 = 1$
 $c_2^2 + c_2^2 = 1$
 $c_2^2 + c_1^2 = 1$
 $c_2^2 + c_2^2 = 1$
 $c_2^2 +$

For $a_{\bullet} = -\frac{t}{2}$ We found $c_{i} = -c_{2}$ Substitute this into $c_{i}^{2} + c_{2}^{2} = 1$ we get $c_{i}^{2} + (-c_{i})^{2} = 1$ or $c_{i} = t_{2}$ $c_{2} = -c_{i} = -\frac{t}{2}$

Substituting the Eigenvalue into the linear equations yields the corresponding eigenfunction

$$Y_2 = \frac{1}{12}$$
 $\frac{1}{12}$ $\frac{1$

$$\det \begin{vmatrix} D_{11} & D_{12} & D_{13} \\ D_{21} & D_{22} & D_{23} \\ D_{31} & D_{32} & D_{33} \end{vmatrix} = \underbrace{D_{11} \begin{vmatrix} D_{22} & D_{23} \\ D_{32} & D_{33} \end{vmatrix}}_{13} - \underbrace{D_{12} \begin{vmatrix} D_{21} & D_{23} \\ D_{31} & D_{32} \end{vmatrix}}_{13} + \underbrace{D_{13} \begin{vmatrix} D_{22} \\ D_{31} & D_{32} \end{vmatrix}}_{13}$$

In general the problem

Given unknown!

can be represented by the matrix problem HY = E,Y,

a) Find à complete orthonormal set of functions \$, \$2 \$3 ... \$

6) Determine the materix H

c) The matrix equation is the same as a set of n simultaneous linear equations

 $H_{11}C_{1} + H_{12}C_{2} + H_{13}C_{3} + \cdots + H_{1n}C_{n} = E_{1}C_{1}$ $H_{21}C_{1} + H_{22}C_{2} + H_{23}C_{3} + \cdots + H_{2n}C_{n} = E_{1}C_{2}$ $H_{n1}C_{1} + H_{n2}C_{2} + H_{n3}C_{3} + \cdots + H_{nn}C_{n} = E_{1}C_{n}$

d) A non-trivial solution exist if and only if det HI-E HIZ HIZ "HIN = 0 H31 H32 H35E ... H3n Hni Hnz Hns ... HnE which is an net order polynomial equation in the unknown E. There will be n roots, that is n values of E, the ETGENVALNES of matrix H. These are also the EIGENVALUES of the operator Hop. e) For every EIGENVALUE E: there exists an EIGENFUNCTION Y. 1 = C, p + C2/2 + C3 & + ... Cn pn which can be found by substituting the eigenvalue Ei into the equations (H,1-E,1)c, + H,2c2 + H,3c3+..+H,nGn =0 war H2, G, +(H22-E,) G+ H23 G3+ .. + H2n Gn = 0 n-1) H3, C, + H32C2+ (H33-E) /3+...+ H3nCn=0 Plus the NORMALIZATION condition: $C_1^2 + C_2^2 + C_3^2 + \cdots + C_n^2 = 1$ Solve for the unknowns c, , cz, ... cn Now put in the next eigenvalue Ez and solve for the C, Con for EIGENFUNCTION to, and so on ...

$$Y_{i} = \begin{bmatrix} G_{i} \\ G_{2i} \\ G_{3i} \\ \vdots \\ G_{ni} \end{bmatrix}$$

The ENTIRE COLLECTION of & values can be put side-by-side as follows:

$$\mathbf{C} = \begin{bmatrix} C_{11} \\ C_{21} \\ C_{31} \\ C_{31} \end{bmatrix} \begin{bmatrix} C_{12} \\ C_{22} \\ C_{32} \\ C_{n1} \end{bmatrix} \begin{bmatrix} C_{12} \\ C_{22} \\ C_{32} \\ C_{n2} \end{bmatrix} \begin{bmatrix} C_{1n} \\ C_{2n} \\ C_{3n} \\ C_{nn} \end{bmatrix}$$

$$forms \ a \ matrix$$

g) The complete matrix equation is

HC=CE

when
$$E = \begin{bmatrix} E_1 & 0 & 0 & 0 & 0 \\ 0 & E_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & E_4 & 0 & 0 \\ 0 & 0 & 0 & 0 & E_n \end{bmatrix}$$

COMPUTERIZATION OF the ABOVE PROCES.
in) The transformation of H into E regurs
finding the matrix C such that
C''HC'=E
is called the INVERSE of matrix C, that is
$C''C = CC'' = \begin{bmatrix} 1 & 0 & 0 & 0 & & 0 \\ 0 & 1 & 0 & 0 & & 0 \end{bmatrix}$
000/00
The transformation is called a SIMILARITY
TRANSFORMATION.
Computer algorithms exist that will do this to a given matrix H
will do this to a given matrix H
Hz1 Hz2 Hz3: Hzn MATRIX (F, 0000 0) Hz1 Hz2 Hz3: Hzn DIAGO 0 0 E3 00 0 Hn1 Hn2 Hn3: Hnn NALIZA 0 0 0 E40.0
Hz1 Hzz Hz3 Hzn D14800 0 E2 00 0
Hni Hnz Hns Hnn NALIZA O O O E40.0
TION (DOD O En
INPUT
, Output
and at the same time find the C that accomplished the task:
(C, 1/C, 2) [C, 1]
C = C21 C22. C2n YOUTPUT
C31 C32 C3n
cn/(cnz) (cnn))
w w v
corresponding to
FIGENVALNES En

- 1. INTRODUCTION TO QUANTUM MECHANICS
- 2. ANGULAR MOMENTUM
- 3. THE HYDROGEN ATOM
- 4. MATRIX REPRESENTATION OF QUANTUM MECHANICS
 - 4.1 Matrix Representation of an Operator
 - 4.2 Matrix Representation of an Operator Equation
 - 4.3 Solving the Matrix Equation that Represents the Operator Equation $\mathcal{H}\Psi = E\Psi$
 - **4.4 Matrix Representation of Spin Angular Momentum Operators**
 - 4.5 Solving $\mathcal{H}\Psi = E\Psi$ for a Spin System, Comparison with NMR Experiments

EXAMPLE &

The spin portion of the hamiltonian for a hydrogen atom in a magnetic field B is

H = geMBBS= - GNUNBIZ + AS.I

 $g_{\rm e} = 2.0023$ $g_{\rm N} = 5.58556$

MB = Bohr magneton = et/2mc

UN = nuclear magneton = et /2mproton

A = 1, 420, 405,751. 786 ± 0.010 Hertz

or in terms of wavelength: 21 cm (The 21 cm line emitted by hydrogen atoms in outer space is the basis of radioastronomy.)

USE MATRIX REPRESENTATIONS to solve $H\Psi = E\Psi$

1) First step: Find a convenient set of functions with which to set up the matrix representation, a complete ORTHONOGRAL SET.

An easy choice is the set of eigenfunctions of the operator ($S_{2}+I_{2}$) since the above hamiltonian contains these operators. The eigenfunctions of ($S_{2}+I_{2}$) are

 $\begin{aligned}
f_1 &= \alpha_e & \alpha_N \\
\psi_2 &= \alpha_e & \beta_N \\
\psi_3 &= \beta_e & \alpha_N \\
\psi_4 &= \beta_e & \beta_N
\end{aligned}$

These 4 functions form a complete ORTHONORMAL SET.

Since we already know that $I_{z}\alpha_{N} = \frac{\pi}{2}\alpha_{N}$ $S_{z}\alpha_{e} = \frac{\pi}{2}\alpha_{e}$ $S_{z}\beta_{e} = -\frac{\pi}{2}\beta_{e}$ $S_{z}\beta_{e} = -\frac{\pi}{2}\beta_{e}$ 2) Second step: Simplify H, combine constants together, etc.

Let
$$\Delta e = g_e M_B B$$
 $\Delta_N = g_N M_N B$

$$H = \Delta_e S_z - \Delta_N I_z + A (S_x I_x + S_y I_y + S_z I_z)$$

$$H = \int_z^{y*} H V_z dt$$

$$= \int_z^{y*} A S_x I_x + A S_y I_y + A S_z I_z$$

3 Do one column at a time and it may help to do the matrix in two pieces H=H, $+H_2$ $H_1=\Delta_e S_2-\Delta_N I_2+A S_2 I_2$ $H_2=A S_X I_X+A S_y I_y$ then add the two pieces together

The numbers that go into the boxes are $\int_{r}^{r} \left(\Delta_{e} S_{z}^{-} - \Delta_{N} I_{z}^{+} A I_{z}^{-} I_{z} \right) Y_{i} d\tau_{e} d\tau_{N}$

Now work on matrix H2 in the same way Sx de= = AR Sx Be = to Re Syde=這Be Sy Be=-itaxe Matrix elements in column 1 are: JY (ASXIX+AS, Iy) Xe OLN, ate dtw OPERATE to get ? (A(生)(生)+A(生)(計))BeBN dredTN this is 4 only //allows / attedto survives orthogosality but the number here happens to be zero Note that this operator makes the following conversions;
4 xe XN -> Be BN 14 42 de BN -> BE ON 43 Be on -> Oe BN 42 4 Be BN - XeXN 4, So the only non-zero elements can be 14 (but the constant happens to be zero) 23) the constant is
A (\$\frac{1}{2}\$) (\$\frac{1}{2}\$) (\$-\frac{1}{2}\$) = \$A\frac{1}{2}\$
41 (the constant happens to be zero)

1 Now add the matrices:

(5) Look for "BLOCKING" along the diagonal? $H\Psi = E\Psi$ made as follows: $H_{11}C_1 + H_{12}C_2 + H_{13}C_3 + H_{14}C_4 = E_1C_1$ $H_{11}C_1 + 0 + 0 + 0 = E_1C_1$ This is can be arrived night away Can be arrived nig

The solution is (choose C, = 1 since 4, = & X_N is already normalized $\Psi_1 = \alpha_e \alpha_N$ E, = H, itself Similarly H416, + H4262+H4363+H4464 = E GA the solution is The solution is Ig = BeBN 6) Solve the SIMULTANEOUS equations: 4
And the 2X2 BLOCK that is left is: H2151 + H2252 + H2363 + H2464 = EC2 H3, C, + H32C + H33C3 + H34C4 = E C3 reduces to 0 + [H22] C2 + [H23] C3 + 0 = Ecz 0 + [H32]C3 + [H33]C3 + 0 = Eca which is easily rolved by: $\left| \begin{array}{ccc}
 H_{22} - E & H_{23} \\
 H_{32} & H_{33} E
 \right| = 0$

 $(H_{22}-E)(H_{33}-E)-H_{32}H_{23}=0$ $E^{2}-(H_{22}+H_{33})E-H_{32}H_{23}+H_{22}H_{33}=0$

b) For very strong magnetic field
$$g >> A$$

$$E_{+} \approx -\frac{A}{4} + g \qquad E_{-} \approx -\frac{A}{4} - g$$

$$\frac{C_{3}}{C_{2}} \approx 0 \qquad \frac{C_{2}}{C_{3}} \approx 0$$

$$\Psi_{+} \approx 0 \approx \beta_{N} + 0 \sin \psi \qquad \Psi_{-} \approx \beta_{e} \propto \psi + 0 \sin \varphi$$

$$small admixture \qquad g \approx \beta_{N}$$

c) For modest magnetic field

- 1. INTRODUCTION TO QUANTUM MECHANICS
- 2. ANGULAR MOMENTUM
- 3. THE HYDROGEN ATOM
- 4. MATRIX REPRESENTATION OF QUANTUM MECHANICS
 - 4.1 Matrix Representation of an Operator
 - 4.2 Matrix Representation of an Operator Equation
 - 4.3 Solving the Matrix Equation that Represents the Operator Equation $\mathcal{H}\Psi = E\Psi$
 - 4.4 Matrix Representation of Spin Angular Momentum Operators
 - 4.5 Solving $\mathcal{H}\Psi = E\Psi$ for a Spin System, Comparison with NMR Experiments

